


For Fun and Profit



History of Computing

William Aspray and Thomas J. Misa, editors

Janet Abbate, Gender in the History of Computing: Reimagining
Expertise, Opportunity, and Achievement through Women’s Lives
John Agar, The Government Machine: A Revolutionary History of the
Computer
William Aspray, John von Neumann and the Origins of Modern
Computing
William Aspray and Paul E. Ceruzzi, The Internet and American
Business
Charles J. Bashe, Lyle R. Johnson, John H. Palmer, and Emerson W.
Pugh, IBM’s Early Computers
Martin Campbell-Kelly, From Airline Reservations to Sonic the
Hedgehog: A History of the Software Industry
Paul E. Ceruzzi, A History of Modern Computing
I. Bernard Cohen, Howard Aiken: Portrait of a Computer Pioneer
I. Bernard Cohen and Gregory W. Welch, editors, Makin’ Numbers:
Howard Aiken and the Computer
Thomas Haigh, Mark Priestley, and Crispin Rope, ENIAC in Action:
Making and Remaking the Modern Computer
John Hendry, Innovating for Failure: Government Policy and the Early
British Computer Industry
Marie Hicks, Programmed Inequalities: How Britain Discarded Women
Technologists and Lost Its Edge in Computing
Michael Lindgren, Glory and Failure: The Difference Engines of Johann
Müller, Charles Babbage, and Georg and Edvard Scheutz
David E. Lundstrom, A Few Good Men from Univac
René Moreau, The Computer Comes of Age: The People, the Hardware,
and the Software
Arthur L. Norberg, Computers and Commerce: A Study of Technology
and Management at Eckert-Mauchly Computer Company, Engineering
Research Associates, and Remington Rand, 1946–1957



Emerson W. Pugh, Building IBM: Shaping an Industry and Its
Technology
Emerson W. Pugh, Memories That Shaped an Industry
Emerson W. Pugh, Lyle R. Johnson, and John H. Palmer, IBM’s 360 and
Early 370 Systems
Kent C. Redmond and Thomas M. Smith, From Whirlwind to MITRE:
The R&D Story of the SAGE Air Defense Computer
Alex Roland with Philip Shiman, Strategic Computing: DARPA and the
Quest for Machine Intelligence, 1983–1993
Raúl Rojas and Ulf Hashagen, editors, The First Computers: History and
Architectures
Dinesh C. Sharma, The Outsourcer: A Comprehensive History of India’s
IT Revolution
Dorothy Stein, Ada: A Life and a Legacy
Christopher Tozzi, For Fun and Profit: A History of the Free and Open
Source Software Revolution
John Vardalas, The Computer Revolution in Canada: Building National
Technological Competence, 1945–1980
Maurice V. Wilkes, Memoirs of a Computer Pioneer



For Fun and Profit

For Fun and Profit

A History of the Free and Open Source Software
Revolution
Christopher Tozzi
Foreword by Jonathan Zittrain

The MIT Press

Cambridge, Massachusetts

London, England



© 2017 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-0-262-03647-4

EPUB Version 1.0



Contents
Foreword by Jonathan Zittrain
Acknowledgments
Introduction 1
1 The Path to Revolution Unix and the Origins of Hacker Culture

2 Inventing the FOSS Revolution Hacker Crisis, GNU, and the Free
Software Foundation
3 A Kernel of Hope The Story of Linux
4 The Moderate FOSS Revolution

5 The FOSS Revolutionary Wars Free Software, Open Source, and
Microsoft
6 Ending the FOSS Revolution?
Notes
Glossary
Bibliography
Index



Foreword
Jonathan Zittrain
The ideals of the free software movement are fundamental to our
relationship to technology. Their goals are for us to be able to learn from
and alter the increasingly baroque and pervasive code that shapes our
lives. By learning about and refining that code, we can better understand
and affect the world around us, inspiring the kinds of self-reliance and
self-realization that are some of the most important aspects1 of human
flourishing.

Defending these ideals also could help prevent us from being unduly
corralled and cabined. Arthur C. Clarke observed that any sufficiently
advanced technology is indistinguishable from magic,2 and when
something is magic, it concentrates power in the hands of magicians and
those who employ or regulate them.

Although the ideals of the free software movement are timeless,
realizing them has become increasingly difficult to achieve. The
environment for free software in the 1980s and 1990s benefited from the
work that had been done by academia—and according to its values—in
the computing space. As you will learn in this book, the pioneering (and
ultimately free) Unix software operating system arose from the singular
situation of Bell Laboratories, a corporate source that, due to a consent
decree involving the Bell system, was at first constrained in proprietizing
it. Academics were ready to extend and later rebuild the entire system to
keep it open.

Today, most corporate sources of operating platforms, whether for the
gadgets we buy or the cloud they connect with, are under no such
constraint. Some players possess a war chest and market dominance
sufficient to introduce new code without relying much on the old—and
its attendant free licensing arrangements.

Ironically, the openness that made the Internet possible and all-
embracing has meant that code can be run at a distance over the network
as readily as it can on the device itself. The rise of cloud computing
should not affect functionality, but the predicate act for reinforcing the
original core free software licenses—if you copy the code to give it to
someone else, including a customer, you must pass along the tools to
read it and change it—is no longer part of using and profiting from the
code. Running that software now does not need that transfer, which



means it will not trigger the freedom-enhancing requirements of most
free software licenses.

Today we confront a world in which the software products that assist
us, make decisions about us, and render our books and other content are
both more powerful and more obscure than ever. The many-faceted story
you are about to read is not only a rollicking tale of fierce personalities
and human conflicts around passionately held views but also a source of
inspiration for how to deal with our increasingly algorithmicized world.



Acknowledgments
This book exists because many generous people took chances on me by
offering gifts of time, patience, and material goods.

My grandparents, Robert and Dorothy Schatzle, spent a fortune to buy
my first computer, an IBM PS/2, when I was in second grade, hoping to
stoke a new creative outlet. Andy Tozzi, my uncle, volunteered his
Saturday mornings to take me to computer fairs and teach me about
Windows 3.1. Many years later, he burned my first GNU/Linux
installation CD. (It was SUSE.) Another grandmother, Mary Ann Tozzi,
taught me how to write emails when she had much more important
things to do with her time.

In college and graduate school, Mark Sanford and Joe Stone gave me
student jobs administering GNU/Linux servers, even though nothing on
my transcript at the time suggested that I deserved them. Joe Panettieri
offered me my first paid writing gig, as a contributor to a now-defunct
blog about Ubuntu, when I had zero publications to my name. Charlene
O’Hanlon, who edited my work, patiently helped to improve my writing
—and to clean up messes when I accidentally broke news embargoes.

David A. Bell, who supervised my PhD dissertation in French history,
encouraged me to work on this project, even though I worried that it
might look strange on my curriculum vitae. He reminded me that
academia would be a boring place indeed if professors were afraid to
study whatever happens to interest them.

The anonymous readers of my manuscript for the MIT Press offered
excellent and insightful feedback, which helped considerably to sharpen
the content of this book. I am grateful, too, to the staff of the MIT Press,
especially Katie Helke, for making the publication of this work a smooth
process.

Many readers of my articles about software history at The VAR Guy
offered comments that helped to hone the ideas presented in this book.
One reader, Art Protin, who was a stranger to me, took the time to read
and comment on a complete draft of the book. For that, I am grateful
indeed. Attendees of the Columbia Area Linux Users’ Group, who
invited me to speak about this project, also provided much valuable
feedback on this work.

Dave Schneider, who offered an opportunity to publish some material
related to this book in IEEE Spectrum magazine, delivered brilliant
editing and guidance, which benefited the project as a whole.



Kate Sohasky took the greatest chance and gave the greatest gift of all.
She married me while I was in the middle of writing this book. (She was
a Windows 7 user at the time but has since converted to Ubuntu.) The
only thing that makes me happier than having married her is looking
forward to the gifts we will share in the future.



Introduction

“Man is born free, and everywhere he is in chains.”1 So lamented Jean-
Jacques Rousseau in the opening lines of his 1762 treatise, The Social
Contract. The phrase proved to be one of the most enduring criticisms of
political and social inequality in prerevolutionary Europe. It helped to
inspire the French revolutionary movement that, starting a decade after
Rousseau’s death in 1778, undid those chains and—in the minds of the
revolutionaries, at least—tried to restore the equality between men that
they imagined to have reigned supreme when nature, rather than human
contrivance, governed society.

Had Rousseau lived two centuries later, he might have made a similar
observation about software: “Code was born free, and everywhere it is in
chains.” The early 1980s marked the start of an era in which most
programmers ceased to share code freely—despite having done so during
the first decades of software development, before commercial interests
transformed the early world of computing.

A computer-age Rousseau might have proved to be no less of a
prescient philosopher than the real-life Enlightenment version. Just as the
1780s witnessed the start of a revolution against inequality in social and
political affairs, so did the 1980s inaugurate a similar revolt that aimed to
restore software freedom. By the end of the 1990s, the revolution had
succeeded. In many places, code was free again.
* * *
To discuss eighteenth-century philosophers in tandem with twentieth-
century technology may seem like nothing more than the basis for a bad
science fiction novel. Yet the connection here is neither hackneyed nor
contrived. Rousseau and his rabble-rousing contemporaries had much in
common with a group of programmers who came of age near the end of
the Cold War. Each of these factions helped to launch revolutions that
changed the world.

They were very different sorts of revolutions. The French Revolution
of 1789 sparked brutal internecine violence and decades of warfare. The
free and open source software revolution that began in the 1980s never
killed anyone. But both revolutions were radical and revisionist, and the
effects of the latter revolution could be said to be as profound as those of



the political upheavals of the revolutionary age. Just as politics and
modes of social organization would not look like they do today if the
eighteenth-century revolutions had not happened, so too would the way
millions of people now use computers be wildly different if there had
never been a revolution surrounding computer code.

That commonality is not a coincidence. The free and open source
software (FOSS) revolution drew on the same ideological traditions as
the more violent revolutions that preceded it did. At times, the software
revolutionaries even looked to the “revolutionary script” inaugurated by
political revolutionaries centuries earlier for inspiration.2

This book explores the revolution that birthed free and open source
software. It traces the revolution’s origins. It narrates its different stages.
It explains its unpredictable arc and unexpected outcomes. And it looks
into the future to predict how FOSS will continue to evolve.

What Is FOSS?

For several reasons, it is not easy to define what the term free and open
source software (FOSS) means for the purposes of this book. First of all,
the term free software is ambiguous. Sometimes it refers to software that
may be legally copied without cost. It also can describe software whose
source code is governed by particular licenses designed to ensure that
anyone can view it. Some programs described as free software have both
of these qualities.

Meanwhile, there is no single definition for the term open source. The
FOSS community generally uses this phrase to describe programs whose
source code is publicly available under certain licenses, as opposed to
other programs that it associates with free software. In general, the
difference revolves around the extent to which the licenses ensure that
derivative works retain the same copying permissions as those granted
by the original license. Yet there is no universal consensus regarding



which licenses make software open source and which licenses apply to
free software.

Making matters more confusing is the fact that although there is a
certain degree of interchangeability between the phrases free software
and open source software, failing to distinguish between them to the
liking of different groups of programmers can touch major nerves. Some
developers are loathe to see their work labeled open source software
when they consider it instead to be free software and vice versa.
Journalists and marketers rarely distinguish the two terms effectively and
sometimes fail to appreciate the differences between FOSS and software
that merely costs no money, which does not help. Moreover, the phrase
open source software did not exist before 1998, which makes it
anachronistic to use the term to describe code that was developed before
that date, even though many people frequently do when discussing
historical events.

In addition, the meaning of the word open itself in reference to
software is rife with ambiguity. There is usually little disagreement about
what constitutes closed source software. The term closed source software
refers to programs whose source code is not publicly shared. In contrast,
“open” code takes many forms and means different things to different
people. Some contend that sharing source code when requested makes it
open. Others argue that allowing third parties to incorporate the code into
their own work is an additional requirement for openness. Some suggest
that sharing code but not documenting it or making obvious how it works
does little to make the code truly open. As this book shows, debates over
the meaning of openness have been a key catalyst for developments in
FOSS history. In this respect, the history of FOSS reflects a wider debate
about the meaning and importance of openness in the computing world
since the 1970s. Scholars such as Andrew Russell have explored this
subject generally but without extensive focus on the FOSS context.3

Notwithstanding the complexities of basic FOSS terminology, this
book aims to use the terms free software and open source in ways that
are consistent with the software creators’ intentions. In these pages, the
term free software refers to software whose programmers or users call it
such because its source code can be studied and modified freely by
people who use the software, whether or not the source code costs
money. Some proponents of free software write the term with a capital F
as Free software to emphasize that the software is “Free as in Freedom”



and not necessarily free of cost.4 For the sake of stylistic consistency and
political objectivity, however, this book does not capitalize the term.

Meanwhile, I use the term open source in reference to software whose
creators and users preferred that term over free software. I do so whether
or not the software in question or the license that governs it is actually
different in a qualitative way from what constitutes free software. In
other words, I have tried to adopt the usage of the historical actors
themselves whenever possible.

In this book, the term free software does not mean software that is
available without cost but that shares no affinity with what early
proponents of the free software movement called free software. Software
that is simply given away for free is best labeled freeware. In contrast,
free software makes it possible for people other than the original creators
of the code to share, study, and modify the software. For these purposes,
access to source code is a prerequisite, because source code is necessary
for understanding how a program works and for making changes to it. In
addition, although FOSS usually costs no money, being free of cost is not
a defining characteristic of either free or open source software. As this
book shows, some of the most prominent FOSS projects have not always
shared their products free of cost. In other cases, payment has been
optional. It is the public availability of source code, not pricing, that
defines FOSS.

The History of FOSS History

Few books are as simultaneously easy and difficult to write as one about
the history of FOSS. On the one hand, because no researcher has yet
attempted to narrate, in a systematic, comprehensive, and objective way,
the story of the FOSS movement from its origins amid post–World War
II “hacker culture” through the present, this book digs into fertile ground.
That is a rarity because most works of history—even those dealing with
recent time periods, as this one does—tend to engage topics that have



already received so much attention from researchers that the best
historians can usually hope to do is turn over a new stone or reinterpret
an existing argument, not present a great deal of original material. That
this book seeks to do the latter has made it a privilege and a pleasure to
write.

On the other hand, the lack of any published history of the FOSS
movement that aims to be both comprehensive and objective in its
perspective has also made this a difficult book to research and write. A
significant body of work that engages FOSS history exists, but none of it
corresponds directly to the goals of this book. To make clear what this
book does differently, it is worth briefly surveying previous studies that
deal with similar topics.

FOSS Primary-Source Histories

Existing published work on the history of FOSS comprises two main
bodies of literature. The first consists primarily of primary sources
produced by leading figures from FOSS history or by journalists and
researchers who worked closely with them. These works include Eric S.
Raymond’s essays “A Brief History of Hackerdom” and “The Revenge
of the Hackers,” which tell the story of FOSS from their author’s
perspective between the late 1960s and the end of the 1990s.5 Also
notable are biographies of Richard Stallman and Linus Torvalds, which
narrate the contributions of those luminary figures to the development of
FOSS.6 Peter Salus’s 1994 work A Quarter Century of UNIX, which
contains lengthy excerpts of interviews with Unix programmers, offers
useful primary material, along with informative commentary by Salus,
on the history of certain Unix-like operating systems (although Salus
barely mentions GNU or Linux).7 The essays published in Chris Dibona,
Sam Ockman, and Mark Stone’s edited 1999 volume Open Sources:
Voices from the Open Source Revolution, as well as Glyn Moody’s 2002
book Rebel Code: Linux and the Open Source Revolution, which also
contains extensive interviews with FOSS programmers, round out the list
of major published primary-source accounts of FOSS history.



Most of these primary-source works are subject to two chief
limitations. The first is that they were written by or in close collaboration
with the figures they describe. That does not necessarily mean the stories
they present are inaccurate or their claims are biased. But it does
constrain their perspective, and it raises flags for any historian conscious
of the dangers of blindly taking historical actors at their word. By
critically analyzing the essays and biographies of figures like Raymond,
Stallman, and Torvalds and pointing out the contradictions between those
works, this book endeavors to tell the story of FOSS from a broader,
more objective point of view than that of earlier attempts.

In addition, this book draws not only on the well-known primary texts
described above but also on more obscure primary sources, such as
Usenet posts, email archives, and original interviews that I conducted
with FOSS programmers. It therefore brings to light a wealth of evidence
that presents a deeper, more nuanced explanation of the history of FOSS
than figures such as Raymond and Torvalds have been able to provide in
their memoirs.

The second limitation of the existing primary-source histories is that
virtually all of them were written in the early 2000s or before. That is
unsurprising. The late 1990s—when the term open source became a
common part of the tech lexicon and companies selling Linux or related
software enjoyed explosive growth—remain perhaps the most exciting
and promising period in the history of FOSS. Developments since that
time—such as Canonical’s attempt to reinvigorate desktop Linux by
introducing Ubuntu in 2004 and the behind-the-scenes role that Linux
has played in Android smartphones and tablets—have not generated as
much public attention to FOSS. Yet that does not mean that what has
happened in the FOSS world since the early 2000s is not important for
explaining how FOSS developers, companies, and supporters arrived
where they are today. Accordingly, this book aims to weave together the
disparate histories of FOSS that were produced before the early 2000s
and also extend the story they tell into the present.

Scholarly Works



Scholarly works represent the second main body of published literature
about FOSS history on which this book draws. Beginning in the early
2000s, academic researchers explored some dimensions of FOSS history
as part of studies that were primarily sociological or anthropological in
focus.

The first overview of FOSS history intended for academics appeared
in 2001, when David Bretthauer, a librarian at the University of
Connecticut (and a member of the Connecticut Free Un*x Group),
published “Open Source Software: A History.”8 This brief essay mostly
rehashed information from the published primary sources discussed
above. Yet it was significant because, unlike earlier works, it attempted
to provide a complete narrative of FOSS history. It described the cultural
and philosophical origins of FOSS values, as well as the development of
GNU, Linux, and the BSD (Berkeley Software Distribution) operating
system. Bretthauer also briefly touched on the histories of some other
important FOSS projects, such as Perl, Python, and Apache. His essay
offered few details, but it encouraged scholars for the first time to think
of FOSS as a singular phenomenon with a long history worth exploring.

Working in the same vein, Nathan Ensmenger became the first scholar
to discuss the academic significance of FOSS history in an explicit way.
In a 2004 article titled “Open Source’s Lessons for Historians,”
Ensmenger pointed out how FOSS communities provide “new ways for
ethnographers and political scientists to think about the process of self-
governance.”9 He also suggested studying FOSS as a means of
understanding how “technical, social, and political agendas” have been
deeply intertwined with software development since the early days of
computing.10 Most significant was Ensmenger’s contention—despite the
oversimplified view of FOSS history that prevailed in 2004 and remains
largely intact today—that the advent of FOSS did not represent a sudden,
“radical break” with older ways of writing and distributing code. He
argued that closed source software and FOSS share a longer, intertwined
history. They are not dichotomous opposites, he wrote, but different
stretches along the “continuum of possible configurations of technology,
markets, and intellectual property regimes.”11 This book expands on that
idea by highlighting the diverse approaches to software development and
distribution that have emerged within the FOSS world, some of which
share more in common than others with proprietary software.

Ensmenger’s article presented insights that are crucial for
understanding where FOSS fits within the complex history of computing



and software. It also challenged the oversimplified narratives of FOSS’s
past that writers such as Raymond presented. Yet Ensmenger’s three-
page essay was a “think piece” and did not analyze the ideas it
introduced in any detail. Ensmenger subsequently revisited some of the
article’s theories in his excellent 2010 book, The Computer Boys Take
Over. That work, however, focused not on the origins of FOSS but on
the history of the professionalization of programming.12

Steven Weber did more to examine the ethnographical and political
theories of FOSS developers in The Success of Open Source, the first
book-length scholarly study of FOSS. Weber’s chief interest was
exploring how property “underpins the social organization of
cooperation and production in a digital era.”13 To perform that study, he
leveraged FOSS as “a real-world, researchable example of a community
and a knowledge production process that has been fundamentally
changed, or created in significant ways, by Internet technology.”14 In the
course of investigating how the Internet has shaped the way FOSS
developers produce code and think about property, Weber recounted the
histories of Unix, BSD, and Linux from their origins through the early
2000s.

Because Weber’s goal was not to provide a complete history of FOSS,
his book paid considerably less attention to the history of other FOSS
projects, such as GNU. In addition, as the title of Weber’s book suggests,
he was concerned mostly with FOSS projects that were successful. He
did not analyze the limitations of FOSS development or provide detailed
explanations for why some FOSS projects succeed while others do not.
In that respect, this book offers a corollary to Weber’s text. For example,
one of the major tasks of this book is to explain why GNU development
lagged in the 1990s while Linux surged.

Christopher Kelty’s Two Bits: The Cultural Significance of Free
Software pursued an agenda similar to Weber’s.15 Published in 2008, the
book represents the second major scholarly analysis of FOSS. Kelty
worked from an anthropological perspective. His chief argument is that
FOSS communities function as “recursive publics” that are “concerned
with the ability to build, control, modify, and maintain the infrastructure
that allows them to come into being in the first place.”16 Like Weber,
Kelty engaged FOSS history only to the extent necessary to facilitate an
anthropological analysis rather than to explain it comprehensively. Still,
he narrated the histories of Unix, GNU, and Linux relatively thoroughly,



and his work is of vital relevance for placing historical FOSS
developments within cultural and social contexts.

Several other scholarly works that do not engage extensively with the
history of FOSS nonetheless offer valuable perspectives for this book.
They include Russell’s Open Standards and the Digital Age, which, as
noted above, explores how “openness,” broadly conceived, has affected
engineers over the past several decades.17 Martin Campbell-Kelly’s
history of software between the 1950s and 1995, From Airline
Reservations to Sonic the Hedgehog, offers excellent perspective on the
crucial effects that software in general, if not FOSS in particular, have
exerted on society since the early days of computing. Mark Priestley’s A
Science of Operations: Machines, Logic and the Invention of
Programming is valuable for similar reasons. An article by Charles
Yood, which argues that “the history of computing provides a rare
opportunity to make the work of historians relevant and interesting to
people outside the academy,” helped to inspire this book, which was
written in the hope that academics and nonacademics alike will find
value in its pages.18

Lastly, works by David Berry, Wendy Chun, Federica Frabetti,
Matthew Fuller, Eric von Hippel, Lev Manovich, and Georg von Krogh
on the cultural, economic, and philosophical significance of software are
vital for evaluating the roles that FOSS programmers and users have
played over the last several decades within broader ecosystems of
software, computers, and code.19 This scholarship helps to explain why
FOSS has meant so much to so many people. As these scholars have
noted, software’s significance extends far beyond the mathematical
operations of code itself. Manovich argues that software has acquired an
omnipotent relevance by becoming the basis for all forms of media in the
digital age.20 Chun notes how access to and control over code seem to be
the only means of managing the endlessly complex and obscure
workings of the computers that run our lives—even if, in reality, the
relationship between code and a computer’s actions is not at all
straightforward because code can be translated by compilers or executed
by machines in unexpected ways.21

Against this backdrop, the stakes of the debates about FOSS, which
this book narrates, come into clearer focus. On their own, the utilitarian
dimensions of code do not explain why FOSS programmers and users
have so passionately debated one another and their counterparts in the



closed source ecosystem. Being able to borrow and reuse code, as FOSS
developers do, is a convenience. It saves time and is arguably more
efficient. But it is not important enough on its own to motivate rational
people to stake personal reputations and fortunes on FOSS code when
closed source software can be just as profitable. Programmers could still
program and computer users could still run their code, even if all code
were closed.

What they would lack under those circumstances is the sense of
exerting control over their world. By retaining full access to the source
code of the software that runs much of their lives, FOSS developers and
users seek independence. Even if they never actually modify programs,
knowing that they can do so is tremendously assuring. That is the
principle reason that so many people have cared deeply about FOSS for
several decades. The works cited above do not study how this thinking
has affected the FOSS community in particular, but they provide the
foundation for interpreting the FOSS approach to software in this vein.

Scope and Themes

Although this book is the most comprehensive study to date of the
history of FOSS, its scope is necessarily limited in several ways. For
one, it does not discuss the individual history of every FOSS project.
That would be impossible. A 2012 analysis found that the number of
FOSS projects in existence totaled between 324,000 and 4.8 million,
depending on how a distinct project was defined.22 The figures have
grown since then.

Nor does this book afford equal treatment to all theaters of FOSS
development. It offers relatively little discussion of FOSS programs that
are designed to run on Microsoft Windows, for example. Instead, the text
focuses on those projects and communities—notably Unix, BSD, GNU,
Linux, and Apache—that have been most influential in shaping the
technical, intellectual, and cultural dimensions of FOSS.



It touches along the way on the histories of many other projects, from
Perl and Python to Wine and X Windows, that will also be familiar to
many FOSS users. Unfortunately, however, for want of infinite space,
this book skips over some FOSS programs that are historically
significant. I hope that the future will present opportunities for historians
to study these projects at greater length.

Narrating the major developments of FOSS history over the past half
century is only one part of this book’s focus. It seeks also to explain why
events occurred as they did—why a certain group of programmers in the
1980s decided to give away potentially valuable code free of cost, why
the Linux kernel evolved from obscure origins to become one of the
most widely used software programs in the world, how the FOSS
community overcame attempts by companies like Microsoft to discredit
it in the late 1990s, and much more. Interpreting and accounting for
major developments in FOSS history such as these is crucial because to
date few observers have considered why FOSS followed the path it did.

Last but equally significant, the book reconsiders some of the
stereotypes that have affected the FOSS community. One of those is the
relationship that FOSS developers have had with commercial endeavors.
It has been common practice to label FOSS advocates as anticapitalists
who choose to share their code freely primarily because they disdain
economic exchange.23 Yet the reality is much more complex.
Historically, some free software purists, including those associated with
the Free Software Foundation, collaborated enthusiastically with
companies and entrepreneurs to find ways to make money with software
that they gave away for free. In other cases, such as that of the Linux
kernel early in its history, FOSS leaders who became famous for
ostensibly pragmatic attitudes toward the commercial use of FOSS
proved to be reluctant to engage in any activity that smacked of
commercialism. In the latter instances, having “fun,” a word that FOSS
developers and users have frequently used to explain their interest in
freely shared code, was a more important impetus for participation in
FOSS projects than was making money.

It is from this complex interplay between pleasure and commercial
interest that this book takes its title. The history of FOSS is the history of
programmers and users who were motivated by both fun and profit, not
one or the other, as conventional interpretations of the FOSS ecosystem
have tended to assume.



In a similar vein, this book illuminates the fascinating ways in which
the FOSS community has navigated the straits separating pragmatism
from ideology over the last several decades. Some observers have been
quick to dismiss certain FOSS activists, such as those associated with the
Free Software Foundation, as ideologues incapable of compromise or
cooperation with people who espouse alternative viewpoints. There also
has been a tendency to contrast such groups with the supposed
pragmatists in the “open source” camp, whose willingness to
compromise ostensibly ensured their success. This book shows that such
depictions miss the mark. To be sure, FOSS proponents have not always
acted pragmatically. Their obstinacy has sometimes been detrimental to
their endeavors. Yet an understanding of the interplay between
pragmatism and ideology within FOSS history requires an appreciation
of the extensive nuances that have marked the evolution of FOSS
projects and culture over the past several decades. It is not true that one
part of the FOSS community has always been overly idealistic while the
other has consistently exercised cool pragmatism.

FOSS as a Revolution

As the first paragraphs of this introduction suggest, this book uses
revolution as an interpretive lens for evaluating the history of FOSS.
This approach reflects two main themes that run consistently throughout
this book.

The first is that FOSS leaders and community members have
frequently described themselves as revolutionaries and deployed the
rhetoric of revolution to explain or justify their actions. Torvalds and
Raymond both have referred to themselves as “accidental
revolutionaries.”24 Similarly, Raymond borrowed a phrase from poet
Ralph Waldo Emerson about the start of the American Revolution when
he described the events of January 1998, which jump-started the open
source movement, as the “shot heard ’round the world of the open-source



revolution.”25 A 2001 documentary called GNU/Linux the revolution OS
(operating system).26 The first major anthology of writings about open
source history from the leading figures of the movement characterized
the events as “the open source revolution.”27 Without appreciating how
important the concept of revolution has been to FOSS leaders and
supporters, this book could not accurately interpret their decisions and
ideologies.28

Revolution also serves as an effective interpretive lens for
understanding the history of FOSS because so many of the events and
trends in FOSS history have followed a “revolutionary script” that was
similar to that followed by the major political revolutions of modern
times.29 Although changes to the ways that software is written and
distributed constitute a bloodless revolution, unlike many political
revolutions in which social hierarchies and cultures are violently
contested, the story of FOSS closely parallels other revolutions of recent
centuries.

For example, the FOSS revolution’s origins can be traced to marginal
figures who seethed with resentment against mainstream modes of
software distribution in the 1970s and early 1980s. They believed that
artificial access barriers to source code stifle creativity and sustain
arbitrary hierarchies. In this sense, people like Stallman, whose name
was little known within the programming world before the launch of
GNU, were not unlike French revolutionaries such as Jean-Paul Marat or
Jacques-Pierre Brissot. As the historian Robert Darnton has shown, the
hatred toward the old regime that Marat and Brissot exhibited prior to the
French Revolution, when they were struggling, marginalized writers,
was born in part from their perception that aristocratic society prevented
them from participating in intellectual life in the way they believed they
deserved.30

Similarly, the conflicts that have shaped the history of FOSS parallel
the wars that accompanied most major political revolutions. The
American Revolution centered on a violent struggle between American
rebels and military forces from overseas who were loyal to the British
crown, which was complicated by battles between the colonial rebels and
Loyalists. The French Revolution witnessed brutal, multifactional civil
war between royalists, federalists, and Jacobins, which coincided with
the existential struggle that the French revolutionaries waged against
foreign armies. The 1917 revolution in Russia began in the throes of a



devastating war against foreign powers and then was transformed into a
prolonged domestic struggle that pitted Bolsheviks against White
Russians while foreign powers meddled from the sidelines. War against
domestic and foreign enemies proved inseparable from each of these
political revolutions.

In the same way, as this book shows, the FOSS revolution included
two major “wars.” One was waged by FOSS supporters against
Microsoft and associated companies, which sought in the late 1990s and
early 2000s to stamp out the FOSS movement completely. In the same
period, a prolonged struggle within the FOSS community proceeded as
supporters of the Free Software Foundation vied with those in the “open
source” camp to define the meaning and scope of FOSS development.
Comparing these conflicts with the role of warfare in political
revolutions provides useful perspective for understanding how and why
different types of confrontation have shaped FOSS.

The outcomes of major political revolutions also offer perspectives on
that of the FOSS revolution. In many cases, the people and ideologies
that revolutions ultimately usher into power are very different from those
that prevail at the beginning of a revolution. The liberal aspirations of the
constitutional monarchists who launched the French Revolution in 1789
gave way to the radical bloodshed of the Reign of Terror, followed
eventually by Napoleonic dictatorship. The Russian Revolution
descended from a movement focused on moderate change and reform
and evolved into one that radically restructured society.

The FOSS revolution’s trajectory has similarly involved a number of
revolutionary “stages” and shifts in the center of power. The FOSS
movement began in the early 1980s under the leadership of Stallman and
other nonconformist hackers at the Massachusetts Institute of
Technology in a loose alliance with like-minded counterparts at the
University of California at Berkeley. Their methods and values
contrasted in certain key ways with those that emerged starting in the
early 1990s within the Linux development community, out of which the
open source (as opposed to free software) movement emerged in the later
1990s. The open source faction’s commercial success paved the way for
FOSS projects like Linux and Mozilla Firefox to become household
names. In contrast, Stallman’s GNU operating system project—despite
continuing to provide a great deal of the code that makes FOSS
platforms run—is much less well known among the public at large today.
The bulk of FOSS development and investment now centers on groups



whose members do not necessarily espouse a great deal of interest in the
values that Stallman articulated when he launched the GNU project and
the Free Software Foundation in the 1980s. In this way, the people and
ideas that launched the FOSS revolution have not retained definitive
control over it.

Organization

This book begins with a study of the origins of hacker culture and its
influence on the Unix operating system, which are the subject of chapter
1. Although Unix at the time of its creation was never called free or open
source software, it effectively functioned as such in key respects. It was
developed collaboratively in disparate locations by programmers who
shared the code openly with one another. Hacker culture, which had its
roots in a period somewhat earlier than Unix’s creation and shared
affinities with the academic culture from which it was born, found a
strong footing within the Unix community during the late 1960s and
1970s. The community of Unix hackers thrived until the early 1980s,
when AT&T, the company that owned Unix, turned the operating system
into a commercial product, engendering a crisis among hackers.

Chapter 2 describes the reactions to that crisis. One of them involved
an effort at the University of California at Berkeley to write a clone of
Unix called BSD (Berkeley Software Distribution) that was free of
AT&T code, allowing it to be distributed in ways that hackers could
accept. (As the chapter explains, BSD development initially focused on
enhancing rather than replacing Unix, but Unix’s commercialization
transformed the mission of BSD programmers.) Another reaction, which
fomented the birth of the free software movement as a conscious
initiative, was Richard Stallman’s endeavor to build a separate Unix
clone, which he called the GNU operating system. The focus of chapter 2
is the GNU project’s activities throughout the 1980s and related
developments, such as the founding of the Free Software Foundation and
the establishment of free software licenses.



Chapter 3 considers the events of the early 1990s. Although most
hackers at the time believed that either BSD or the GNU operating
system was poised to provide a platform that would be an alternative to
Unix and would provide source code freely for a reasonable price,
unexpected turns stunted both of these projects. BSD came under legal
fire, which scared some potential contributors and users away.
Meanwhile, although GNU developers were highly successful in writing
many other programs, they lagged in their efforts to create a kernel, the
core part of an operating system. As a result, the opportunity arose for
Linus Torvalds, a young programmer from Finland, to produce a kernel
of his own that rapidly became much more popular than its obscure,
hobbyist origins suggested it should have. Chapter 3 narrates the history
of early Linux development and considers why Torvalds and the
community of programmers he led assumed such outsize influence
within the FOSS community in the early 1990s.

Chapter 4 discusses what happened when the suite of software
programs produced by the GNU project combined with Linux during the
1990s. Together, GNU software and the Linux kernel fueled the
emergence of a booming new sector within the technology industry.
Companies invested billions of dollars in business operations that
centered on software that was given away for free. This activity
cemented the position of FOSS within the mainstream technology world
and made FOSS operating systems a viable choice for millions of people.

Yet as chapter 5 shows, the growing popularity of FOSS in the 1990s
also stoked deep divisions. Tensions arose within the FOSS community
regarding what the values of FOSS developers and users should be and
what constituted FOSS code. These divisions also led to a battle between
FOSS supporters and closed source software companies, especially
Microsoft, which had come to see FOSS as a threat to its business.
Chapter 5 discusses both of these “revolutionary wars.”

The final chapter explores developments that have occurred in the
FOSS world since the revolutionary wars of the late 1990s and early
2000s ended. Following the calming of internal political tensions and the
disappearance of external threats, the FOSS community has enjoyed
remarkable momentum over the last fifteen years. This has been true not
only in the niches, such as Internet servers, where FOSS established
commercial dominance early on, but also in new areas, including
embedded computing, mobile devices, and the cloud. In addition, as
chapter 6 also explains, FOSS has left a profound cultural and



intellectual mark on other initiatives that have no direct relation to the
software industry, such as Wikipedia and Creative Commons. Yet
supporters of FOSS continue to debate the goals of the FOSS revolution
and whether they have been achieved. In addition, technology has
evolved in ways that previous generations could barely have foreseen,
necessitating new strategies for FOSS developers. As a result of the lack
of consensus about FOSS and the shifting technological landscape, the
FOSS revolution continues. So does the struggle of women and minority
programmers to enter FOSS communities, a topic also discussed in this
chapter.



1 The Path to Revolution

Unix and the Origins of Hacker Culture
Most aspiring revolutionaries thrive on visions of a mythical golden age
of the past, which they deem it their duty to resurrect. Colonists during
the American Revolution hoped to restore the right to representation that
they thought they merited as British subjects—even though Great Britain
has never had a formal constitution that guarantees such rights. Two
decades later, French revolutionaries saw their mission as recovering the
natural laws that, according to ancient writers, had prevailed in a
mythical time when all men were equal and lived in harmony.1

Resurrecting a lost golden age has been a significant part of the way
that FOSS proponents have thought about their work. Activists from
Stallman to Raymond believed that, by advocating for open and freely
shared code, they were working to restore the moral principles that
predominated in the early days of computing—when the values of self-
described hackers, rather than business interests, defined the way
programmers produced and distributed software.

Understanding the ways in which the early FOSS community
perceived this golden age of software sharing involves examining two
intertwined segments of the history of computing. The first centers on
Unix, the operating system that emerged in the late 1960s and nurtured
many of the values and practices that greatly influenced the development
of FOSS software in later decades. The second involves the origins of
what Raymond and other writers have described as the “hacker ethic,”
which was born long before distinctions arose between free and closed
source software—and which, as I argue below, owed much more to the
influence of academia than hackers have tended to recognize. This
chapter details both of these topics and describes how they set the stage
for the FOSS revolution of subsequent years.

Unix and FOSS



It might seem strange to begin a history of FOSS by discussing the early
years of Unix. Even when Unix could be freely shared, it was not
described as free or open source software. These terms did not yet exist.
Moreover, Unix ended up becoming the opposite of FOSS after it was
transformed from a research project into a commercial product in the
mid-1980s. None of the pioneers of Unix development went on to
become major figures in the FOSS movement. And Unix code formed no
significant part of GNU software, the Linux kernel, or other FOSS
platforms. On the contrary, the FOSS revolution began because the
programmers involved in these later projects sought to build operating
systems free of Unix code.

Nonetheless, for the first fifteen years or so of Unix’s existence, it bore
all of the hallmarks of the major FOSS projects that followed it. It was
effectively free and open source software before such terminology came
into use because Unix’s code was collaboratively developed and freely
shared among programmers at a number of different locations. The Unix
community adopted this practice because it was the norm at the time of
Unix’s birth. Unix arose before the commercialization of software
prompted anyone to conceptualize a difference between free and nonfree
software or to suggest that sharing code openly was not the natural thing
for programmers to do.

Unix was also similar to many of the major FOSS projects, especially
GNU, in that it was the brainchild of somewhat disillusioned
programmers who, working on their own initiative, sought to fill a void
that affected them personally—in other words, “to scratch a personal
itch,” to borrow the parlance that Raymond introduced in the 1990s to
explain what drives open source developers.2 Unix’s founders wanted an
operating system that offered all the best features of the failed Multics
platform (for more on Multics, see below) and ran on whatever computer
hardware they had on hand in their office.

Finally, like Linux and so many other FOSS projects, Unix grew out
of a coding effort that was undertaken “just for fun,” in the words of one
of its founders. This was the same phrase Torvalds used to describe his
approach to programming many years later.3

For all of these reasons, understanding the role that Unix played
during the late 1960s and 1970s in giving rise to both the technical and
cultural ideas that later became central to FOSS development in the



1980s and 1990s is crucial for foregrounding the emergence of FOSS
projects properly defined.

Before delving into the details of Unix’s birth, however, it is worth
clarifying what, exactly, the word Unix signifies for the purposes of this
book. The term has acquired an ambiguous meaning in the decades since
the operating system’s appearance, mainly because programmers and
authors sometimes use Unix as a shorthand to refer to operating systems
that were designed to function like Unix and may or may not derive in
part from the original Unix code base. For example, the Berkeley
Software Distribution (BSD), which initially shared much of its code
with Unix (later, BSD developers replaced all of the Unix code with their
own, original software) is sometimes labeled Unix. So is Linux, which
never shared any code with Unix but has central features that were
modeled on those of Unix.

In most cases, operating systems that resemble Unix but are distinct
from it should be called Unix-like systems. That is the usage this book
adopts. Throughout these pages, the word Unix refers to the operating
system that was built at AT&T’s Bell Laboratories beginning in 1969 and
released by AT&T in a number of different versions until 1990, when
AT&T spun off its Unix division into Unix Systems Labs.4

It Came from Outer Space: The Origins of Unix

Programmers began developing Unix because they wanted to play a
game called Space Travel. Unrelated to the better-known Spacewar game
that some writers have erroneously associated with Unix, Space Travel
simulated voyages within Earth’s solar system.5 In 1969, Ken
Thompson, a programmer at Bell Laboratories (popularly known, then
and now, as Bell Labs) in Murray Hill, New Jersey, was writing Space
Travel to entertain himself. Thompson was twenty-six years old at the
time and only three years out of the University of California at Berkeley,



from which he had received bachelor’s and master’s degrees in computer
science in 1965 and 1966, respectively.6

After completing his education, Thompson had been part of the Bell
Labs development team for the Multics operating system, on which Bell
had collaborated with General Electric and Project MAC, a leading
computer science research facility at the Massachusetts Institute of
Technology. Launched in 1964, Multics (shorthand for Multiplexed
Information and Computer Services) was an ambitious project that aimed
to build a next-generation time-sharing operating system. Time-sharing
systems, which allow multiple users to log in to a single computer at
once, were a relatively novel idea in the mid-1960s. Multics was not the
first time-shared system, but its developers hoped it would provide more
reliable and convenient computing than the existing alternatives. They
also sought to pioneer a simpler and more streamlined way for
computers to handle storage objects, manage processes, and
communicate with disk drives and other peripheral devices.7

Multics development continued through the mid-1980s, and the
platform was eventually deployed in production environments. But it
failed to achieve the momentum and level of innovation that its designers
had intended. Frustrated with the lack of progress, Bell Labs withdrew
from the project in 1969. The move demoralized Thompson and other
programmers who had poured their talents into Multics coding.8

Yet like so many FOSS developers who followed in their footsteps a
generation or two later, the Bell Labs programmers did not allow the
decision of corporate managers to sever ties with the Multics project to
dash their hopes of completing work on the innovative technical features
they had begun implementing. Spurred on by their desire to run
Thompson’s Space Travel game on a Digital Equipment Corporation
PDP-7 machine—a comparatively inexpensive computer that Bell Labs
had assigned to them after the collapse of the Multics development effort
on more sophisticated hardware—Thompson and Dennis Ritchie,
another member of the former Multics team, began writing a very basic
operating system for the PDP-7 that could host the game.

Working in assembly language, which was tedious but provided the
programmers fine-grained control over the way the computer executed
code, Thompson and Ritchie developed a file system for the PDP-7 that
mimicked the one intended for Multics. They accompanied it with
simple utilities for copying, printing, deleting, and editing files. They



created a shell program, which provides an interface through which users
can run commands and view output. They integrated system processes
into the system, which allowed multiple programs to run at the same
time—another major innovation originally planned for Multics.9

In its earliest incarnation, the operating system that Thompson and
Ritchie wrote for the PDP-7 was as basic as basic could be. Designed
merely to run the Space Travel game that Thompson had written in his
spare time, the platform had little obvious research applicability or
commercial promise. It did not even have a name until 1970, when Bell
Labs programmer Peter Neumann suggested UNICS to characterize the
system as an emasculated alternative to Multics. (Later in the same year,
fellow Bell developer Brian Kernighan suggested Unix, the version of
the name that stuck.)10 And because the system was written in assembly
language, which depended heavily on features specific to the PDP-7
hardware, it was hardly suitable for porting, or adapting software
designed for one type of computer to run on a different kind. (Linux in
its first incarnation was similarly intended never to be portable, adding to
the irony that both Unix and Linux eventually became some of the most
portable operating systems of their times.)

Yet even without a name, a clear future, or anything approaching
advanced features, the amalgam of basic storage tools, system processes,
and shell utilities that Thompson and Ritchie had hacked together in
creating Unix represented something novel. By breathing life into some
of the most innovative features of Multics, these developers had built a
platform that promised to interest programmers and systems
administrators at places far beyond Bell Labs. They had birthed a new
type of system—along with the beginnings of a special culture to
accompany it—that would evolve into something much more important
than a way to play a space voyage game.11

Unix Grows



Unix evolved rapidly following its creation at Bell Labs in 1969, and so
did the culture that grew up around it. This was the environment in
which many of the paradigms and philosophies that defined the FOSS
projects of succeeding decades had their first direct incarnations.

In 1970, after Bell Labs purchased a newer PDP-11/20 computer,
Thompson and Ritchie ported Unix to run on it. Working with that
updated hardware, they implemented more utilities, including enhanced
text formatting and editing programs. To help other developers use the
platform, they released the first Unix programmer’s manual in November
1971. It introduced the manual (“man”) page formatting that GNU/Linux
and other Unix-like operating systems continue to use today.12 By 1973,
Thompson, Ritchie, and other collaborators had rewritten most of the
Unix code in C, a programming language that Ritchie had begun
developing the previous year with the goal of making Unix easier to port
to other platforms.13

Although Bell Labs remained the center of Unix development during
the operating system’s early years, programmers at other sites across the
world quickly took an interest in the project and began contributing code
and ideas back to the platform’s main developers. Collaboration became
easier in 1973, when AT&T licensed Unix for use by educational
institutions, where many programmers were employed. By the end of the
year, the operating system had spread to universities across the United
States and to at least eleven institutions in the United Kingdom. The
University of New South Wales, Australia, became the first site in the
Eastern Hemisphere to adopt Unix, in 1974.14 Commercial organizations
began using the operating system in 1975.

Bell Labs rolled out new versions of Unix rapidly throughout this
period, establishing the “release early, release often” paradigm that
became a distinguishing feature for many FOSS projects in later decades,
as Raymond noted (although without tracing the innovation to Unix
development) in his seminal essay on open source development
practices, “The Cathedral and the Bazaar.”15 In fact, Thompson declared
that, from the perspective of Bell Labs, Unix development “was a
continuum,” with developers constantly introducing enhancements to the
operating system, rather than a series of distinct releases, even though
the system was distributed to other sites in specific versions.16

That characteristic, which anticipated the “rolling release” model that
many FOSS projects follow today (as well as, to a certain extent, the



“continuous delivery” paradigm of the modern DevOps movement), set
Unix apart from most major software projects of its time. Other
developers tended to release new versions of their software slowly, after
tedious and time-consuming testing and debugging periods. In contrast,
because most of the organizations using Unix participated actively in
bug-reporting and development processes, Unix developers were able to
prioritize quick releases and rapid innovation over a vain quest for
perfect stability, which has bogged down many other software
development efforts, then and now.

The pace of innovation in the Unix community increased further in
early 1978, when Bill Joy, then a graduate student at Berkeley and later
an executive at Sun Microsystems, started work on what grew into the
Berkeley Software Distribution (BSD). The system began as a variant of
Unix that mixed code from Bell Labs with programs written at Berkeley
to enhance Unix’s functionality. In March 1978, Joy began distributing
BSD to sites beyond Berkeley, providing them with an alternative to
AT&T’s Unix.17

Berkeley’s emergence as a second center of Unix development—and
one that, until the 1980s, focused on producing code that complemented
the features present in the Bell Labs version of the operating system
rather than replicating them—solidified Unix’s position as an innovative
operating system that computer scientists at sites across the world were
collaboratively developing. Each local programmer or team of
programmers added improvements to Unix that made the system a better
fit for the particular hardware or software environments at their sites. In
turn, they shared their changes with Unix developers and users at other
locations, ensuring that the best innovations found their way back into
the main code base. That approach to development—which depends
centrally on sharing code publicly and freely, unencumbered by
restrictive licenses or patents—was much the same as the one that fuels
most FOSS projects today.

The culture that the Unix community fostered also prefigured the one
that sustains the FOSS world today. By the late 1970s, Unix user groups
appeared, organizing meetings and activities similar to those of
GNU/Linux user groups today.18 (After Bell Labs complained in 1977
that Unix user groups did not have permission to use the UNIX
trademark in their names, the community adopted the term USENIX as a
playful replacement.) In addition, Unix users began circulating a



newsletter, originally called UNIX NEWS and renamed (also as a result
of trademark issues) ;login in 1977.

Also significant was that the Unix community conceptualized itself as
a rebel force. In the view of Unix advocates, the operating system
constituted a bulwark against the encroachment of business interests on
the computer world. In this vein, Armando Stettner, who participated in
Unix development both at Bell Labs and as an employee of Digital
Equipment Corporation (the company that manufactured many of the
computers that were used by Unix developers in the 1970s and 1980s),
distributed license plates that channeled those of the state of New
Hampshire by declaring “Live Free or Die: Unix.”19 As Raymond
recalled, Unix developers “liked to see themselves as rebels against
soulless corporate empires.”20

Such sentiments deepened after AT&T began selling Unix as a
commercial product in the early 1980s (a change discussed at greater
length below). The commercialization prompted free-minded Unix
developers to rally around the BSD variant and begin turning it into a
standalone Unix-like operating system that did not rely on any of
AT&T’s code. Star Wars–themed posters depicted BSD developers as
holdouts against imperial commercial interests. Like some FOSS hackers
today, the anticorporate Unix enthusiasts hoped to provide the world
with software that was free to be the best it could be technically rather
than software that business managers deemed to be the most profitable or
the easiest to sell to a mass market.

The Unix community’s resistance against what its members perceived
as arbitrary restrictions on the way they could use software translated
into more than posters and license plates. Its members also engaged in
activities that directly subverted the barriers imposed by proprietary
software. For example, in 1977, Tom Ferrin, a Unix programmer based
at the University of California at San Francisco, published an article in
the ;login community newsletter that described a hardware modification
that Unix systems administrators could perform on PDP computers by
cutting a piece of foil and inserting a jumper wire. The modification
resolved a bug that occurred on these computers as a result of “DEC’s
desire to ‘preserve the integrity of proprietary programs’” rather than
allowing third parties to modify them, according to Ferrin.21 Such efforts
anticipated practices that are common in the FOSS community today,
where developers evince few qualms about independently reverse-
engineering device drivers or software protocols in order to use their



computers as they see fit, even if the original designers of the software or
hardware do not condone their activities.22

Unfree Unix

At first, the Unix community’s cohesiveness stemmed largely from the
quirkiness of the development model that Unix developers embraced, as
well as the core design philosophy of the operating system—which
emphasized modularity and the principle that each part of the system
should focus on doing a specific job and doing it well. At the time, that
approach represented a novel way of thinking about operating system
design. It helped to bind together the community of Unix programmers
and users. Meanwhile, the fact that AT&T’s policy was to distribute Unix
with “no advertising, no support, no bug fixes [and] payment in
advance” meant that members of the Unix community had to rely on
each other for help in deploying the software. That dependence also
fostered greater cohesion and a sense of being different from other parts
of the computing world.23

Yet the rebellious spirit of the Unix community assumed new urgency
in the early 1980s, when the licensing terms surrounding the operating
system changed dramatically. When Unix was born in 1969, Bell Labs,
as a subsidiary of AT&T and Western Electric, was subject to a consent
decree that the United States government had issued on January 25,
1956. The decree forbade the two companies and their subsidiaries from
engaging in business unrelated to telephone or telegraph service or
equipment. It permitted other activities only if they were not tied to
commercial operations. Because Unix had nothing to do with the
telephone or telegraph business, Bell Labs could legally develop it only
if it remained a research project rather than a commercial endeavor.

This was why, until the mid-1980s, AT&T allowed the Unix
programmers at Bell Labs to distribute their code to universities and later
to commercial organizations for a nominal fee. It was also why Bell Labs



could not offer support services for Unix, as these would have been
unrelated to AT&T’s telephone and telegraph business. The lack of
support meant that external organizations that used Unix took a keener
interest in having access to the code and in enhancing the system to meet
challenges that they faced at their particular sites than they likely would
have if they could have contracted with AT&T to install and configure
the software for them. In this way, the consent decree ensured that Unix
would remain a research project and also that Unix development would
depend on a decentralized community of global collaborators.24

All of this changed in 1984. In that year, as the result of an antitrust
action against Western Electric and Bell Labs that the United States
government had initiated in 1974, the companies that owned Bell Labs
were reorganized, and the consent decree of 1956 no longer applied.25

The new policy prompted AT&T to revise the Unix licensing terms and
promote System V, the version of Unix it was developing at the time, as
a commercial product. By 1988, the price for a System V source license,
which provided access to the system’s full source code, exceeded
$100,000, five times what it had been a few years earlier. It had grown to
nearly double that amount five years later.26 Commercialization changed
the operating system irrevocably.

The Unix story did not end in 1984. Unix development continued well
into the next decade, even as ownership of the code passed from AT&T
to a succession of other companies and organizations. For the purposes
of this book, however, there is not much to say about Unix after it
became a commercial product. Following that shift, Unix’s chief
importance for the FOSS community was as the embodiment of
something to fight against or to try to outdo. An expensive operating
system encumbered by a proprietary commercial license was very much
the opposite of what FOSS programmers and users envisioned as the best
way to run a computer.

Ironically, the operating system that—more than any other software
project of the 1960s and 1970s—engendered many of the practices and
ideas that became central to FOSS users in later decades ended up being
diametrically opposed to everything FOSS stood for. Unix’s
commercialization became the catalyst that pushed programmers such as
Stallman and Torvalds to develop uncommercial, free clones of the
operating system.



Hacker Origins: The Received Wisdom

During the high point of the popularity of a free Unix, prior to the 1984
commercialization, programmers and computer users shared particular
cultural values. This chapter has already noted that several of the salient
features of FOSS culture and development strategy—such as
decentralized, collaborative coding and resistance against monolithic
authority—were evident in the Unix community in the 1970s and early
1980s. Those characteristics did not arise out of the ether and were not
unique to the Unix world.

Instead, they reflected the values that writers about FOSS have called
the hacker ethic. The term refers to the social, political, and cultural
values that predominate within a certain segment of the computing
world, including but not limited to the early Unix community. Although
the hacker ethic has its roots in a period that predates the emergence of
FOSS software defined as such, it played a central role in shaping how
FOSS projects evolved. It also influences how FOSS developers and
users think about software and its political, social, and economic
significance today.

Before taking a close look at the origins of hacker culture, another
note regarding language is in order. In this book, the word hacker refers
to the class of programmers who espouse the hacker ethic—which,
broadly defined, involves a commitment to creativity, exploration,
collaboration, and transparency in the use of computers. The association
of hackers with programmers whose chief goal is to break into computer
systems toward nefarious ends is a usage that most FOSS developers and
other technically inclined individuals reject and consider to be an abuse
by the popular press of the term’s original meaning. In other words,
hackers are curious, open-minded programmers who view software
development as a creative, healthy endeavor that can make the world a
better place; they are not cybercriminals.27

Even with a clear sense of what hacker means for this book’s
purposes, it remains impossible to define the hacker ethic in a singular or
precise way. Although it is easy to identify in a general sense what



hackers tend to believe, hackers do not espouse a single, universal set of
values. Nor did the various principles they endorse originate in a uniform
setting.

Nonetheless, the two leading studies of hacker culture that focus on
the history of Unix and FOSS have attempted to define a particular
hacker ethic and explain its origins, although they have not arrived at the
same conclusion. The first such work, Hackers: Heroes of the Computer
Revolution, published by journalist Steven Levy in 1984, drew heavily
on the accounts that Levy collected from programmers who had worked
at major university computer research labs, including Stallman.28 In
Levy’s telling, hacker culture was born in the late 1950s, when members
of the Signals and Power Committee of MIT’s Tech Model Railroad
Club (TMRC)—which initially had nothing to do with the university’s
computer labs—assumed an interest in programming. They began taking
classes in the subject that the university had recently added to its
curriculum. Working on IBM 704 and 709 computers and later on a TX-
0 machine, MIT students from the TMRC with a passion for tinkering
and technical exploration learned to program in the LISP language. They
competed to make the smallest, most efficient possible versions of
software programs.29

At first, the creative endeavors of these young programmers were
choked by bureaucratic policies that prohibited anyone other than
authorized technicians from directly accessing the campus computers.
Yet the students quickly learned to circumvent such restrictions by
breaking rules and electronic security barriers—even constructing their
own keys, if necessary, to get past locked doors—in order to use the
machines.30 These types of unauthorized entries constituted “hacking” in
the jargon popular among MIT students at the time. Hence the origin of
the word hacker.31

Within the eccentric community of student programmers that grew out
of the TMRC’s ranks, “a new way of life with a philosophy, an ethic, and
a dream” coalesced, as Levy put it.32 He summarized the core values of
the nascent hacker community as follows:
“Access to computers—and anything that might teach you something
about the way the world works—should be unlimited and total.”
“All information should be free.”
“Mistrust Authority—Promote Decentralization.”



“Hackers should be judged by their hacking, not bogus criteria such as
degrees, age, race, or position.”
“You can create art and beauty on a computer.”

“Computers can change your life for the better.”33

For Levy, these points explained what motivated and governed the
activities of the TMRC programmers and of developers such as
Stallman, whom Levy called “the last true hacker.”34 Because Levy was
writing just before the launch of the GNU project and the Free Software
Foundation made the creation of freely accessible and shared code a
conscious effort, his book was not an attempt to understand the culture of
the FOSS community, which did not yet exist. Still, because Hackers
traced a particular set of core values related to computers and
programming from what Levy saw as their earliest incarnation at MIT in
the late 1950s through their manifestation in the activities of Stallman
and other GNU collaborators in the early 1980s, the book proved to be
the first and most enduring interpretation of the values that define FOSS
culture.

Levy’s book formed the basis for the other major exploration of the
origins of FOSS culture produced to date, Raymond’s essay on “A Brief
History of Hackerdom.” Raymond differed from Levy on certain points.
For instance, Raymond traced “the hacker culture as we know it” to 1961
rather than to the late 1950s, skipping over developments that occurred
prior to MIT’s acquisition of a TX-0 computer. He also afforded more
weight than Levy to the role of programmers involved in ARPANET
(Advanced Research Projects Agency Network), the main predecessor of
the Internet, in spreading hacker culture beyond the MIT campus.
Similarly, he made much of members of a group that he called the “Real
Programmers,” technicians who worked on the earliest computers and
generated some of the oldest examples of what he called “revered hacker
folklore”—even though the Real Programmers did not, in Raymond’s
estimation, directly precede hackers properly defined.35

The most important variation between Raymond’s and Levy’s takes on
hacker culture, however, appeared in their definitions of what hackers
actually believe. Levy summarized the hacker ethic in terms of the
distinct points cited above, and Raymond’s brief definition of the hacker
ethic included only the beliefs “that information-sharing is a powerful
positive good,” “that it is an ethical duty of hackers to share their
expertise by writing open-source code and facilitating access to



information and to computing resources wherever possible” (here
Raymond uses a term, open-source, with which some self-described
FOSS hackers, particularly Stallman, take issue), and “that system-
cracking for fun and exploration is ethically OK as long as the cracker
commits no theft, vandalism, or breach of confidentiality.”36

In a longer-form definition of what he called the “hacker attitude,”
Raymond added these points:
1. The world is full of fascinating problems waiting to be solved.
2. No problem should ever have to be solved twice.
3. Boredom and drudgery are evil.
4. Freedom is good.

5. Attitude is no substitute for competence.37

Both of Raymond’s descriptions of hacker values and ideals are
generally consonant with the culture that surrounds FOSS today. But so
is Levy’s definition of the hacker ethic, even though—apart from the
similarity between Raymond’s declaration that “freedom is good” and
Levy’s that “all information should be free”—there is no direct overlap
between these two writers’ interpretations of what the hacker ethic
involves.

Despite this major difference from Levy’s account, as well as the
minor variations outlined above, Raymond’s explanation of the origins of
hacker culture otherwise generally reiterated the story Levy had
presented. And because Raymond was a prominent member of the FOSS
community who was consciously writing about its history, his essay
played a leading role in shaping how most FOSS programmers and users
think about where their cultural values came from. That is why, for
example, nonelite members of the FOSS community have described the
GNU General Public License, which governs Linux and many other
major FOSS projects, as a tool designed to “forc[e] users of the code to
obey the hacker ethic,” as one Slashdot user put it.38 Similarly, it was not
a coincidence that Pekka Himanen’s book The Hacker Ethic: A Radical
Approach to the Philosophy of Business, one of the first works to attempt
to explain how the hacker ethic could apply to the business world,
opened with an introduction by Torvalds, the most prominent FOSS
developer of the time.39



As a result, the received wisdom suggests that hacker culture
originated among programming students at an elite academic institution,
MIT, who sought to eliminate any barriers that prevented them from
using computers as creative tools. From that base, according to Levy and
Raymond, hacker culture gradually spread further afield as members of
the first hacker generation took jobs at other institutions and began
communicating over the nascent Internet.

Deep Hacker History

That is a good story, and there is no reason to doubt the various facts that
Levy and Raymond present. Yet there are two main weaknesses with
their interpretations of hacker culture. The first is that these two writers
arrived at remarkably different conclusions of what hacker values
entailed. This divergence suggests that there is no such thing as a
singular, specific hacker ethic to which FOSS values and practices can
be directly and singularly traced.

This is to be expected, at least to an extent. Hackers are a large and
diverse group. They have no official authority who can speak on their
behalf or organize a formal attempt to define what they stand for. It is
impossible to write a summary of the hacker ethic that accurately
describes what all hackers, in all times and all places, believe. Still, it is
striking that Levy and Raymond arrived at such markedly different
conclusions, which exhibit almost no common attributes, in their efforts
to define the hacker ethic or hacker attitudes.

A tempting explanation for this disparity is that hacker is too nebulous
a term. Because it can apply to virtually any programmer, it is impossible
to determine who is and who is not a hacker and therefore to decide
which cultural attributes to associate with hackers. That explanation is
not very useful for explaining why Levy and Raymond arrived at such
different interpretations of the hacker ethic, however. They both wrote
about the same general groups of people and individuals, most of whom



were programmers in university labs in the 1960s and 1970s. It was not
because Levy and Raymond studied separate communities that they
defined the hacker ethic so differently.

The second weakness with their interpretations of hacker culture is
that they attempted to trace the origins of hacker culture to too narrow a
milieu—one centered on MIT. They also regarded hacker values as being
more novel than they actually were. As a result, they focused on overly
specific examples of what hackers believe and failed to recognize the
overarching values—openness and transparency—that have shaped not
only hacker behavior but also much larger institutions and revolutionary
movements since the eighteenth century.

The goals of increasing public accountability, resisting arbitrary
authority and access controls, and rewarding individuals based on the
quality of the contributions they make to the common good rather than
on arbitrary characteristics such as race or social status have fueled
revolutions and engendered the political norms of numerous modern
societies. Against this backdrop and on these grounds, MIT
undergraduates in the TMRC justified picking door locks and breaking
passwords to gain access to computers, even if they lacked permission
from the authorities of the university to do so. On the basis of these
principles, Unix programmers, as the earlier part of this chapter notes,
collaborated across continents and shared code with one another freely,
despite economic incentives against working in such a way. And these
goals drive most members of the FOSS community today. They believe
that software works best when the people who create and run it are free
to choose which programs to use, to share code and information in ways
that ensure the maximum creative potential of all parties, and to
collaborate in ways that they deem most suitable rather than through the
structures imposed on them by proprietary specifications and closed
code.

Neither the MIT hackers of the 1950s and 1960s nor the FOSS
revolutionaries who coded in their image were the first programmers to
endorse these values. On the contrary, as Ensmenger has persuasively
argued, since the early decades of the computer age, programmers of all
stripes have tended to resist centralized control in the same way that
Raymond and Levy’s hackers did.40 Similarly, Russell has shown that
since the 1970s, “openness” in its various definitions has played a vital
role in shaping numerous dimensions of the software and computer
world.41



Not all programmers interpreted the importance of openness in a way
that led them to share code freely. That practice was unique to the FOSS
community. Yet belief should not be conflated with action. From the
perspective of what programmers generally believed, not how they acted
on those beliefs, the hackers whom Raymond and Levy discussed were
not different from other programmers of their time. They all championed
openness. FOSS developers merely sought to implement openness in a
particular way, which set them apart.

Hacker Culture and Academia

Why did FOSS programmers decide that sharing code was the best way
to promote openness and transparency but other developers acted
differently? More than the nebulous “hacker ethic” that Raymond and
Levy attempted to describe, the influence of academia on FOSS
programmers provides the key to this choice.

The academic community is a diverse and nuanced place, and not all
academics have endorsed values that align with those of FOSS hackers.
In general, however, the academic community has long championed the
sharing of information, decentralization of authority, and objective peer
review, principles that are consistent with hacker values. Most
universities were centers of open exchange even before the age of
democratic revolutions in the eighteenth and nineteenth centuries made
such values politically and socially salient. For these reasons, it was
natural that programmers and computer enthusiasts who plied their trade
in university labs approached code and development in a manner
consistent with the principles of academic culture, even after the rise of
commercial software made those practices less common among
programmers as a whole than they had been in the first decades of
computing.

The suggestion that hacker culture and the hacker ethic are extensions
of academic practices—and that this is why FOSS culture, which was



shaped by hackers, varies in many ways from the proprietary software
world of commercial business interests—is not new.42 Nikolai
Bezroukov produced what remains the most explicit articulation of this
idea in a 1999 article. Writing shortly after the open source software
movement defined as such was born amid great fanfare on the part of
people like Raymond, Bezroukov wrote that FOSS development could
be best understood as “a special type of academic research” rather than
something never seen before. The FOSS community, he contended, “is
more like a regular scientific community than some [open source
software] apologists would like to acknowledge.”43

Raymond rejected these claims. He recognized the similarity in the
values espoused by academics and hackers and the fact that many
hackers had close ties to academic institutions, but he concluded that the
two cultures merely “share adaptive patterns” without being “genetically
related.”44 In the absence of other widely read histories of hacker culture,
Raymond’s criticism of the notion of a direct link between academia and
the hacker community has ensured that few participants in the FOSS
world today recognize how directly the cultural values that drive FOSS
development descend from academic culture.

Nonetheless, the historical connections between academic institutions
and hacker culture and the influence of the former on the latter are
impossible to deny. First, the groups of hackers that Levy wrote about—
from the initial generation of student hackers who encountered
computers for the first time at MIT in the late 1950s and early 1960s to
Stallman, who was on the computing lab staff of MIT until he resigned
to launch the GNU project in January 1984—incubated their
philosophies about technology within a setting that championed the
principles of academic freedom and sharing.45 This characteristic
distinguished these hackers from many of the leading figures of the
proprietary software world, which has little in common either culturally
or philosophically with academia. It is likely not a coincidence that
people like Bill Gates and Steve Jobs, both of whom spent only brief
periods at universities prior to dropping out, created software companies
and cultures that were very different from the endeavors launched by
hackers and that did not value transparency, sharing, or community
consensus.

Second, the Unix world—where hacker culture established some of its
strongest early roots and where many of the philosophies and practices
that later became central to FOSS culture had their initial incarnations—



was intricately linked to academia. Unix itself was born at Bell Labs. It
was not a university, but in the 1960s, the Bell Labs management
endorsed a culture that was similar to that of academic institutions.
According to Dennis Ritchie, Ken Thompson was able to write the Space
Travel game that sparked the development of Unix in 1969 because the
philosophy at Bell Labs was

to hire people who generate their own good ideas and carry them out. … Ken was
doing something interesting that would turn out to be valuable. … When a good
university hires young professors, what do they expect them to do? Well, a certain
amount of grot and service of various kinds, but really to have good ideas that
somehow make an impact.46

Third, while neither of the founders of Unix were employed
permanently in academia, Thompson retained an association with the
scholarly community that was strong enough for him to take a one-year
visiting professorship at Berkeley, his alma mater, in academic year
1975–76, during a formative period in the development of Unix.47

Finally, until Unix’s commercialization in 1984, scholarly
communities played an important role in constricting the ability of
AT&T to centralize development of the operating system or prevent Unix
users from sharing code with one another. That was because, as
developer Eric Allman noted, managers at companies like AT&T worried
that, if they failed to cooperate with academic developers who were
working at universities, their own products would be superseded by
superior alternatives written by academic programmers. According to
Allman, “What happens is that industry decides ‘Oh, we wouldn’t want
the university to have that because we might lose it’; then the university
does it themselves, so industry goes ‘Oh my God. We wanted ours to be
standard, we’d better give it to them.’”48 In this way, the academic
community’s focus on sharing and openness trumped other groups’
interest in restricting access to the code that fueled the Unix hacker
culture.

For all of these reasons, hacker culture is inseparable from the
principles and practices of the academic community out of which it was
born. It also shares strong affinities with related political, social, and
economic ideologies that privilege openness, transparency, cooperation,
and sharing. Its origins are thus not as narrow and specific as Levy and
Raymond supposed. Nor are hackers outlying freaks who have little in
common with the mainstream. That is an image of hacker culture that



stereotypes have helped to construct—and which unshaven,
nonconformist FOSS leaders like Stallman have reinforced—but it is a
misleading approach to understanding where hackers came from or why
they believe and act as they do.

Hacker Revolution?

It is possible to trace hacker culture’s origins to a particular set of
philosophies that were widely influential in academia and elsewhere well
before the invention of modern computers, but it is difficult to think of
hackers as revolutionaries in the modern sense of the word. Today, the
word revolution implies sudden, radical change. Hackers who call
themselves revolutionaries therefore suggest that the software they write
was the catalyst for a major rupture. If, as I argue above, hacker values
were not unique or novel to self-described hackers—but rather reflected
beliefs that had been shared among programmers of all types and across
academia since well before the start of the FOSS revolution—then the
FOSS revolutionaries who actively promoted those values do not seem
revolutionary by modern standards. They were continuing a tradition that
already existed, not creating something radically new.

Yet revolution also has an older meaning. Before the eighteenth
century, the word was associated with astronomy. It described the
circular movement of celestial bodies—that is, the way they revolved—
around a central point.49 A revolution in this sense did not change
something irrevocably but restored something to its original setting.

It might be best to think of FOSS hackers of the 1980s, 1990s, and
2000s as “revolutionaries” in terms of the earlier definition of the word,
even if the hackers themselves have not necessarily done so. They were
not insurgents who introduced radical innovations into the software
world. They were reformers who helped return things to the way they
had been. They restored the practices that predominated during the lost
golden age when Unix was free, source code was regularly shared and



hackers could hack unencumbered by restrictive licenses or binary-only
distribution policies for code.

The beginnings of the revolution that brought things full circle—that
restored them to the way they had been—are the subject of the next
chapter, which examines the birth and early history of the GNU project
and the Free Software Foundation. Those initiatives gave FOSS a
conscious identity and meaning. They made it possible for the
programmers and users who stayed true to the hacker ethic to begin
envisioning a software revolution worth fighting for.



2 Inventing the FOSS Revolution

Hacker Crisis, GNU, and the Free Software Foundation
One of the difficult tasks for historians is identifying when revolutions
begin. Their starting dates tend to be defined retrospectively by the
revolutionaries themselves. The townspeople and mutinous soldiers who
stormed the Bastille on July 14, 1789, probably did not believe they were
starting a revolution. But within several months, the Bastille attack and
other upheavals around France were amalgamated within the popular
imagination into a singular event that contemporaries began calling the
French Revolution.1 And through a politically inflected process of
collective-memory construction, the revolutionaries singled out July 14,
1789, rather than any of the other momentous dates from that year, as the
nominal start of the French Revolution.

Neither was the equivalent date in American revolutionary history,
July 4, 1776, the sudden beginning of a revolution. American rebels had
been killing British troops for more than a year by the time elites in
Philadelphia declared independence from the British crown. Here again,
the date that marks the nominal beginning of a revolution had less
significance for people living in the moment than it does for posterity.

The beginnings of the free and open source software (FOSS)
revolution were equally murky. No single event signaled the start of the
movement. Richard Stallman’s announcement of the GNU operating
system in 1983 was a key development, but that initiative took
considerable time to gain the momentum necessary to sustain itself. In
the meantime, other changes in the Unix world, including the morphing
of the Berkeley Software Distribution (BSD) into a free alternative to
AT&T’s Unix operating system, were equally important in promoting
software freedom.

This chapter traces the numerous developments in the 1980s that
helped to launch FOSS as a conscious movement. No one development
on its own amounted to a revolution, but collectively, they snowballed
into a broad initiative that eventually revolutionized the way computer
code was written, shared, and consumed.

The chapter also evaluates what the first generation of free software
revolutionaries did well and why they failed to achieve all of their goals.



It highlights their engagement with political and social movements that
shared certain ideological affinities with the FOSS revolution. It shows
how a commitment to pragmatism ensured much success. Yet it also
demonstrates the short-sightedness from which the first FOSS
revolutionaries suffered in some respects, especially regarding modes of
organizing software development and the significance of the emerging
personal computer (PC) market.

Hacker Culture in Crisis

By the early 1980s, hacker culture was in crisis. The hacker community,
which in the previous decade had been cohesive and defiant of
challenges to its mores, faced a series of obstacles that hackers felt
threatened to destroy their ability to use computers in the way they saw
fit.

Chief among those challenges was the commercialization of Unix. As
chapter 1 explains, in the early 1980s, the companies that owned Bell
Labs were reorganized. This freed AT&T from the legal interdiction on
the sale of products not related to telephone or telegraph service or
equipment, which it had been subject to since 1956. The company began
working to turn Unix into a commercial product, which entailed raising
the licensing fees for the operating system.

The practical consequences of this change should not be overstated or
conflated with the close sourcing of Unix. The commercialization of the
operating system did make it considerably more expensive for users to
obtain a license that granted them access to the operating system’s source
code. In addition, beginning with the release of V7 Unix in 1979, AT&T
no longer allowed universities to share the source code with students for
educational purposes.2 Yet neither of these changes turned Unix into an
entirely closed source operating system. Licenses that permitted full
access to the Unix source code remained available, albeit for steep
prices. In the late 1970s and early 1980s, other vendors adopted policies



that entailed releasing software only in binary form, as this chapter
explains. The source code of their software ceased to be available to
users. But AT&T Unix did not become one of these products.

All the same, the commercialization of Unix made it harder to obtain
the source code, especially for hackers who did not have institutional
access through an employer or university that could pay the commercial
licensing fee—which exceeded $100,000 by the late 1980s.3 And
because a source license from AT&T was legally required to run other
operating systems, such as BSD, that incorporated some Unix code but
included other programs that AT&T did not own, the steep licensing fees
burdened users throughout the Unix community, even if they did not use
AT&T’s version of the operating system.

All of this was troubling for hackers. But the need to obtain a
commercial license for Unix or the high cost of the license were not what
truly irked them. The issue that raised hacker hackles more than any
other was that Unix had become a commercial product. That change
threatened to limit Unix’s usability as a platform for exploration, sharing,
and creativity.

It was clear that cost and source code availability were not the primary
factors in hackers’ anger over AT&T’s commercialization of Unix
because the operating system was not cheap prior to 1983. Although the
six-figure licensing fees that AT&T imposed by the late 1980s raised the
bar for access to Unix source code, the price for a Unix license in the
1970s, when the operating system was still a freely shared,
noncommercial product, had been as high as about $20,000 dollars,
hardly a negligible sum.4

Rather than price or access to source code, the principal threat to
hackers that arose in the early 1980s was the simple idea that commercial
Unix would stifle the hacker ethic. Commercialization promised to make
it harder for developers to share code with one another and to collaborate
in developing Unix. That change helped to engender a crisis within the
community of Unix hackers.

The attitude they adopted was no surprise. Hacker antipathy toward
commercial code was clear well before AT&T turned the operating
system into a business product. Until the early 1980s, most Unix
programmers resisted the idea of deliberately promoting the software in
any way that smacked of commercial marketing, even if the goal was
merely to attract more users to the community. For instance, at a January



1979 USENIX conference, hackers booed a speaker off the stage
“because he was a marketing consultant or something,” according to
Brian Redman, one of AT&T’s Unix developers.5 Attitudes changed
somewhat by 1980, when /usr/group—an organization “dedicated to the
promotion of the UNIX operating system,” according to its charter—was
founded, introducing a conscious marketing effort to the hacker
community.6

Yet leading Unix hackers continued after that time to express anxiety
about how the trappings of commercialization might undercut the things
that really mattered in operating system development—notably,
creativity and exploration. Thus Unix founder Ritchie, reflecting on the
operating system’s history, declared in the early 1990s that a “danger”
threatening “good computer science research” was the risk “that
commercial pressure of one sort or another will divert the attention of the
best thinkers from real innovation to exploitation of the current fad, from
prospecting to mining a known lode.”7 More than concerns about money,
licensing bureaucracy, or source code, the predominance of thinking like
Ritchie’s within the Unix community was one of the key factors that
fomented hacker angst following the operating system’s transformation
into a commercial product.

This does not mean that Unix hackers were opposed to commercial
endeavors of all types or to the introduction of cash transactions into the
software realm. On the contrary, as the latter part of this chapter shows,
one of the most significant innovations of the GNU project and the Free
Software Foundation in the 1980s was to pioneer a way to sell support
services related to free software, showing that FOSS could thrive within
a commercial ecosystem even if the code itself was not for sale. GNU
distributed versions of its software on tape and disk for fees that were
more than nominal, although it did so as a way to support development
rather than as part of a commercial venture. These practices made clear
that it was not the idea of making money in the computer and software
business that bothered hackers.

Instead, hackers found objectionable the practice of turning a profit by
selling software toward purely commercial ends. Under these conditions,
software ceased to serve the common good. It became just another way
to make money, with no greater purpose. That is why commercializing
code starkly contravened the principles of the hacker ethic and led Unix
hackers to revolt when AT&T made the operating system part of its



revenue stream, rather than a research project that pushed the boundaries
of computer science knowledge.

The second major challenge to hacker culture that arose in the early
1980s was the practice of distributing software only in binary form,
without source code. Binary software could run on any computer for
which it was designed, but because it lacked the source code from which
binaries were compiled, people using the programs had no practical way
to modify them or study how they worked. The software became closed
source. Interest in binary-only distribution was evident by early 1980,
when analysts deemed it to be the best means of “protecting a software
vendor’s proprietary rights.”8 IBM brought the practice mainstream
when it became the first large company to cease distributing source code
with most of its products in February 1983.9

For most software users at the time, binary-only distribution was of
little concern. By the early 1980s, the importance of software in business
settings was outpacing its significance in research environments.
Business owners cared little about viewing the source code for the
programs they were using so long as the programs did what businesses
needed them to do. If users wanted to add new features to the programs,
they could request them from the vendors who sold the software, who
had an incentive to implement more features in order to succeed in the
increasingly competitive commercial software market.

Hackers, however, thought differently about all of this. Closed source
software was at odds with the core values of a generation of hackers for
whom access to source code—and, by extension, the transparency of that
code and the ability to modify it and share ideas freely—was an intrinsic
part of what it meant to use a computer. For that reason, the growing
adoption of binary-only distribution practices by many of the
organizations developing software, even in places such as universities,
by the early 1980s presented another major crisis for the hacker
community.

Software had been born free, it seemed to hackers. Yet everywhere it
was shackled in chains.

Microcomputers and the Internet



The commercialization of Unix and the advent of closed source software
were the greatest challenges to the hacker ethic at the time. But other
changes negatively affected hackers as well. Although other
developments did not undercut hackers’ goals as directly as the two
factors discussed above, they nonetheless helped to push hackers from
the center of the computing world (where they had been in the heyday of
noncommercial Unix) to its margins.

The rise of microcomputers was one such change. The Unix hacker
community had been born and thrived on large, institutional computers,
especially the PDP line from Digital Equipment Corporation and later
VAX hardware from the same company. Those types of machines
remained readily available into the late 1990s. In terms of market share
and public mind share, however, they were eclipsed starting in the late
1970s by smaller personal computers. Apple began selling
microcomputers in 1976. Commodore released the PET PC computer in
1977, the same year the Tandy TRS-80 hit the market. Matters came to a
head in 1981, when IBM introduced its first PC for the mass market, the
5150. Based on an Intel microprocessor, the IBM PC helped set a
standard that other computer manufacturers rapidly emulated, building
clones of the IBM PC that could run the same software. The result was a
thriving new market for PC hardware and software.

The PC revolution was not a necessarily bad thing for hackers. In a
way, it was a welcome development because PCs made computer
hardware easier and more affordable than ever before for individual
consumers. However, it did nothing to help the cause of keeping Unix
free of commercial entrapments or otherwise protecting hacker culture
from the crisis it faced by the early 1980s. PCs were designed and sold
almost exclusively for commercial purposes, lacked sophisticated
hardware, and were generally able to support only a single user. They
were a far cry from the powerful, research-oriented computers on which
Unix was born. Although a handful of third-party ports of Unix for PC
hardware emerged starting in the early 1980s, including most notably
Coherent from the Mark Williams Company and Microsoft Xenix, they
were as commercialized as AT&T’s Unix.10 They did little to advance
the cause of hackers who wanted to keep Unix free as momentum in the
computing industry shifted toward PCs.

Another change that affected hackers in a serious way by the 1980s
was the growth of the Internet. The World Wide Web was not conceived
until the end of the decade, but throughout the 1980s, computer network



access remained limited for most people, and many of the protocols that
became foundational to the Internet in the 1990s were still in
development. Yet the increasing use of tools such as email and Usenet
newsgroups and the distribution of software over the Internet changed
the stakes of computing and introduced new paradigms into the hacker
culture.

These developments benefited hackers in many ways, not least by
making collaboration and the sharing of information easier and faster.
But they also opened new opportunities for people who called
themselves hackers to break into computers remotely or steal data over
the network. Most hackers did not condone such activities. But the fact
that a few individuals engaged in them in the name of the hacker
community sullied its image, giving rise to the negative sense of the
word hacker that predominates in general usage today. As a result, being
a “true,” vocal hacker became more difficult as the Internet age dawned
during the 1980s.

The marginalization that the personal computing revolution and the
rise of the Internet imposed on hackers perhaps explains why they did
not take greater advantage of these new resources at the time. In many
ways, as this chapter details below, the hacker community of the 1980s,
which coalesced around Stallman’s GNU project, avoided focusing its
energies on microcomputers. Not until after it became impossible to
ignore the importance of PCs did GNU finally begin releasing software
for them in the early 1990s. Meanwhile, the GNU hackers also made less
use of the Internet as a tool for collaboration between developers than
they might have, preferring instead to centralize development in the
environs of Cambridge, Massachusetts.

As the latter part of this chapter contends, both of these policies
stunted the momentum of the GNU project. They also help to explain
why some of GNU’s efforts were superseded in the early 1990s by
programmers in the Linux community who, as chapter 3 shows, took
microcomputers seriously and made widespread use of the Internet.

We will tackle these issues soon enough. For now, let us explore how
hackers confronted the threats they faced in the 1980s.

Berkeley vs. AT&T



Hackers responded to threats of commercialization and closed source
software in the 1980s in three main ways. First, programmers at the
University of California, Berkeley, eventually created a Unix clone that
was free of commercially licensed code and suited the needs of many
hackers. That initiative started in 1986, when a programming team led by
Ken Bostic began working to disentangle code derived from AT&T Unix
from BSD, the enhanced version of Unix that Berkeley developers had
been writing and distributing since 1978. Bostic kept the Unix
community up to speed regarding the progress of the effort by
announcing at USENIX conferences which percentage of BSD programs
were free of AT&T-owned code.11

By June 1989, the Berkeley team had produced enough freely licensed
software to issue its first independent software release.12 Called NET 1,
the platform consisted mostly of code related to networking. It was a far
cry from a full Unix implementation. Still, NET 1 was important because
organizations could legally use it without obtaining a commercial license
from AT&T.13 That was a big deal at the time.

BSD became a bigger deal in 1991, when the Berkeley developers
took the momentous step of issuing a complete, standalone Unix-like
operating system. They called it NET 2 (even though it contained much
more than networking code).14 Accompanied by a derivative port for
microcomputers based on Intel 386 and 486 processors called BSD/386,
which was available with full source code for about $1,000, NET 2 was a
noncommercial Unix clone that implemented all of the important
functionality of Unix itself and yet freed hackers from having to work
with AT&T if they wanted to run Unix.

Unfortunately for Unix hackers, the Unix clones from Berkeley
appeared too late to provide an easy transition away from AT&T’s Unix.
Had NET 2 arrived earlier, it might have obviated the need for Richard
Stallman to launch the GNU project described below—especially if the
BSD licenses had proved more satisfying to Stallman. But by 1991, it
was too late for BSD to become the central rallying point for all hackers
who were nostalgic for the days of noncommercial Unix.

In addition, beginning in 1992, legal challenges against Berkeley’s
software from Unix Systems Labs, the company that took over
ownership of Unix from AT&T in 1990, stunted the adoption of
BSD/386 in serious ways. Although these lawsuits, which the next
chapter describes in detail, eventually were resolved in Berkeley’s favor,



the uncertainty over BSD/386’s liability restricted its widespread
adoption and made it a poor substitute for free Unix in hackers’ eyes.15

So did the fact that although Berkeley’s software counted as free and
open source by most modern definitions, it was governed by permissive
licensing that allowed users to modify the code and distribute binary-
only versions of it. As a result, the BSD licenses provided no assurance
that the code from Berkeley would promote continued collaboration and
transparency within the Unix community.16

The Open Software Foundation and Software Standards

Another way that hackers confronted the threats they faced from
commercialization and closed source software in the 1980s emanated
from the Open Software Foundation. Formed in May 1988 by a group of
companies with support from some hackers, this organization was a
response to AT&T’s purchase of a large share of Sun Microsystems, a
major manufacturer of computer hardware, in late 1987. Sun
subsequently announced that it would jettison the BSD-based version of
Unix that it previously shipped with its computers in favor of AT&T’s
Unix. The move spawned worries within the industry that AT&T and
Sun would collude to make their version of Unix incompatible with BSD
and other variants in order to gain an edge in the market.

The Open Software Foundation sought to forestall that eventuality by
promoting a set of software standards across Unix versions. The
standards would ensure that Unix programs remained compatible
between different platforms and variants of the operating system. In
addition, the organization planned to build its own hardware-agnostic
variant of Unix to compete with AT&T Unix in the market.17

Sharing source code and combating AT&T’s high licensing fees were
not major concerns for the Open Software Foundation, which formed at a
time when the word open referred to software standards, not source code.
As a result, although the idea for the organization was first proposed by



Armando Stettner, one of the old-guard Unix hackers, other segments of
the hacker community expressed little enthusiasm for the initiative. In
their June 1988 newsletter, the GNU developers declared that the Open
Software Foundation “saddened” them because the organization’s goal
was “to develop yet another proprietary operating system” rather than
one that GNU hackers viewed as a satisfying replacement for AT&T
Unix.18 The Open Software Foundation’s donation of $25,000 to GNU
shortly afterwards did little to sweeten the initiative’s image in hackers’
eyes.19

Ultimately, the Open Software Foundation proved to be of little real
importance for the Unix world. The initiative began fizzling by the end
of 1993. By that time, AT&T had sold its interest in Sun, and a poor
economic climate weakened the resolve of the companies that had
supported the Open Software Foundation. The organization disbanded
entirely by 1996.20

Yet although the Open Software Foundation proved relatively short-
lived and failed to secure the endorsement of a large segment of the
hacker community, it was important nonetheless for the history of FOSS.
It was one of the first organizations to make the promotion of open
standards—which played a major role in FOSS’s success during the
1990s, especially in the Internet market—an explicit part of its agenda.
The organization also attracted greater attention to the ways in which
AT&T’s interest in aggressively selling Unix as a commercial product
could stifle the free sharing of software. Hackers shared that concern,
even if, on the whole, their opposition to AT&T’s Unix policies was very
different from that of the companies that organized and funded the Open
Software Foundation.

GNU: One Man’s Crusade to “Free Unix!”

The third major response of hackers to the threats from
commercialization and closed source software that they faced in the



1980s—and the one that proved to be the most enduringly important for
the history of FOSS—was the GNU project, which Stallman announced
in 1983 and launched in early 1984.

Today, GNU is one of the biggest names in the free software world
(although the project does not carry equal weight in the open source
ecosystem because its founder and most of his close collaborators have
fiercely rejected use of the term open source to describe their work, as
chapter 5 explains). Yet in GNU’s infancy, it was not at all clear that the
obscure initiative, whose membership at first consisted solely of its
enthusiastic but abrasive founder, was destined for such enduring and
widespread success.

Because so much of GNU’s early history hinged on the activities of
Stallman himself, it is worth taking a look at the man as a person—and
not merely the radical software ideologue that he is often made out to be
—in order to understand GNU’s origins. A self-described “weird” child,
Stallman grew up splitting his time between two single-parent
households in New York City.21 He has identified himself as “borderline
autistic,” a trait that perhaps did much to incline him as a teenager to
recreate in the isolated environment of computer labs.22 Beginning in the
summer following his junior year of high school, when he was hired by
the IBM New York Scientific Center in Manhattan, Stallman started
earning money for his work on computers.23

The importance of software to Stallman’s life increased further when
he enrolled at Harvard in 1970. By the end of his freshman year, he
began visiting the Artificial Intelligence (AI) Lab at nearby MIT, where
the resident hackers—who, in Stallman’s words, were “more concerned
about work than status”—welcomed him even though he was an outsider
to the institution and a mere undergraduate. They soon offered him a
programming job.24 For Stallman, the reception he enjoyed at the AI Lab
exemplified everything that was great about hacker culture and the
community that surrounded it. At MIT, that culture was sustained by the
old guard of first-generation hackers.

Unfortunately for Stallman, that generation of hackers was growing
old by the time he arrived in Cambridge. Its ranks were already thinning
as more and more programmers adopted the view that using computers
as vehicles for joy and creativity undercut their potential to contribute to
ostensibly more serious purposes. By the mid-1970s, the hacker
community at MIT was under attack from programmers such as Joseph



Weizenbaum, who complained about student hackers’ “rumpled clothes,
their unwashed hair and unshaved faces,” which “testify that they are
oblivious to their bodies and to the world in which they move.”25

Perhaps because Stallman was wary of falling into the ranks of
programmers like Weizenbaum, in the fall of 1975, a year after he
received a bachelor’s degree from Harvard and entered the Ph.D.
program in physics at MIT, he dropped out of school, never to return. He
began working at MIT as a full-time programmer at the AI Lab, one of
the few places where hacker culture remained alive and well at the time.

Yet even the AI Lab could not long withstand the changes afoot in the
software world. By the late 1970s, funding from the U.S. Department of
Defense, which had sustained much of the early computer science
research at MIT, was withering. In its absence, the AI Lab sought out
partnerships with private investors that were interested in commercial
software development. By 1980, a majority of the lab’s programmers,
including a number of those who had formerly been free-spirited
hackers, were devoting a large share of their time to commercial
software projects. The most egregious blow to the hacker community at
the lab arrived in 1982, when administrators opted to install a
commercial operating system, Twenex, on the lab’s hardware,
consigning its free predecessor to oblivion.26

For Stallman, the changes at the AI Lab compounded deeply personal
frustrations with commercial software whose source code was not
publicly available. Around 1980, Stallman’s patience was tested by a
Xerox printer at the AI Lab that had a tendency to jam, delaying print
jobs until a human happened to walk by and realize that the printer
required attention. Seeking to modify the printer software so that it
would send a message to users at their computer terminals whenever a
jam occurred, Stallman found that the software had been made available
to MIT only as machine code. Without access to the source code,
Stallman could not add new features to the software.

Stallman initially resolved the issue by obtaining the printer software
source code from colleagues at nearby Harvard. At the time, Harvard
retained a policy requiring vendors to supply the source code with any
software installed on university computers. With the source code in
hand, Stallman was able to enhance the printer software in a way that
made it more useful for him.27



Yet that happy outcome did not endure. A short time later, Stallman
requested a different version of the Xerox printer source code from a
programmer at Carnegie Mellon University, another early bastion of
hackerdom. That programmer, whose name Stallman no longer recalls,
refused to share the source code, which had come under the protection of
a nondisclosure agreement that Xerox had adopted to help
commercialize its products. The Carnegie Mellon programmer’s refusal
to share the code made Stallman “so angry I couldn’t think of a way to
express it,” he recalled. “So I just turned away and walked out without
another word. … I was stunned speechless as well as disappointed and
angry.”28

The disintegration of the hacker community within the AI Lab, the
growth of commercial software, and programmers’ refusal to share code
with one another confirmed for Stallman that the hacker world faced an
existential crisis—that the “Garden of Eden,” a term he has used to
describe the AI Lab during its heyday, had withered and might disappear
forever.29

At its core, the issue for Stallman was not that moneyed interests had
been introduced to the software world or that unfree code made it harder
to implement features (such as printer-jam alerts) that improved
computer users’ experience. It was rather that the new norms of software
development and distribution were forcing him “to betray all my
colleagues.”30 When he and other hackers faced difficult choices
between sharing code with one another or respecting companies’ wishes,
the communal spirit that had once bound hackers together through the
common values of transparency, openness, and collaboration
disappeared. Their disappearance left hackers like Stallman without a
community. Resurrecting this community and reinvigorating the hacker
culture were the goals that inspired Stallman’s revolution against
proprietary software.

At first, the revolution was a lonely one, though not by design. On
September 27, 1983, when Stallman announced to the world—or at least
to the members of the net.unix-wizards and net.usoft newgroups on
Usenet, a messaging forum popular among programmers—that he
intended “to write a complete Unix-compatible operating system called
GNU (for Gnu’s Not Unix) and give it away free to everyone who can
use it,” he eagerly sought the collaboration of like-minded
programmers.31 Yet in a reflection of just how much the hacker culture



had ebbed since the high-water mark of its golden years in the 1970s, no
one signed on to join the project at the time.

In part, the lack of enthusiasm for GNU (officially “pronounced as one
syllable with a hard g” but commonly rendered “goo-new” as well) when
Stallman announced the initiative stemmed from fellow programmers’
wariness over its feasibility.32 Writing a clone of Unix—an operating
system that had taken a large community of programmers more than a
decade to develop—was no simple proposition. As the leader of a Unix
user group from the time explained, the reaction to Stallman’s
announcement was that “that’s a great idea” but he first needed to “show
us your code. Show us it can be done.”33

GNU also suffered in its early days from a lack of a clear, inspirational
vision. Today, Stallman, his fellow GNU programmers, and the Free
Software Foundation articulate such decisive and strong viewpoints that
it can be difficult to appreciate how long it took their ideology to
develop. As Stallman himself has noted, however, “several of the
philosophical concepts of free software were not clarified until a few
years” after he announced the GNU project in September 1983.34 As a
result, the original announcement said nothing about, for example, free
software licenses. Those became one of the most potent weapons in
GNU’s arsenal starting in the later 1980s. But at GNU’s outset, Stallman
was focusing on software, not bigger political and legal issues.

Similarly, Stallman in 1983 did not mention source code or otherwise
define what he meant when he wrote about “free software.” As a result,
it was easy for Usenet readers to assume that he simply wanted to create
software that users could share with one another without cost. Such
readings missed the much more important goal of protecting the
openness of source code. At the time of GNU’s birth, even Stallman
himself could not clearly and fully articulate what it meant for software
code to be free—perhaps because the alternative, closed source software,
remained a relatively novel concept at the time within the research
community of which Stallman was a part.

The GNU announcement did hint at the ideological motives behind the
project by mentioning Stallman’s goal of preserving his “Golden Rule,”
which “requires that if I like a program I must share it with other people
who like it. I cannot in good conscience sign a nondisclosure agreement
or a software license agreement.”35 Nonetheless, lacking a clearer and
more powerful explanation of the rationale behind GNU or why it



mattered for hackers, the announcement failed to inspire a large
following.

Stallman’s GNU announcement may have lacked inspiration, but he
did have a general idea of what he wished the project to do—to “Free
Unix!,” as he declared in the first line of the Usenet post announcing the
initiative. More specifically, he envisioned creating a Unix-like kernel,
“plus all the utilities needed to write and run C programs: editor, shell, C
compiler, linker, assembler, and a few other things” necessary to build a
clone of a Unix system. After those basic pieces were in place, the GNU
team would develop programs to make its Unix-like operating system
useful in real-world settings, such as spreadsheet software, text-
formatting tools, games, and “hundreds of other things.”36

Stallman envisioned the GNU system as more than a mere
replacement for Unix. He wanted it to be a better Unix. It would boast
features such as “longer filenames, file version numbers, a crashproof
file system, filename completion perhaps, terminal-independent display
support, and eventually a Lisp-based window system through which
several Lisp programs and ordinary Unix programs can share a screen.”
Although most of these features are now so common on Unix-like
operating systems that it is hard not to take them for granted, Unix in
1983 included none of them.37 By seeking to implement them in GNU,
Stallman provided an early example of FOSS programmers’ belief that,
for FOSS to thrive, it needs not just to emulate the competition but to do
everything the competition does and more and in a way that is
technically superior and enhances usability.

In addition to identifying the software programs he wanted to include
in GNU, Stallman in 1983 listed the material resources he requested to
make them a reality. His top priorities were donations of money and
computers. In a reflection of the GNU project’s humble origins in
Stallman’s Cambridge apartment, he specified that any computers given
to the group “better be able to operate in a residential area, and not
require sophisticated cooling or power.”38 He also requested donations of
software from programmers who could create standards-compliant
clones of Unix utilities for use as part of the GNU system.

Nascent GNU



Some authors of FOSS history, notably Raymond, have written that
“GNU quickly became a major focus for hacker activity.”39 In fact, the
project grew slowly following Stallman’s announcement of the endeavor
in September 1983. Although he originally envisioned beginning work
on the GNU system by Thanksgiving, he did not start executing his plan
until January 1984, after quitting his job at MIT. During GNU’s first
year, he recalls only “a few others” joining him.40 Among them was
Dean Elsner, who arrived in September 1984 “and ended up staying most
of a year and writing the GNU assembler, gas,” according to Stallman.41

Stallman himself spent part of the first year of the project working as a
software consultant for a British company, helping to pay his own bills
while also acquiring cash for his nascent free software crusade. Such
work was distracting from GNU’s goals but necessary because Stallman
lacked a steady source of personal income and, until that time, had
enjoyed little success in securing financial donations for GNU.

At first, Stallman attempted to make the most of GNU’s meager
resources by finding code that he could borrow from other programmers
and incorporate into the GNU system. That approach seemed more
efficient to him than embarking on the more time-consuming process of
writing GNU code entirely from scratch. In reality, however, the strategy
led only to frustrations. To create the GNU compiler, a tool that turned
source code into machine code, Stallman initially attempted to
appropriate code from a compiler called VUCK. The name was an
acronym for a Dutch term that translated to “Free University Compiler
Kit.” Stallman assumed that the presence of the word “Free” in the title
meant the compiler’s code was freely available to anyone who wanted it.
(Presumably, he intended to give the program a new name whose
acronym would be less offensive to English speakers.) Stallman was
dismayed when the developer of VUCK told him the software was not
free; only the university mentioned in the program’s name was free.42

Disappointed but not yet disillusioned, Stallman next attempted to
adapt a Pastel compiler that had been written at the federal government’s
Lawrence Livermore National Laboratory for use with GNU. He
abandoned that effort, however, when it became clear that the compiler’s
design made it difficult to modify it for use with a Unix-like operating
system.

These setbacks early after GNU’s launch disenchanted Stallman, who
wondered whether a more realistic approach to combating unfree
software would be simply to “find a gigantic pile of proprietary software



that was a trade secret, and start handing out copies on a street corner so
it wouldn’t be a trade secret any more.”43 That strategy, he has half-
jokingly suggested, might have proved more effective than attempting to
write a free operating system from the ground up.

Yet Stallman persevered along the hard road to software freedom.
Following his failure to obtain a ready-made code base for the GNU
compiler, he shifted attention to the somewhat simpler task of adapting
Emacs, a popular text editor he had helped develop at MIT’s AI Lab, for
use with GNU. Here again, however, Stallman was at first thwarted by
the confines of proprietary software and by his failure to appreciate how
pervasively commercial software had undermined hacker culture in a
few short years.

Rather than writing an Emacs implementation for GNU from scratch,
Stallman borrowed code from a program called Gosling Emacs, also
known as Gosmacs or gmacs, which James Gosling had created as a
graduate student at Carnegie Mellon in 1981. Because Gosling allowed
the free distribution of the program when he wrote it and a developer
who had worked with Gosling told Stallman that borrowing the code for
use in other projects would not pose problems, Stallman believed he
could incorporate Gosling’s code into GNU’s Emacs implementation
without issue. That did not prove to be the case, however. UniPress, a
private software company to which Gosling had sold Gosmacs by 1984,
threatened legal action against GNU when it learned of Stallman’s
intentions.44 Once again, a shortcut to realizing the GNU vision proved
impassable.

Eventually, Stallman resolved to do things the long and hard way. He
wrote his own version of Emacs from scratch. Devoid of unfree code
from UniPress or anywhere else, GNU Emacs in 1985 became the first
program that GNU successfully released.45

As a mere text editor, GNU Emacs was only one small part of a Unix-
like operating system. And it was not even the most important part. A
kernel, compiler, and assembler, none of which GNU possessed in 1985,
were much more essential for building a working operating system.

Yet the symbolic significance for the GNU project of the Emacs
release in 1985 greatly exceeded the actual functionality that the program
contributed to the realm of free software. That is because GNU Emacs
meant that Stallman finally had code to show to other hackers. With



Emacs, he could convince them that his GNU vision amounted to more
than an ambitious young programmer’s pipe dream.

GNU Grows

With code in hand, GNU finally gained momentum. More programmers
fell in line behind Stallman, and organizations increased donations of
money and equipment.

Initially, the growth was by no means explosive. GNU’s total budget
in 1985 amounted to around $23,000, about 80 percent of the mean
annual household income in the United States in that year.46 That was
hardly the level of expenditure one would expect of an organization
building an operating system that would eventually help to power
millions of computers worldwide. Similarly, in another reflection of
GNU’s measured rate of growth, records show that only six collaborators
signed copyright papers to work with GNU in 1985.47

The situation improved the next year, when the number of GNU
copyright contracts increased to sixty-six—although some individuals
signed more than one contract, meaning that GNU had fewer than sixty-
six total collaborators at the time.48 By February 1986, a list of people
who were significantly involved in the GNU project included ten names,
Stallman’s among them. Only one of these individuals, however, was a
paid GNU employee.49 In addition, although GNU reported having
received by February 1986 “one hundred responses” to requests for
financial donations—thanks especially to a column in Byte magazine by
Jerry Pournelle that promoted Stallman’s project—the organization was
still in great enough need of cash that GNU organizers shamelessly
reiterated “money” five times on a nine-item list of requested donations
in their newsletter that year.50

Yet within the realm of programming, GNU’s expansion during its
first years was more impressive than the sluggish growth of its personnel



or the lightness of its coffers might suggest. By early 1986, GNU Emacs
was already in use on several variants of BSD version 4.2, as well as
some editions of AT&T Unix. More notably, the Berkeley hackers agreed
to ship Emacs as part of BSD 4.3, which they released in June 1986, and
Digital Equipment Corporation “expressed an interest in distributing” the
editor as part of the software package that it provided for computers it
manufactured.51 The endorsement of what was then GNU’s flagship
software product by such big names in the Unix world was a major
marker of success, especially since the project’s Emacs implementation
was barely a year old at the time.

Emacs was only one of several major programs that GNU was
producing by early 1986. In February, GNU developers also reported
having completed a shell, a program called gsh that was in testing and
was intended for interacting with a computer. Ultimately, as noted below,
gsh development faltered, and GNU opted to use the Bourne Again Shell
(bash) instead. Work on a GNU C compiler—the crucial program that
Stallman had vainly tried to adapt from a free third-party version—was
in progress under the direction of Len Tower, whom GNU was paying a
full-time salary. A handful of clones of basic Unix utilities, including
“ls” (a program that lists the contents of a directory in a Unix shell) and
“make” (which assists in compiling software) were already complete,
and GNU developers were making progress on others. The gas assembler
that Elsner had been writing since 1985 was “mostly finished”—
complete with the crucial feature of being able to prepare software code
for compilation on different types of hardware platforms, which meant
GNU could be a portable operating system. Stallman himself was
working on a debugger, which programmers use to test and troubleshoot
software code.52

This assortment of programs and tools, only a minority of which were
actually ready for use, by no means amounted to a complete Unix-like
operating system. Yet they were remarkable achievements as the fruits of
a project that was little more than two years old and whose growth had
been virtually anemic for the first half of its history.

That progress helps to explain how GNU began attracting more
outside collaborators for development and distribution of its software.
Starting in 1988, GNU developers were not just cooperating with their
counterparts at Berkeley who were working to make BSD free of AT&T
code but were actively coordinating with them. GNU announced in
February 1988 that “the next release of Berkeley Unix may contain



Make, AWK and SH from the GNU project instead of those from Unix.”
These plans meant that GNU was “coming to Berkeley’s aid,” in
Stallman’s estimation.53 They highlighted how the growing array of free
GNU software programs was playing an increasingly important role in
enabling BSD developers to excise AT&T code from their operating
system. Meanwhile, GNU by early 1989 was broadening its reach to
support programmers who worked on GNU software from remote sites,
even though the organization initially asked all of its collaborators to
spend most of their time near its headquarters in Cambridge.

Sympathizers with deep pockets—or at least with wallets fatter than
that of the underemployed hacker who had launched the project—took
note of GNU’s progress by the late 1980s. The only significant donation
Stallman had secured by the time he began work on GNU in 1984 was a
single computer. By January 1987, however, Lisp Machines, Inc., a
company founded by first-generation MIT hacker Richard Greenblatt,
was providing free office space for the project. Six months later, GNU
was receiving gifts of computer hardware, triple-digit corporate cash
donations, and an answering machine.54

The magnitude of cash donations to GNU reached new heights in
February 1988, when the project announced a $10,000 gift from
Software Research Associates, a Japanese company that also committed
to donating another computer to GNU. Those donations came thanks to
the influence of Kouichi Kishida, who hoped GNU might provide a free
Unix clone that would promote use of Unix-like software in Japan.55 A
year later, Hewlett-Packard outdid GNU’s Japanese supporters with a
$100,000 donation to the project as part of a program intended to
increase the company’s appeal in the academic market.56

GNU’s developers did not rest on their laurels, however. Despite the
sizable cash donations the project had secured by 1988, its members
continued to request financial gifts to sustain GNU’s rapid growth. The
biannual GNU newsletters frequently reminded readers that donations to
the project were tax-deductible and would be used to hire more
programmers to write GNU software and create documentation for its
programs, a vital resource for ensuring their widespread usability.

Free Software for Sale



At the same time, the project generated revenue by charging fees to
distribute GNU software on tapes and, later, disks. GNU code was
always freely available for download without cost from servers on the
Internet, and GNU developers encouraged users to copy and share the
project’s software directly among themselves. But the team also offered
its products through the mail via tapes, the most common medium for
transferring electronic data at the time. In addition to providing a
convenience for users who did not have easy access to the Internet or the
ability to copy media on their own, tape distributions of the GNU
software suite—which the organization offered in January 1987 for $150
plus an additional $15 for the accompanying documentation manual—
provided a way for individuals to contribute money to GNU while
receiving something in return. Institutional users who could count the
GNU software as a professional expense reimbursable by their employer
enjoyed a particularly pain-free method of supporting GNU financially.

GNU maintained its tape- and disk-distribution service for several
years, eventually expanding it to offer different packages of GNU
software at varying price points. By the early 1990s, the most expensive
GNU product was the “Deluxe Distribution” of GNU software and
manuals, which cost $5,000.57 GNU’s success in enticing users to
purchase tapes and disks, even though all of the software they contained
was available through other means perfectly legally and at no cost,
showed that it was possible to convince people to pay money for free
software—especially if purchasers gained convenience or add-ons, such
as documentation manuals. In that respect, the distribution service that
GNU introduced in the 1980s set an important precedent for the FOSS
world, where many business models today revolve around selling free or
open source code in value-added form.

In a similar vein, GNU pioneered modes of free software development
and distribution around which entrepreneurs were able to build a
successful commercial ecosystem. GNU’s first newsletter, which
appeared in February 1986, included an essay by Stallman that explained
how free software programmers could make a living even if the code
they wrote cost nothing. Some of his proposals, such as having
programmers live off of donations or having free software user groups
contract with programmers to write software for them, seem simplistic
from today’s perspective. Yet he also suggested that free software
programmers might sell “teaching, hand-holding and maintenance



services,” an activity that sustains a great deal of FOSS-related business
today.58

By June 1987, Lisp Machines, Inc. was donating $200 to Stallman
personally for each copy of GNU Emacs that the company delivered to
customers. Because Stallman received the donations for his role as the
programmer of Emacs rather than GNU’s founder, this activity “proves it
is possible to make a living from writing free software,” GNU told its
supporters.59

Yet the most momentous development for the commercialization of
the free software space came in November 1989, when John Gilmore,
Michael Tiemann, and David Henkel-Wallace founded Cygnus
Solutions, the first company to build a business model that centered on
providing support services for free software.60 Cygnus grew rapidly,
increasing its bookings from $725,000 during its first full year of
operation to $5,700,000 five years later. In 1997, the company secured
venture funding, and in 1999, during the heady days of the commercial
FOSS explosion (discussed in chapter 4), it merged with Red Hat.

Cygnus was only one of several companies to build business models
around free software early on. Others cropped up by the early 1990s in
places as far from Massachusetts as Russia and Japan.61 Taken together,
these ventures proved that free software was by no means at odds with
commercial success.

They also undercut the notion that hackers like Stallman were driven
by an anticapitalist mindset. That is a tempting interpretation, especially
because the commercialization of Unix had been a major factor in the
decline of hacker culture and because the GNU developers emphasized
assuring users that their software would always be available free of
charge. Yet such explanations fail to account for the success of
companies like Cygnus and grossly misinterpret the ways in which
hackers such as Stallman thought about business and commercial
success. As commercial software companies began proliferating in the
1980s, making money in the software world or anywhere else was not
what upset Stallman and most of his fellow hackers. What sparked the
GNU revolution was the breakdown of a culture in which programmers
shared source code among themselves freely. In many cases, that
disintegration happened because corporate managers believed they could
make more money selling software if they distributed it only in binary
form. Yet it was not the fact that companies were making money that



upset hackers. After all, many of them worked for companies in the
software business. It was rather that source code’s openness had become
a casualty of the business model that most companies adopted.

Exporting the Revolution

As GNU’s commercial significance expanded along with its suite of
software programs, the project’s international stature also grew. By 1988,
the organization already had admirers in Japan who, as noted above,
gave GNU its first large cash donation. In 1989, an anonymous supporter
from England donated another $100,000 to the project, a few months
after Hewlett-Packard’s gift of the same amount.62 Two years later,
months before the dissolution of the Soviet Union in December 1991,
GNU reported that it had “grown a branch in Russia,” where a start-up
company was employing ten programmers to work on GNU software.
The company’s goal was to sell computers that ran the operating system
that GNU was creating. GNU generated enough interest in Russia by
1993 for the Society of Unix User Groups, the Russian Center for
Systems Programming, and the International Center for Scientific and
Technical Information to host a conference in Moscow dedicated to
GNU and related topics, including the “relevance of free software to
modernization and democracy in Russia and other parts of the former
Soviet Union.”63 In another corner of eastern Europe, a project called
“Free Unix for Romania” began distributing GNU software to
Romanians in 1992.64

During its first decade, the followings that GNU gained outside of the
United States, even though the project was founded and based in
Massachusetts, showcased free software’s ability to cross political and
cultural borders freely. That strength continues to distinguish FOSS from
many proprietary software products today, which are often not as readily
adaptable for different language groups and are sometimes subject to



resentment by users who view software exports from companies based in
the United States as a vehicle of cultural imperialism.

In certain areas, GNU lagged during the otherwise lively years of the
late 1980s and early 1990s. For example, the gsh shell that GNU
developers reported as nearly complete in February 1986 never
materialized because its “author made repeated promises to deliver what
he had done, and never kept them,” the project reported.65 Not until the
summer of 1988 did GNU complete a free shell program under the
direction of Brian Fox. Called the Bourne Again Shell (bash), the
software was a replacement for the Bourne Shell, a common program on
Unix systems at the time. Today, bash remains one of the most popular
shells on free and open source operating systems.

GNU also perennially struggled in its efforts to produce adequate
documentation for the software it was creating. For many programmers,
writing code is more exciting than writing clear, concise descriptions in
natural language that explain how to use the code. Yet because even
other programmers rarely can understand how a particular software
program is supposed to work simply by glancing at its code or executing
machine code created from it, software that lacks sufficient
documentation is difficult to use in a serious way.

By February 1986, GNU had developed tools to help produce
documentation files for its software, but its repeated calls for volunteers
to create the documentation elicited few responses. By February 1988,
the lack of documentation had become sufficiently acute for GNU to list
its desire “to hire somebody to write documentation!!!” as one of the
main reasons it sought further cash donations. Yet it was not until later
that year that the documentation drive enjoyed greater success, after
Dick Karpinski, a professor at the University of California at San
Francisco, announced a $1,000 cash prize for writing documentation for
a particular GNU program. A candidate quickly produced a manual in
response to the prize offering, helping to expand GNU’s lackluster
documentation library.66

Eventually, GNU developers succeeded in writing sufficient
documentation for virtually all of the programs and utilities that the
project produced, a fact made clear by the rich documentation files that
ship with most GNU/Linux operating systems today. GNU’s struggles to
generate adequate documentation during its early years, however,
underscored that hackers found it much easier to write free code than to



complete the auxiliary tasks that are necessary to ensure the success of
free software.

Beyond Code: The Free Software Foundation and the
GPL

Producing documentation was only one of the challenges that GNU
faced beyond the realm of coding. Gradually, Stallman and his
collaborators recognized that if GNU was to affect how people used
technology, they needed to produce much more than code or
documentation. Their endeavor also demanded political and legal tools
that would promote and protect the software they produced.

Stallman took the first step toward establishing a broader footing for
GNU on October 4, 1985, when, ten months after he had launched GNU,
he founded the Free Software Foundation.67 As Stallman remains keen to
point out today, “GNU is not a movement. It’s an operating system.”68 In
contrast, the Free Software Foundation provided institutional grounding
that allowed Stallman, the organization’s initial president, along with the
fellow hackers who rounded out its board to make GNU part of a larger
initiative, with a purview that extended beyond creating a Unix-like
operating system.

This did not mean, however, that the GNU project avoided directly
engaging with issues that did not relate to code. In June 1987, GNU
developers railed against a proposed law that would have required
manufacturers of electronic audio hardware in the United States to install
equipment that prevented the copying of cassette tapes or the recording
of music from the radio onto them.69 That campaign represented the first
time that GNU addressed an issue that involved the freedom of another
technological and cultural medium, with no direct bearing on the GNU
operating system.



In subsequent years, GNU promoted such endeavors as the Open
Book Initiative, which aimed to distribute books and other written
materials over the Internet, and the Universal Index, a project to build a
database of copyright-free information.70 In the early 1990s, GNU
endorsed Project Gutenberg, a major hub for distributing free electronic
texts. By 1995, GNU developers were denouncing attempts by the
United States government “to ban messages that it cannot read” as a
result of electronic encryption.71 Actions like these made clear that the
GNU and Free Software Foundation teams came to understand their
work as having to do with promoting open culture and free society as
well as free code. In this sense, they were pioneers of the debates over
open access that continue into the present, as Gary Hall’s work shows.72

The most crucial achievement of GNU and the Free Software
Foundation from the perspective of free software itself, however,
involved licenses and copyright law. The GNU General Public License
(GPL) constituted a major innovation in the way that programmers and
the general public thought about the roles played by licenses and
copyright restrictions in the world of software. It illuminates more
clearly than any of GNU’s other initiatives just how radically the project
affected the world as a whole.

At first, hackers like Stallman viewed copyright as an evil with no
positive potential. As noted above, Stallman had declared when he
announced GNU in 1983 that “I cannot in good conscience sign … a
software license agreement.”73 Four years later, the June 1987 GNU
newsletter called copyright “a public nuisance that the public tries to
ignore.”74

Such attitudes were no surprise. Beginning in the 1970s, the
introduction of copyright into the world of software had been part of the
campaign by commercial software companies to change the way
software was written and distributed. Software copyrights came as a
major shock to hackers. During the first decades of computing, the
prevailing attitude toward code in legal contexts was to treat it as an
intangible object rather than as something one could hold in one’s hands.
True, you could print it out if you wanted, but few people did that. Code
existed mostly in ephemeral form on computer screens or was hidden
away on disks where no one could see it. For most people, it did not
make sense to copyright something that was impossible to hold or see on
a permanent basis.



That viewpoint began to change in the mid-1970s. The Commission
on New Technological Uses of Copyrighted Works, established by the
federal government in 1974, determined that computer programs
constituted a creative work and therefore could be subject to copyright
restrictions in the same way as literature, for example. In 1980, Congress
revised the federal legal code to include computer programs in copyright
legislation. Courts affirmed the new precepts in 1983, when the federal
court of appeals for the Third Circuit ruled that Franklin Computer
Corporation had violated copyright laws by copying code from Apple
computers.75

In the face of these developments, it would have seemed pointless for
GNU to attempt to reverse the legal power of copyright over software
products and restore the days when computer programs did not fall under
the purview of copyright law. However, Stallman and the GNU
collaborators conceived an expedient that would allow them to turn
copyright on its head and use it to prevent people from choosing not to
share source code, rather than stifle copying.

The GNU project’s attempt to use copyright in this way began in
1985, when Stallman released GNU Emacs with a copyright notice that
granted users permission to make and distribute copies of the program
and create modified versions of the software, so long as they did not
claim sole ownership over the modified version. The Emacs copyright
also required that all copies or derivative versions of the program carry
the same licensing terms, which prevented other developers from
distributing modified Emacs code under their own copyright terms.76

Stallman was not the first hacker to write a license for his software
that guaranteed users the right to share code freely. In similar cases,
however, the copyright notices amounted to brief, informal statements.
For example, the 1985 version of the Unix program trn, a tool written by
Larry Wall for navigating through lists of information, included a
statement stipulating that “you may copy the trn kit in whole or in part as
long as you don’t try to make money off it, or pretend that you wrote
it.”77

Although the spirit of a license like Wall’s was clear to hackers, the
wording was ambiguous and potentially subject to challenges in court. If
a programmer copied Wall’s software, did he or she have to keep the
same copyright license for the derivative work? Did trying to “make
money” off of the code mean selling the software itself, or could it also



include the sale of support or other services related to it? Were people
who distributed the software obliged to state explicitly that Wall was its
author, or would they remain compliant with the license so long as they
did not expressly claim to have written the code themselves?

In contrast, Stallman’s license for GNU Emacs was the sort of
copyright notice that a lawyer could love. It clearly explained the terms
under which users could share copies of the program with one another. It
also specified how developers could legally modify or borrow the code
to create their own software.

Other hackers in the GNU circle soon recognized the innovative
power of the GNU Emacs license. By November 1986, they encouraged
Stallman to broaden the license’s language by replacing the word Emacs
with software so that they could use the license to protect code they were
writing for other programs. Stallman did so, turning the Emacs copyright
notice into a “copyleft” license—a term Stallman borrowed from
programmer Don Hopkins—that could apply to all software programs.78

The new license became the first iteration of the GNU GPL.79

The GPL evolved from that initial version as Stallman and his fellow
hackers worked to flesh out their copyright strategy fully. Between the
first release of the GPL and the spring of 1988, GNU developers,
perhaps recognizing that not all programmers wished to share code as
freely as they did, introduced a number of changes to the licensing
language that made it somewhat less restrictive. They specified that
GPL-licensed software could be distributed alongside programs that
were subject to other copyright notices. They required that developers
commit to making the source code for GPL-licensed programs available
only for a minimum of three years rather than in perpetuity. And they
revised the GPL terms to permit programmers to distribute executables
linked to system libraries without requiring them to distribute the source
code for those libraries.80 That last change was particularly important
because it meant programmers could use the GPL to protect a program
even if the program used software libraries (collections of functions that
many applications on the same computer share in common) that were
governed by other licenses.

GNU did not issue version 1.0 of the GPL, signaling that it deemed
the license suitable for general use, until 1989. For the most part, version
1.0 contained the same terms as earlier iterations of the license. The
major difference was that this “stable” version freed developers from



having to share the modified version of a GPL-protected program with
the community so long as they did not distribute the modified program
publicly. Previous versions of the GPL had required developers to
publish all code changes for a derivative work, even if they did not use
the derivative work in a public setting or send binary copies to other
users. This minor but significant change made it easier for programmers
and organizations to adopt and modify GPL-protected software for
private use, increasing the appeal of GNU programs and other products
governed by the GPL. The 1989 GPL also contained language
guaranteeing that future modifications of the GPL terms would not
revoke the rights granted by an earlier version of the license.81

Licensing terms for software libraries remained a sticky issue for
GNU following the release of GPL 1.0. As a result, the project in early
1991 announced an additional license, the Library General Public
License, which later became the GNU Lesser General Public License
(LGPL). Described by GNU as a “strategic retreat,” the LGPL permitted
developers to write programs that made use of GPL-protected software
libraries even if the programs themselves did not use the GPL. That
outcome was less preferable to requiring all software to be free, GNU
declared, but it was a necessary pragmatic sacrifice because insisting that
GPL-licensed libraries “be used only in free software tended to
discourage use of the libraries, rather than encourage free
applications.”82

Both the GPL and the LGPL have continued to evolve since the early
1990s, with GNU issuing two major version updates to the GPL in 1991
and 2007. They have proved hugely influential to the FOSS world since
their introduction. Although the GPL is only one of more than one
hundred free software licenses available today, data from recent years
shows that a majority of FOSS projects have adopted some version of the
GPL to protect their code.83

The Battle for “Look and Feel”



As innovative as GNU’s copyleft strategy was, it did not prove to be a
reliable remedy for the threats to free software that continued to evolve
after the project found its footing. Chief among these challenges were the
“look and feel” lawsuits and software patents that proliferated in the late
1980s.

The look and feel cases hinged on a shortcoming in software
copyright. As the courts defined it in the 1970s, copyright could apply
only to source code and machine code. This meant that developers could
use copyright notices to prevent third parties from distributing binary
copies of software or incorporating source code into another program
without permission. But copyright could not stop someone from writing
software that imitated the features or interface of another software
product, as long as the imitation was based on original code.

Enter patents, which allow developers to protect the idea or concept
behind a software program, as opposed to the code itself. Through patent
claims, programmers could sue anyone who wrote code that emulated
the way patent-protected software worked or looked—even if all of the
code in the emulating product had been written from scratch and
therefore violated no copyrights.

For GNU developers, patents posed a grave threat. After all, the
project’s main goal was to clone an operating system, Unix, over which
GNU could claim no ownership. The possibility that AT&T might patent
Unix’s features—that is, the system’s look and feel—threatened to
undermine the entire GNU initiative.

Software companies’ experiments with patent protections proved
worrisome enough to GNU developers that, in June 1987, they publicly
celebrated the legal victory of a company called SoftKlone over
allegations that it had violated another organization’s software patent by
copying the look and feel of its programs. They did so even though
SoftKlone developed proprietary software and was therefore antithetical
to GNU’s goals.84

The outcome of the SoftKlone case provided some assurance for GNU
against the threat of software patents, but the project’s leaders continued
to fight them aggressively. In 1989, Stallman founded the League for
Programming Freedom, which coordinated resistance against a series of
lawsuits involving claims by Lotus Software that its competitors had
improperly copied the features, but not the code, of its products.
Stallman pitched the League as “an entirely separate organization” from



the Free Software Foundation and GNU, adding that “the League for
Programming Freedom is not an organization for free software, and it
does not endorse the GNU project or the Free Software Foundation.
Most League members write proprietary software, and some have
founded companies that do so.” In practice, GNU continued to promote
the League’s activities to its supporters throughout the late 1980s and
early 1990s, reflecting the organization’s deep and enduring concern
over patents.85

GNU also endorsed a boycott of Apple from 1988 to 1995 because of
the company’s legal action against Hewlett-Packard and Microsoft
regarding the look and feel of their software.86 Calling the lawsuits an
attempt by Apple to establish a monopoly in the personal computer
market, GNU developers declared that “we will not provide any support
for Apple machines.”87 Practically speaking, such actions had little effect
on Apple, which eventually lost in court. (Even less potent was a
campaign in 1988 by Stallman and some fellow hackers to distribute
buttons bearing the inscription “Keep Your Lawyers Off My Computer”
to combat Apple’s actions.)88 Still, the confrontation was notable for the
precedent it set.

The relationship between Apple and FOSS advocates has been tense at
many points in the past, not least because of Apple’s incorporation of
many free and open source programs into products that are otherwise
highly proprietary, a trend chapter 4 discusses. Yet the antipathy was
perhaps never as bitter as during the days when GNU urged its followers
not to purchase Apple computers and refused to release software for
them.

Hurd Not Seen

GNU achieved many impressive feats during the decade that followed
Stallman’s announcement of the project. But it failed to produce a viable
version of the core piece of its operating system. That piece was the



kernel—the program that binds the rest of a computer system together by
allowing programs to communicate with hardware and one another.

By the beginning of 1990, all of the other main pieces of the GNU
system were in place. The project had a debugger, a “fairly reliable” C
compiler, an expansive library of C programming functions, and clones
of all of the major Unix utilities. In a sign that the first step of Stallman’s
stated mission—creating a replacement for Unix itself—was nearly
complete, the project by this time had begun developing other,
nonessential applications for use with the system, such as the spreadsheet
program Oleo (“better for you than the more expensive spreadsheet,”
GNU promised) and a tool for sending email. Developers who supported
GNU were even adapting some GNU programs to run on MS-DOS,
although GNU itself did not release software for that operating system.89

Yet despite GNU’s impressive software catalog, work on the GNU
kernel had not yet begun in a serious way. That was not by design. On
the contrary, as noted above, when Stallman announced GNU in 1983,
the first item on the list of programs that he said he intended to write was
a kernel.90 A series of changes and setbacks in GNU’s plans for doing so
chronically stalled the kernel development effort.

Stallman and the other early GNU collaborators at first planned to
adapt a kernel called TRIX, which had been developed at MIT, for use as
the core of GNU’s Unix-like operating system. “It runs, and supports
basic Unix compatibility, but needs a lot of new features,” Stallman
reported of TRIX in early 1986. He added that, most important, the
TRIX kernel code was freely redistributable.91

In December 1986, GNU developers began work on a TRIX-based
kernel implementation.92 Within six months, however, they abandoned
the effort and turned their attention toward another candidate, the MACH
kernel. The June 1987 GNU newsletter reported that “We are negotiating
with Prof. Rashid of Carnegie-Mellon University about working with
them on the development of the MACH kernel. … If an agreement is
reached, we will use MACH as the kernel of GNU.”93

GNU developers had not entirely ruled out the adaptation of TRIX as
their kernel at this time. They said they would return to that plan if they
failed to secure permission to work with MACH. By this juncture,
however, they had already lost much crucial time on kernel development,
which had fallen far behind that of the other operating-system
components they were building.



Little changed by January 1989. In that month, GNU reported that it
still planned to use MACH as the basis for its kernel, but it had made no
apparent progress toward implementing the software. Part of the delay
stemmed from the fact that MACH incorporated some proprietary code
from AT&T Unix, which MACH’s original developers at Carnegie
Mellon had promised to remove from the kernel.94 While waiting for
them to do so, GNU could reassure its supporters only that TRIX
remained a possible back-up option in case the MACH plans did not pan
out. It also mentioned a second potential alternative—the Sprite kernel
that developers at Berkeley had created for use with BSD. By June, the
plan evolved into using Sprite’s file system in conjunction with MACH
to build the GNU kernel.95

Carnegie Mellon programmers were slow in fulfilling their promise to
free MACH of AT&T code. At the beginning of 1990, usage restrictions
on MACH’s code were proving a pervasive problem, and GNU reports
on the kernel’s status had grown more measured in their assessment of
MACH’s suitability for the project’s goals. GNU informed supporters in
January 1990 that its developers still “hope to use the Mach message-
passing kernel being developed at CMU” and were awaiting the release
of a free version of the kernel, which they expected by May 1990. The
report went on to warn, however, that “until this happens, and we see
precisely what is available and on what terms, we can’t say for certain
whether we can use it. We will not use Mach unless we can share it with
everyone, and all users can redistribute it.” The concern that distributing
MACH outside of the United States could violate export laws had
become another potential obstacle by this time, compounding the issues
related to AT&T code.96

As the outlook for the MACH plan grew dimmer in 1990, TRIX and
Berkeley Sprite remained alternative options for GNU. The enduring
uncertainty over which code base GNU would end up adopting for its
kernel, however, prevented meaningful development on any of the
potential solutions.

The year 1991 finally brought definitive direction to GNU’s kernel
plans. Although a January 1991 report stated that GNU was still “waiting
for CMU’s lawyers to approve distribution conditions which will allow
us to distribute the code” from MACH, in June the project announced
that it had started development of a kernel based on MACH, which was
by then free of AT&T code and legally exportable outside of the United
States. “The system is intended to be both source and binary compatible



with 4.4 BSD, and POSIX.1 compliant (when used in conjunction with
the GNU C Library),” GNU informed is supporters.97 This meant that it
would support the latest software programs designed to run on Unix-like
operating systems.

GNU christened its MACH-based kernel Hurd because it was a
collection of servers (or “herd of gnus,” in Stallman’s description) that
ran on top of the MACH microkernel. Stallman originally intended to
call the GNU kernel Alix, “after the woman who was my sweetheart at
the time,” but the lead kernel developer for GNU, Michael Bushnell,
preferred the alternative term.98

In announcing the MACH-based Hurd kernel, GNU emphasized the
technical advantages that its microkernel design promised. Most
traditional Unix-like kernels adopt a monolithic kernel architecture. This
means that all of the core services and functions—such as processing
input from the keyboard and writing data to disk—that the operating
system needs to provide exist in a single layer. In contrast, a microkernel
delivers only a very basic set of services. It relies on separate programs,
which are not part of the kernel itself, to do the rest of the work
necessary to run the system. The computer science research community
in the 1980s and early 1990s viewed microkernels as a promising
innovation because their design could theoretically simplify operating
systems by making them more modular and flexible.

Microkernels had their critics. Among them was Linus Torvalds, who,
as the next chapter shows, decided to write Linux partially because he
viewed microkernels as “essentially a dishonest approach aimed at
receiving more dollars for research” by university programmers.99 Yet
GNU developers, who were intertwined with the academic community,
espoused no such reservations. Thanks to Hurd’s microkernel design,
they promised that “a great number of functions, done in Unix by the
kernel, will be done in the C library.” That meant more flexibility in the
way applications performed because programs would be less dependent
on the kernel. Programs could “become much faster as well,” GNU
developers said.100 They later went so far as to call the Hurd an entirely
“new strategy of OS design,” even though the project could not claim
responsibility for having invented the microkernel concept.101

Despite such enthusiasm, Hurd development proceeded slowly.
Developers made clear that GNU supporters should not expect the kernel
to be complete for some time after they began work on it in 1991. In



1992, the project even suggested that it would adopt a different kernel as
a temporary stand-in for the Hurd “to create an early, completely free
GNU system” while Hurd matured.102 A year later, GNU was calling for
more volunteers to develop the Hurd, although the requirement that
candidates should be able to “read and understand the source code with
fewer than two questions, and have the time for a large project” did not
help attract large numbers of programmers.103

Not until 1994 was the Hurd finally able to boot into a working
system. A year later, in January 1995, it was capable of running most
programs and was “right on the verge of being self-hosting (able to run
on its own well enough to compile its own source code and be used for
its own development),” according to GNU. “For a complete system we
still have much more work to do,” the project informed its supporters,
but the developers envisioned issuing an alpha release in the near
future.104

That release was slower in coming than the upbeat January 1995
report suggested. A year later, the Hurd remained “not yet ready for
use.”105 Not until July 1996 did an alpha version, Hurd 0.0, finally
appear and with it the first edition of the complete GNU operating
system. The kernel at that point remained “very preliminary, and we
don’t recommend you try it unless you are in the mood to experiment,”
GNU cautioned. “Much work remains to be done on reliability,
efficiency, and on user-level features to take advantage of the underlying
capabilities.” Yet the kernel developers were “making rapid progress on
these tasks, and we plan to make further releases fairly often.”106 They
produced a number of updated test releases of the Hurd during
subsequent years.

Yet a stable, production-quality version of the Hurd has remained
elusive up to the present. Although Hurd development continues today,
the kernel does not support many modern hardware platforms. The most
recent edition of the software is only version 0.6. In 2010, Stallman
admitted that he was “not very optimistic about the GNU Hurd. It makes
some progress, but to be really superior it would require solving a lot of
deep problems.”107 Stallman has stated that GNU developers
underestimated by about ten years the time that it would take to complete
the Hurd kernel.108

In retrospect, the stunted development of the GNU kernel resulted, in
part, from GNU developers’ excessive emphasis on cutting-edge,



untested ideas that theoretically could have made the Hurd better than
other Unix-like kernels but that actually rendered development much
more difficult than it needed to be. In March 1998, perhaps in a bid to
convince programmers and users that the Hurd was better than the
alternative Linux and BSD kernels, GNU pitched Hurd as a way for
“users to create and share useful projects without knowing much about
the internal workings of the system—projects that might never have been
attempted without freely available source, a well-designed interface, and
a multiple server [kernel] design.”109 Those were great goals, and they
set the Hurd kernel apart from other Unix-like kernels. Without a kernel
that actually worked well enough to use on production systems, however,
GNU could not deliver the innovative features its kernel developers
envisioned to real-world users.

Recurring attempts to rethink the Hurd design also negatively affected
development. By 2000, in their quest for innovation, Hurd developers
were wondering whether they should backtrack and port Hurd to work in
conjunction with a microkernel other than MACH, which by that time
was “no longer considered state of the art.” Some members of the Hurd
development team spent the next five years pouring their energies into
the port, only to abandon the effort in 2005. This meant that more time
was wasted in pursuit of technical sophistication at the expense of
producing a usable kernel.110

It was ironic that unnecessary technical complexity ended up dooming
the Hurd. Stallman told me in 2015 that he originally proposed the
MACH-based Hurd as GNU’s kernel because he believed it was a
“purely pragmatic” way to build a kernel quickly. MACH seemed an
advantageous choice because it “was a funded project at a university”
and therefore posed little risk of disappearing or becoming something
that GNU would have to develop without outside assistance.111

“I expected that using Mach, without having to write it, would save us
a lot of the hard parts of writing a kernel,” Stallman added. “I thought we
could get it done fast and have the most elegant and powerful kernel.”112

In reality, things “didn’t work out that way; Mach didn’t work so well,
and eventually we had to maintain it ourselves,” Stallman recalled. “Our
design turned out to be a research project” rather than a pragmatic way to
implement a working kernel.

Recognizing the extraordinarily complex approach that the GNU
kernel team—of which Stallman was not a member—took to



implementing the Hurd, he added that “perhaps the [Hurd] developer
prioritized elegance over getting something out the door as fast as
possible.” Yet the main problem, he suggested, was simply that a number
of design and implementation challenges that were hard to foresee in
1991 appeared as Hurd development proceeded.113

GNU’s Balance Sheet

In practice, the Hurd’s failure to materialize in usable form proved to be
of little relevance for the success of either GNU or the broader FOSS
world. As the next chapter explains, beginning in the early 1990s, the
widespread adoption of the Linux kernel by the free software community
bound together the rest of the GNU software and made it possible to run
a complete system using only GPL-licensed software. This rendered the
Hurd an obscure, mostly insignificant project by the end of that decade.
Yet the setbacks that beset GNU kernel development throughout its
history help to illuminate broader trends that explain what the project did
well, what it could have done better, and how FOSS developers working
on other software learned from GNU’s mistakes.

In most respects, the GNU project was a runaway success. With the
exception of a kernel, GNU produced highly stable replacements for all
of the core software in Unix by the early 1990s. It went on to add many
novel programs of its own, offering Unix users tools and features that
they never saw on AT&T’s operating system. GNU’s programs were also
better than the alternatives they supplanted. Studies in 1990 and 1995
found that GNU software was less than half as likely to crash as that of
most commercial Unix systems of the time. In some cases, commercial
Unix software crashed six times as often as GNU’s.114

GNU’s impressive success was the result of several factors. One was
Stallman’s intense and unwavering leadership of the project. As a man
who was more willing than most people to sacrifice personal fortune and
comfort in order to advance a project that promised no major material



payoff, Stallman stood out even in an industry in which strong
personalities are common. He gave up a job he loved to launch GNU
from his Cambridge apartment. In contrast to most programmers who
became titans of the IT world, Stallman never had a lucrative initial
public offering or buyout to hope for when he took that gamble in 1983.
(He received a $240,000 “genius” award from the MacArthur
Foundation for his work with GNU and the League for Programming
Freedom in 1990, but that was an unexpected, one-time windfall.)115 The
only reward he sought was saving hacker culture through free software.

It also mattered that Stallman stuck with GNU through its entire
history. In other ventures within both the free and proprietary spheres of
the software world, project leaders and executives commonly come and
go for a variety of reasons, including political infighting, creative
disagreements, and a desire for greater work-life balance. In this context,
Stallman’s long-standing commitment to GNU proved a boon for the
project because it ensured constant and steady leadership. His sometimes
abrasive personality and micromanaging tendencies were off-putting to
some collaborators and users, as is discussed in later chapters. In other
respects, however, Stallman became a model “benevolent dictator” (to
borrow a term that FOSS programmers began using in the 1990s to refer
to leaders of their community) for free software and the first of his kind
to fill that role.116

GNU also owed much of its momentum to the community of
enthusiastic users and programmers that organically arose around it.
Most of the developers who participated in the project did not receive a
salary from GNU. The few who did were paid only modestly, and unlike
today, virtually no programmer during the 1980s or early 1990s who did
not work for GNU or a company such as Cygnus could expect an
employer to pay him or her to write free software.

Yet even without monetary lures, GNU was able to recruit highly
capable hackers. At first, the project’s volunteers, many of whom had
worked at the AI Lab or were members of Stallman’s personal circle,
signed on because of Stallman himself. As GNU expanded, however,
more developers began contributing because they embraced the software
it was creating and the project’s vision. According to Stallman, he “only
knew the main ones” after GNU’s roster of programmers became sizable,
reflecting the growing size of the community he founded.117



At the same time, a strong community of users grew up around GNU.
As this chapter has noted, early supporters of the project organized in
locales ranging from Japan to Russia. Meanwhile, volunteers from across
the United States who did not program helped to spread GNU software
by hosting it on servers to which they had access, an important
contribution at a time when sharing data over the Internet was much
more difficult and expensive than it is today. Many more people
supported GNU by simply using its software.

GNU’s strong community played an important role in helping the
project to acquire institutional support of various kinds, another key
factor that explains much of its success. In addition to the cash
donations, big and small, that sympathizers across the world started
sending Stallman’s way in the mid-1980s, gifts of office space, computer
hardware, staff hours, and other resources from universities and
companies sustained the project materially. GNU’s leaders were careful
never to associate themselves in a direct or official way with a particular
organization apart from the Free Software Foundation. Nonetheless, they
and the community they led adeptly built enduring relationships with
independent institutions that proved to be vital for funding the project
over the long term.

In forging these relationships, GNU benefited from the fact that
entrepreneurs at companies like Cygnus had shown that it was possible
to build successful businesses around free software. The development of
commercial ventures related to free software helped GNU to position
itself as more than a charity that gave away something. Instead, it
generated products that were available at no cost and yet fed a thriving
economic ecosystem.

The final and perhaps most crucial element to GNU’s success was the
recognition by Stallman and other hackers that creating free software
required more than writing code. It also necessitated the production of
auxiliary tools, chief among them licenses like the GPL, which protected
free software against legal threats. In many respects, the GPL also
became GNU’s greatest success because the license went on to enjoy
adoption by a wide variety of developers who never associated with the
GNU project directly. The GPL even became the basis for licenses such
as those of the Creative Commons organization, which, as chapter 6
explains, extended the concepts of the GPL software license to other
realms of creative life.



The success of the GPL is also significant because it underlines the
limits of GNU zealotry during the 1980s and the first years of the 1990s.
This was another crucial, yet poorly appreciated, factor in GNU’s
success. As chapter 5 shows, portraying Stallman and his GNU stalwarts
as uncompromising ideologues who alienated many potential developers
and users was a common practice for advocates of the open source
movement in the late 1990s. During the 1980s and early 1990s, however,
when GNU was making its greatest strides in the realms of both software
development and licensing strategy, the project and its leader remained
more pragmatic than they have perhaps received credit for being.

The Free Software Foundation’s willingness to scale back the
restrictiveness of the GPL licensing terms as the license evolved prior to
the GPL 1.0 release was one reflection of this pragmatism. Another was
Stallman’s support for Microsoft and HP in their case against Apple.
Even if he staunchly disagreed with the way proprietary software
companies distributed code, he was capable of making common cause
with them when circumstances favored it. Third, GNU’s cooperation
with BSD developers, whose software did not at all meet the Free
Software Foundation’s definition of freedom because of its extremely
liberal licensing terms, showed that Stallman through the early 1990s
remained capable of compromise. He had not yet endorsed the
Manichean thinking that, in later years, constricted the free software
community’s ability to reconcile with the open source camp.

GNU did well, but the project also made mistakes. It centralized
development to too great an extent, a practice that helps explain why
certain parts of GNU’s software suite took a long time to build or never
fully materialized. In contrast to projects such as Linux, GNU took little
advantage of what today would be called a crowd-sourced approach to
software development, especially in its early years. Rather than opening
up development of all of its software to anyone who wished to
participate and welcoming even small contributions, GNU assigned
responsibility for the development of specific programs to particular
individuals, who worked on them in isolation or in small teams. For this
reason, the GNU development scene resembled what an observer such as
Raymond would call the construction of a cathedral (a slow, tightly
choreographed operation) much more than it did a bazaar (a loosely
organized space that lacked centralized control).118

The cathedral approach seemed natural in the 1980s, when
programmers adhered to the principles that Fred Brooks articulates in his



influential 1975 book The Mythical Man-Month and Other Essays on
Software Engineering.119 Brooks argues that as more and more
programmers work on a software project, bugs and communication
difficulties rise at a rate that exceeds the additional productivity that a
larger number of programmers contributes to a project. Comparing
software production to gourmet cooking, Brooks suggests that good
software development takes time and proceeds most efficiently when
programmers work independently or in small groups on discrete projects
of limited scope, which later can be integrated to produce a large system
like GNU’s software suite. Programmers came to know this precept as
Brooks’s law.

For most of GNU’s programs, Brooks’s approach to development
worked well enough. It became a problem when the individual assigned
to a particular project under GNU’s direction failed to deliver, creating a
single point of failure. This was the case for the gsh GNU shell, for
example. GNU’s Brooks-style programming strategy also arguably
bogged down Hurd development. The fixation of Hurd’s small group of
programmers on an overly complex kernel architecture might have been
redirected if a greater diversity of minds had contributed to the kernel
project and inclined it in a more pragmatic direction.

By the late 1990s, after the Linux group had shown that the bazaar
mode of development could work and widespread Internet connectivity
made it easier for developers in remote locations to collaborate, GNU
began to experiment more extensively with crowd-sourced development.
In 1997, for instance, the project announced that “volunteers with a PC
are … eagerly sought” to help test the 0.2 release of the Hurd and
identify bugs.120 GNU developers were attempting to imitate what Linux
developers had already been doing for years by that time—that is, rely
on users to debug software rather than do it themselves. Because GNU
did not adopt such development strategies earlier, it missed an
opportunity for innovation, leaving it to Torvalds and his followers to
pursue the most enduring experiment with crowd-sourced software
production over the Internet.

GNU’s second big mistake was trying to find too many shortcuts to
producing free software. Stallman and his collaborators lost valuable
time attempting to borrow code from other programmers in order to
jump-start the development of GNU programs like the compilers and the
kernel. Ultimately, after discovering that free code that met their needs



was in short supply, they ended up writing most of these programs
themselves.

It is hard to fault GNU for looking for shortcuts. One of the leading
arguments in favor of FOSS today is the utilitarian suggestion that it
saves programmers time and energy because sharing code obviates the
need for developers to reinvent the wheel whenever they begin working
on a program. In experimenting with third-party programs such as
VUCK and Gosmacs or hoping that code from the TRIX or MACH
kernels would suit their needs, Stallman and his followers were simply
trying to save valuable time and effort so that they could invest them in
other GNU endeavors.

GNU planners perhaps did not always know when to cut their losses,
however, and to begin writing their own code when it became clear that
borrowing from other programs was unlikely to work. In addition,
attempts to adapt third-party code restricted developers’ ability to design
the GNU system in the ways that they deemed best. Instead, they had to
adapt many plans to fit the requirements of software that originally had
been written elsewhere, for other purposes. That limitation constricted
GNU’s capacity to innovate in some respects.

Lastly, GNU suffered from short-sightedness regarding the importance
of personal computers and the market that grew up around them. In
1986, Stallman expressly rejected the notion that GNU should build
software that ran on microcomputers or should create a clone of an
operating system designed for them. “Why not imitate MSDOS or
CPM?” he rhetorically asked GNU supporters, referring to the leading
operating systems for PCs of the time. He answered, “They are more
widely used, true, but they are also very weak systems, designed for tiny
machines.” In lieu of catering to the microcomputer crowd, GNU
invested its resources in developing a clone of Unix that could run on the
large computers owned by universities and other institutions. Stallman
deemed this type of software “much more powerful and interesting” than
anything designed for PCs.121

This remained GNU’s attitude through 1992, when the project
cautioned users who were curious about running its software on PCs:
“We do not provide support for GNU software on microcomputers
because it is peripheral to the GNU Project.” By this time, other
developers, who had no direct affiliation with GNU, were working on
GNU software for PCs, and GNU was willing to share information about



their work, but it declined to engage in development for microcomputers
itself.122

Not until 1993 did GNU do an about-face by distributing ports of its
software for MS-DOS environments.123 That decision placed GNU
directly in the PC world, which it embraced with fervor. By this time,
however, the project was late to the party. Other free, Unix-like operating
systems (including BSD/386 and GNU/Linux distributions) that other
people had created were already running on PC hardware. Programmers
who were not affiliated with GNU could take credit for having ported
many of GNU’s programs to work on PCs.

It would be unfair to criticize Stallman for his decision in the mid-
1980s to create a free version of Unix rather than something that catered
to the PC community. At the time, Unix and institutional computers from
companies such as Digital Equipment Corporation (DEC) remained the
platforms on which the greatest innovations were taking place within
research communities. They were also the environments hackers knew
and loved. It took several years before falling prices for PC hardware, the
proliferation of affordable software programs for PCs, and the growing
use of the Internet by individuals outside the research and programming
communities brought these machines to the fore of the computer world.

Nonetheless, one wonders what would have happened if Stallman had
set out in 1984 to create a free replacement for MS-DOS rather than
Unix. The system he would have built would almost certainly not have
been as powerful, from the perspective of developers, as the one GNU
actually became. And Bill Gates’s marketing acumen may well have
thwarted its success. But if a good, free PC operating system had existed
in the 1980s and PC sellers and users had adopted it for use with their
systems, the monopolistic dominance that Microsoft later established
over much of the computer industry may well have been nipped in the
bud.

In the long run, the software that GNU developers produced helped to
form the basis for systems that eventually became a powerful alternative
to Microsoft’s products. But a key part of that story involved the
initiative not of GNU but of the young, irreverent programmer from
Finland who created the Linux kernel. The next chapter tells his story.



3 A Kernel of Hope

The Story of Linux

The Faltering Revolution: GNU and BSD in the Early
1990s

For political revolutionaries in eastern Europe and central Asia, 1991
was a good year. By the close of that year, the Soviet Union had
collapsed, leaving in its wake fifteen independent states and fledgling
democracies.

In contrast, the GNU free software revolutionaries had much less to
celebrate by the end of 1991. It appeared increasingly uncertain that the
work they had pursued over the previous seven years would bring the
FOSS revolution to fruition and make the world safe for hackers once
again.

True, GNU had accomplished much by this time. As the previous
chapter notes, the project had released feature-rich versions of almost all
of the programs required to build a free, Unix-like operating system.
People around the world were using GNU software. GNU developers
were amassing cash donations in the six-figure range and enjoying strong
support from a variety of companies and universities.

Yet GNU was stumbling in certain key respects. One of these was in
the realm of kernel development. As the previous chapter explains, GNU
programmers did not finally start writing the Hurd kernel until the
middle of 1991, and things did not go well from there. Without a kernel,
the GNU system that Stallman had envisioned in 1983 remained akin to
a mansion without a roof or a jet fighter without an engine: it was
sophisticated and complete in all respects except for the one that
mattered most.



Kernel problems were only one of the serious challenges GNU faced
in the early 1990s. The others (also detailed in the previous chapter)
involved GNU’s failure to take PC hardware and software seriously until
well after they had assumed an outsize role in the computer market. The
centralized development approach that Stallman and his collaborators
clung to also was a problem. The latter issue proved particularly
detrimental for GNU because it meant that, for programmers, writing
GNU code entailed basically the same type of work as coding for a
commercial software company. From a developer’s standpoint, there was
nothing different about the way GNU created software that set the
project apart from other major development initiatives. The GNU code
was free, and that mattered to a lot of hackers. But coding for GNU was
no more fun than coding for any other project. That fact helped to create
an opening for Linux, which offered developers a fundamentally new
model of collaboration, free of centralized hierarchies and lethargic
release schedules.

As a result of these setbacks, by 1993 people began asking (to quote
the title of a Wired magazine article) “Is Stallman Stalled?”1 GNU had
grown “bogged down,” observers said, and GNU developers were
sensing that their “window of opportunity to introduce a new operating
system” was quickly passing by, if it had not already disappeared—as
Robert Chassell, one of the founders of the Free Software Foundation,
put it at the time.2

Meanwhile, hackers had reason to doubt the prospects of the free
software community’s other great hope for building a free
implementation of Unix. The BSD NET 2 operating system from
Berkeley was released in 1991, as the previous chapter explains, and
several derivative ports for PCs appeared during the two years that
followed.3 For a time, BSD seemed promising to hackers as an
alternative to AT&T Unix. Even the GNU programmers, despite viewing
the BSD licensing terms as insufficient for building a free operating
system, saw enough value in NET 2 to start distributing copies of it by
the summer of 1992 as part of the Free Software Foundation’s software-
distribution service.4

Yet the early momentum that the BSD derivatives enjoyed did not
endure. For two main reasons, none of the BSD-based operating systems
proved to be a good substitute for the type of system that hackers like
Stallman envisioned. The first problem stemmed from the licensing
terms under which the BSD software was released. As noted above, the



Berkeley license that governed the BSD derivatives did not require
people who distributed the software to provide source code with it. This
meant that the BSD licenses failed to protect the hacker imperatives of
transparency and sharing.

The second, more significant issue affecting the BSD derivatives
involved legal troubles. In January 1992, a company called Berkeley
Software Design, Inc. (BSDI) began selling a commercially supported
version of the BSD NET 2 operating system with a price tag of $995—
which, although steep for an individual consumer, was 99 percent less
expensive than AT&T’s commercial Unix, as BSDI’s advertisements
noted prominently.5 Soon after the platform hit the market, however,
Unix Systems Labs, which owned the Unix trademark at the time, sued
BSDI, alleging that the company infringed its trademark by describing
BSD-based software as a form of Unix. It also charged that NET 2
contained copyrighted Unix code.

The case was settled out of court the next year. But the Regents of the
University of California then countersued Unix Systems Labs. The
university contended that the company had not properly acknowledged
the BSD code that formed part of the System V version of Unix, as was
required by the license agreement under which the University of
California had released BSD.

The parties moved toward settlement in June 1993, when Novell
acquired Unix Systems Labs. Novell’s CEO at the time, Ray Noorda,
began talks with Berkeley at the end of the summer, and the parties
reached a settlement the following February.6 As a result of the lawsuit,
only three files were removed from the eighteen thousand that comprised
the NET 2 code, and minor changes were made to some others. The legal
challenges that BSD faced had no meaningful effect on the ability of
hackers or anyone else to use and redistribute BSD-based systems freely.

Yet the challenges did serious damage. During the nearly two years
between the start of the Unix Systems Labs lawsuit and the final
settlement, uncertainty over whether users of BSD-based operating
systems might be compelled to purchase an expensive license to run
versions of BSD stymied adoption of the systems. Also problematic was
the settlement’s requirement that BSD developers rewrite some minor
parts of the BSD code that the agreement deemed to be in violation of
the Unix Systems Labs copyright. The changes were not extensive and
entailed relatively little effort. But they created a distraction for BSD



programmers at a crucial moment in the system’s development, when
they might otherwise have been able to focus on implementing novel
features instead of rewriting functions that already existed.7

The free versions of BSD did not go extinct in the early 1990s, and
many survive into the present, as the next chapter notes. However,
Berkeley’s decision to disband the Computer Science Research Group,
which had been the center for BSD development, following the release
of the final version of BSD in June 1995 meant that the BSD community
lost its central reference point. The various BSD derivatives that
remained diverged in certain respects from one another. It is undeniable
that the BSD legacy remains central to the FOSS world today: as many
as half of the utilities in most GNU/Linux distributions descend from
BSD code.8 Nonetheless, because of both the Unix Systems Labs lawsuit
and the BSD licensing terms, BSD-based operating systems never
evolved into a satisfying solution for most hackers seeking a Unix-like
operating system that promised to be free as in freedom.

The Man behind the Kernel

While GNU listed and BSD NET 2 faced a stillbirth, a new generation of
hackers dreamed of an operating system that would combine the allure of
a free version of Unix with the accessibility of PC hardware. It took one
of the generation’s own members, Linus Torvalds, to deliver on that
vision.

In many ways, it was no surprise that Torvalds ended up producing the
kernel that eluded teams of seasoned Unix hackers at both Berkeley and
GNU. Geographically as well as technologically, Torvalds grew up in a
very different world than that of the generation of programmers who
preceded him. His background helped him to think in new ways about
old programming problems.

One important element of Torvalds’s experience was that, in contrast
to programmers like Stallman or the BSD developers at Berkeley, he had



only minimal exposure to advanced academic computer science research
when he began working on the Linux kernel. He eventually completed a
master’s degree in computer science but not until 1996. When he
introduced Linux to the world in the summer of 1991, he was not even
close to finishing his undergraduate degree.

The difference in this regard between Torvalds and Stallman, who had
nearly a decade of experience under his belt working as a programmer at
one of the world’s leading technical universities when he founded GNU,
is striking. It also suggests part of the reason that Torvalds readily
embraced a decentralized, Internet-based approach for developing Linux
—even though such a strategy would have seemed anathema to most
professional programmers at the time, weaned as they were on Brooks’s
law.

Another key distinction for Torvalds was that most of his early
experiences with computers involved PCs. As a teenager, Torvalds used
a Commodore VIC-20 machine, predecessor to the better known
Commodore 64, that he inherited from his grandfather.9 Around his
eighteenth birthday, using money he earned cleaning city parks in
Helsinki, he replaced the Commodore with a QL computer from a British
company named Sinclair.10 Torvalds’s third computer, which he
purchased as an undergraduate student on the eve of beginning the
programming venture that resulted in Linux, was a PC with an Intel 386
processor.11 These machines did not look or work anything like the
powerful, expensive PDP and VAX computers that the Unix hackers of
old had learned to program on—and that developers like Stallman
continued to regard as the only hardware platforms worthy of hosting an
operating system as sophisticated as GNU’s.

Torvalds did not encounter a large computer running Unix until the
fall of 1990, when the University of Helsinki, where he was a student,
acquired a MicroVAX computer that sported Ultrix, Digital Equipment
Corporation’s implementation of Unix.12 By then, the young hacker had
acquainted himself with operating systems that mimicked Unix but ran
on the PC hardware with which he had grown up. To Torvalds, building a
Unix-like operating system for the PC seemed like the obvious thing to
do from the start, a characteristic that distinguished him in a crucial way
from the hackers of Stallman’s generation.

It also mattered that Torvalds lived in Finland, far from the major
centers of computer science research at the time. Torvalds’s hometown,



Helsinki, had a university with a strong computer science department
and as much Internet connectivity as most other major European cities of
the time. Indeed, Finland was an early hub of computer research in
northern Europe.13 Yet because the country’s computer industry
remained minuscule compared to that of larger nations, Torvalds often
had to order computer parts and programs from abroad, especially during
the years when his main computer was the British Sinclair. International
snail-mail delivery of such items could take months. That was perhaps
one factor that attracted Torvalds to distributing software via the Internet,
which became crucial to the way he developed and shared Linux. The
fact that he could meet relatively few computer science experts in
Helsinki meant that the Internet also served as his lifeline for
communicating with developers and exchanging ideas, as he did when
announcing Linux over Usenet. In these respects, Torvalds’s experience
was distinct from that of the GNU and BSD programmers operating out
of Cambridge and Berkeley, where they were at the centers of their
respective hacker universes. In contrast, Torvalds was in a remote galaxy.

Just as Torvalds grew up on the geographic margins of the hacker
community that he later helped to lead, he also belonged, in certain
ways, to a marginal community within his own society. He was born into
Finland’s tiny Swedish-speaking minority, which constituted around 6
percent of the country’s population at the time of his birth. Swedish-
speaking Finns have long lived happily among their neighbors, and there
is no evidence that Torvalds’s linguistic background proved a major
obstacle for him. (He also became fluent in English, the lingua franca of
programmers on the Internet, at an early age.)14 On the contrary, it
placed him in a community that was at the forefront of the computing
industry in Finland, where a majority of managers at companies such as
IBM Finland belonged to the Swedish-speaking minority.15

Still, Torvalds’s experience living outside the mainstream Finnish
population may have helped him to think differently about projects like
Linux. Torvalds lived on the periphery of the dominant linguistic
community in his country, just as the kernel he developed existed on the
margins of the mainstream software culture of the early 1990s, defying
the norms of both proprietary and free software programmers alike.

Finally, Torvalds has stated that his family had an important effect on
some of the decisions he later made regarding Linux. “I undoubtedly
would have approached the whole no-money thing a lot differently if I
had not been brought up under the influence of a diehard academic



grandfather and a diehard communist father,” he wrote in his 2001
autobiography to explain why he was committed to releasing Linux free
of charge.16 His grandfather, one of Finland’s first professional
statisticians, died in 1983, when Torvalds was in his early teens. And
Torvalds’s father eventually moderated his hardline communist beliefs.
Nonetheless, these two patriarchs imbued Torvalds at a young age with
an appreciation for the value of research and exploration and radical
notions of sharing and anticapitalist mores, and they shaped how
Torvalds thought about the best ways to design and distribute software.

All of these experiences help to explain why Torvalds produced a
novel operating system kernel and pioneered a radically new mode of
software development that varied in crucial ways from what older
hackers in the United States were building. Yet the specific event that set
him on the path toward developing Linux was his purchase in the
summer of 1990 of the book Operating Systems: Design and
Implementation, which Andrew S. Tanenbaum, an American computer
science professor teaching in the Netherlands, had published in 1987.17

According to Torvalds, the book, which exposed him to “the philosophy
behind Unix and what the powerful, clean, beautiful operating system
would be capable of doing,” changed his life and “launched me to new
heights.”18

“As I read and started to understand Unix,” he added, “I got a big
enthusiastic jolt. Frankly, it’s never subsided.”19

Why Linux?

Tanenbaum’s book was not about AT&T’s version of Unix, though. It
focused on a Unix-like operating system called Minix, which Tanenbaum
created after receiving a Ph.D. from Berkeley and working for some time
with the Unix group at Bell Labs.

According to Tanenbaum, his chief goal in writing Minix, which he
coded from scratch entirely on his own, was to provide his computer



science students with a Unix-like operating system whose source code
was much less expensive than Unix’s code. But it gained a broader
following. Within a couple of months of Tanenbaum’s release of the first
version of Minix in 1987, the system “became something of a cult item,
with its own USENET newsgroup, comp.os.minix, with 40,000
subscribers,” he wrote. “Many people added new utility programs and
improved the kernel in numerous ways.”20

Tanenbaum, however, was reluctant to extend Minix—which was so-
named because it was a miniature version of Unix—beyond the basic
teaching tool he had designed it to be. In his recollection, “I didn’t want
it to get so complicated that it would become useless for my purpose—
namely, teaching it to students.” He added that there was every reason to
believe that when Minix appeared, GNU and BSD were on the verge of
providing a free, production-quality Unix implementation that would far
surpass anything Tanenbaum could develop on his own.21

From the perspective of someone like Torvalds, however, who began
using Minix shortly after acquiring an Intel-based PC in early 1991, the
chief importance of Tanenbaum’s operating system was not its use for
teaching.22 It was that Minix was one of the first Unix-like operating
systems that had been designed to run on microcomputer hardware rather
than the PDP and VAX machines on which GNU and BSD development
centered. In addition, although Minix cost some money (which irked
Torvalds, as noted below), it was a teaching tool rather than an explicitly
commercial product. That set it apart from other Unix-like operating
systems for microcomputers, such as Coherent and Xenix.

Yet for Torvalds, Minix was not at all an adequate PC-based Unix
implementation. In his view, Tanenbaum’s lack of interest in extending
the platform to include more features represented a major shortcoming.
Torvalds was particularly disappointed that Minix did not work well on
his PC, which had an Intel 386 processor. Minix ran on this type of
computer, but because Tanenbaum had designed the operating system for
a different family of microcomputers, it supported 386 chips only with
the assistance of a special patch written by Bruce Evans. The patch was
difficult to install, and after it was applied, it left much to be desired for
someone like Torvalds who wanted to get the most out of a Unix-like
environment on a 386 PC.

Minix also lacked terminal emulation, a feature that made it possible
to log in to remote computers. That deficiency prevented Torvalds from



using Minix on his home PC to connect to the Unix computer at the
university where he was a student.23 Minix “had been crippled on
purpose, in bad ways,” because Tanenbaum “wanted to keep the
operating system as a teaching aid,” according to Torvalds.24

Another shortcoming of Minix, in Torvalds’s view, was that it used a
microkernel. As the previous chapter noted, Torvalds has strongly
criticized microkernel architectures on technical grounds. Although his
opinions on that topic may not have been fully developed before he
started writing his own kernel, in early 1992 Torvalds felt strongly
enough that Minix was poorly designed to complain to Tanenbaum that it
was filled with “brain-damages,” which derived from its microkernel
architecture.25 Torvalds also criticized Minix for its lack of portability
and compliance with the POSIX standards of Unix-like operating system
design.26

But the technical features that Minix lacked were only part of its
problem for Torvalds. The licensing parameters that Tanenbaum
imposed, particularly those that required payment of a fee to run Minix,
seemed even worse. “Look at who makes money off minix, and who
gives linux out for free,” Torvalds seethed in a January 1992 Usenet post,
in which he excoriated Tanenbaum for charging for Minix: “Then talk
about hobbies. Make minix freely available, and one of my biggest
gripes with it will disappear.”27 Torvalds found the cost of Minix—
which amounted to $169 “plus conversion factor, plus whatever”
someone in Finland might have to pay to acquire a Minix license
—“outrageous at the time,” he wrote in 2001, adding, “frankly, I still
do.”28 He told me in 2016 that “free as in ‘gratis’ was actually an earlier
concern than the whole ‘free as in freedom’” consideration in motivating
his decision to write Linux.29

Tanenbaum took offense at the criticism of Minix’s cost, particularly
because he thought he was doing cash-strapped students like Torvalds a
favor by releasing Minix as a low-cost way to study Unix system design.
In the same Usenet discussion mentioned above, Tanenbaum told
Torvalds that, in writing Minix, “an explicit design goal was to make it
run on cheap hardware so students could afford it.” Referring to the
GNU project, which was producing free software that for the most part
ran only on very expensive computers designed for purchase by
institutions, Tanenbaum sarcastically added, “Making software free, but



only for folks with enough money to buy first class hardware, is an
interesting concept.”30

Tanenbaum has stuck by this argument. In an essay on Minix’s history
that he posted on the Internet in the early 2000s, he noted that Minix was
never “free software in the sense of ‘free beer’” (meaning that it was
never free of cost) but that its source code was always freely available. In
addition, the cost of a Minix license was a tiny fraction of what users
paid for a commercial version of Unix. “By 1987,” he explained, “a
university educational license for UNIX cost $300, a commercial license
for a university cost $28,000, and a commercial license for a company
cost a lot more. For the first time, MINIX brought the cost of ‘UNIX-
like’ source code down to something a student could afford.”31

Yet Torvalds’s abiding irritation with the fact that Minix and similar
operating systems cost anything—even if Minix was much more
affordable than the alternatives—reveals much about how thinking about
money affected the nascent Linux community. Because Linux and the
GNU software that accompanied it in the late 1990s became the
centerpiece of a flourishing commercial ecosystem with Torvalds’s
blessing, it has been easy for FOSS users to forget how opposed Torvalds
was to the notion of making money off of Linux early on and how
important that factor was in pushing him to start writing the kernel. In
fact, Torvalds’s animosity toward the prospect of profiting from software
represented a crucial dimension of why he chose to write Linux, and it
made his work different from that of Stallman and GNU.

Torvalds’s choices are not fully explained by any of the other factors
that influenced him. For one, there is little evidence that the philosophy
of the Free Software Foundation had much effect on Torvalds when he
crafted Linux. Torvalds attended a speech that Stallman gave “probably
in 1991 or so,” in Torvalds’s recollection, at the Helsinki University of
Technology, which introduced him to the Free Software Foundation’s
ideology.32 That may have been part of the reason that he complained in
October 1991 about Unix-like operating systems that “come with no
source” and as a result “are ideal for actually using your computer, but if
you want to learn how they work, you are f--ked.”33 That remark made it
clear that Torvalds cared about keeping source code available for the
utilitarian purpose of ensuring that other programmers could understand
how it operated.



That sentiment, however, was different from sharing source code as a
matter of moral principle, as Stallman did. Torvalds wrote that in 1991
he “wasn’t much aware of the sociopolitical issues that were—and are—
so dear to [Stallman]. I was not really all that aware of the Free Software
Foundation. … judging from the fact that I don’t remember much about
the talk back in 1991, it probably didn’t make a huge impact on my life
at that point. I was interested in the technology, not the politics.”34

The deficiencies that Torvalds perceived in Minix also do not account,
on their own, for his decision to produce his own kernel. If those had
been the only issue at play, Torvalds could simply have written a
terminal emulator for Minix, tweak the Minix code so it would run better
on Intel 386 hardware, and left it at that. Torvalds may have disagreed
with the microkernel design of Minix, but that did not significantly affect
his ability to use the operating system.

Neither was the joy of coding the main factor in Torvalds’s decision to
write Linux. It is true that he described programming in his
autobiography—which was titled Just for Fun, implying that having fun
was a large part of the reason for writing Linux—as “the most interesting
thing in the world. It’s a game much more involved than chess, a game
where you can make up your own rules and where the end result is
whatever you can make of it.”35 Depicting oneself as a developer who
was passionate about coding for coding’s sake might seem to be a mere
public relations move. But there is good reason to believe that Torvalds
was expressing genuine sentiment through such statements. The time and
effort he invested into writing the first versions of Linux were
considerable, and it is difficult to imagine a rationale human being
undertaking such an endeavor, especially with no strong financial
incentive, unless that person truly and deeply enjoyed the art of
programming.

Yet personal amusement does not explain why Torvalds chose to write
Linux or give it away for free to other people. If he just wanted to have
fun programming, he could have written plenty of other programs rather
than one that duplicated much of the functionality already available to
him from Minix. And if Linux was purely about having fun for Torvalds,
there was no reason for him to invite others to contribute to his kernel,
which reduced the amount of fun-inducing programming he had to do for
himself.



So if free software ideology, shortcomings in Minix, and a desire to
have fun do not fully explain why Torvalds wrote Linux, what does? The
answer centers on money. Torvalds wanted a Unix-like kernel that was
totally free of cost. As noted above, his chief complaint about
Tanenbaum’s Minix system in the early 1990s was its price tag. That
issue remained a major point of contention for Torvalds at least as late as
the 2001 publication of his autobiography—even though, by that time, he
was a millionaire with plenty of cash at his disposal. As recently as 2013,
Torvalds declared, with his characteristic humor, that “software is like
sex: it’s better when it’s free.”36

To note that the most significant motivation for Torvalds in writing
Linux was to obtain an operating system that cost no money is not to
dismiss the authenticity of his intentions or the validity of his work. On
the contrary, as Tanenbaum himself suggested when contending that
GNU’s designers failed to give enough weight to hardware cost when
choosing which platforms to support, there was plenty of good reason in
the early 1990s to design a system that cost absolutely no money and ran
on affordable PCs.

Yet the opposition to profit does mean that Torvalds thought very
differently from the GNU developers in one key respect and that his
work appealed primarily to a different set of users. Although the GNU
project never required users to pay for its software if they copied it
among themselves or downloaded it from the Internet, the project
charged significant fees—up to $5,000—for official distributions of the
code on disk as a way to support itself, as the previous chapter notes.
GNU was not concerned with making software free of cost for anyone,
even those without the ability to download or copy code. If it had been,
the project would likely have found a way to distribute its software on
disk for free (as the organizers of the Ubuntu GNU/Linux distribution
did in the 2000s via the ShipIt program, for instance).

For all of these reasons, the fact that no fully functional Unix-like
operating system was available from GNU or elsewhere free of cost in
1991 gives the key to Torvalds’s decision to write Linux. It also explains
why his August 1991 Usenet post announcing Linux to the Minix
community, which is quoted below, notes prominently that the operating
system was “free” (with the implication that it cost no money) yet makes
no mention of whether Torvalds intended to allow other people to view
and modify his source code freely—which underscores how unimportant
the Free Software Foundation’s philosophical message was to



Torvalds.37 And it accounts for his decision, detailed below, to release
the first versions of Linux under a license that prevented anyone from
using the code to make money.38 Only later did Torvalds’s thinking
about the relationship between software and money evolve in a way that
led him to adopt the GPL license for the kernel, making it possible for
Linux and GNU software to join forces to advance the FOSS revolution
—and for people to make money using Linux code.

From Minix to Linux

Although Torvalds’s greatest complaint about Minix was its cost, his
desire to shore up some of what he viewed as the operating system’s
technical deficiencies sparked the beginnings of Linux—even though
designing a complete kernel was not on his agenda when he first went to
work.

The first release of the Linux kernel started as an effort by Torvalds to
write a terminal emulator for Minix. As noted above, the absence of this
type of program in Tanenbaum’s operating system prevented Torvalds
from using Minix on his home computer to connect remotely to his
university’s Unix server. To produce his own terminal emulator, Torvalds
had to delve into the lower-level functionality of the 386 computer chip.
That endeavor entailed tedious work. But for Torvalds it was a bonus
because it meant that creating the terminal emulator would be a way to
explore the intricacies of the computer hardware he owned. Toward that
end, he wrote the emulator in assembly language, which was much more
complex than a higher-level programming language, “just to learn about
the CPU.”39

Torvalds’s terminal emulator for Minix was complete by the spring of
1991, and he could use it to log into his university’s Unix system. Yet he
was not satisfied. The emulator in its first iteration lacked disk and file
system drivers, and without them, it was impossible to upload or



download files from the remote server. So Torvalds went to work adding
those features to his program.

The ground that Torvalds needed to cover to extend his terminal
emulator into a complete operating-system kernel was narrowing
because reading and writing to disks is one of the core responsibilities of
a kernel. By the time he started work on the disk and file system drivers,
“it was clear the project was on its way to becoming an operating
system” rather than just a terminal emulator, Torvalds recalled.40

Perhaps because he trod a path similar to Stallman’s, Torvalds referred
to his project early on as the “gnu-emacs of terminal emulation
programs.”41 As the previous chapter notes, Stallman’s endeavor to build
the GNU operating system started with the GNU Emacs text editor, a far
cry from a complete operating system. For Stallman and GNU, Emacs
was hardly the most essential part of the system, nor was it the most
difficult to write. But it was the seed from which the rest of the GNU
system sprang, at least conceptually. Torvalds’s Minix terminal emulator,
which was a similarly nonessential part of the kernel he eventually
produced, did the same thing for Linux.

In descriptions of Linux’s early history—or what could be called its
prehistory because this was the period before Torvalds had fully
conceived the kernel or even given it a name—Torvalds is unsure exactly
when he made the choice to extend the terminal emulator into a kernel.
He has written only that this happened sometime around April 1991.42

Perhaps the decision evolved too gradually to associate with a particular
date, or maybe Torvalds never consciously made it until after he was
already well on his way to writing a kernel.43

What is certain is that Torvalds had a kernel on the brain by July 1991.
In that month, he posted to the comp.os.minix Usenet newsgroup
requesting links to a current version of the POSIX standards definition
from the IEEE (Institute of Electrical and Electronic Engineers)
Computer Society.44 POSIX, an acronym for Portable Operating System
Interface (with an X added in traditional Unix fashion), specifies how a
Unix-like operating system should be designed to be feasible for porting
to different hardware platforms. The standard also ensures compatibility
with any software applications written for POSIX compliance. By asking
about the POSIX standards, Torvalds made clear that he was at least
considering writing a kernel that would serve not only his personal



purposes but also those of others interested in a new Unix-like operating
system.

No one took serious notice of Torvalds’s request at the time, and no
Usenet readers responded with tips about obtaining the POSIX standards
definition. As a result, Torvalds mined the information he sought from
manuals at his university that described Sun’s implementation of Unix.
He also referred to Tanenbaum’s book about operating-system design.
Neither source provided the complete reference on POSIX standards that
Torvalds sought, but they sufficed to allow him to continue to work on
what was becoming the Linux kernel.45

Progress was slow at first, and this was not only because Torvalds
lacked access to full POSIX documentation or prior experience
programming something as complex as a kernel. His enthusiasm made
up for those obstacles, but it did not make it any easier to contend with
the complexities of the Intel 386 computer-chip architecture. Nor did it
resolve the difficulty of debugging a kernel system during the early
stages of development, when the code remains so incomplete that it is
not possible to take advantage of sophisticated debugging tools, which
help programmers identify the parts of code that cause a program to
crash.

Asked in 1992 how he debugged early versions of the kernel, Torvalds
wrote that what made the work so tedious was that he could not “even
think about debuggers” at the time because none of those available to
him worked well with Intel 386 hardware.46 His code remained so basic
that even printing error messages on the screen when a crash occurred
was not possible. Lacking sophisticated debugging resources, Torvalds
explained, he adopted an approach that was pragmatic yet crude from the
perspective of programmers like those at GNU, who wrote elegant,
sophisticated code and had advanced debugging software at their
disposal:

What I used was a simple killing-loop: I put in statements like die: jmp die at
strategic places. If it locked up, you were ok; if it rebooted, you knew at least it
happened before the die-loop.47

In less technical terms, Torvalds meant that he inserted snippets of
code at various places in his kernel program that he called die-loops,
which caused the kernel to cease executing and freeze. If the system
rebooted—as it did whenever the kernel crashed due to a code flaw—he
would know that the issue had occurred at a point in the program prior to



where he inserted the die-loop. If the system merely froze without
rebooting, Torvalds knew that his program had run successfully up to the
point in the code where the die-loop appeared. This approach to
debugging was tedious and primitive, but it worked.

Progress became smoother after Torvalds had implemented enough of
the kernel to “have a minimal system up [that] can use the screen for
output.” Yet even then he had to resort at times to the ugly die-loop
approach described above. “All in all, it took about 2 months for me to
get all the 386 things pretty well sorted out,” to the point necessary to
use more sophisticated debugging tools, Torvalds wrote in an early
account of Linux’s history.48

With the kernel code stable enough to accommodate more complicated
debugging strategies, Torvalds implemented task switching, a key
component of a Unix-like kernel, which allows users to switch between
different applications. He next wrote keyboard and serial drivers so that
his kernel could communicate with the input devices connected to the
computer. With those components in place, Torvalds finally began to
enjoy “plain sailing: hairy coding still, but I had some devices, and
debugging was easier. I started using C at this stage” rather than
assembly language, a change that “certainly spe[d] up development. This
is also when I start[ed] to get serious about my megalomaniac ideas to
make ‘a better minix tha[n] minix.’”49

Lack of reliable documentation on the finer points of Intel’s 386
hardware remained a persistent problem for Torvalds. But he eventually
overcame the challenge and completed a file system, the last part of the
code that was required to have a basic equivalent of the Unix kernel.
Torvalds’s kernel at that point “wasn’t pretty, it had no floppy driver, and
it couldn’t do much of anything. I don’t think anybody ever compiled
that version,” he recalled in 1992.50 Nonetheless, “by then I was hooked,
and didn’t want to stop until I could chuck out minix” completely,
replacing it with the kernel he had built on his own.51

It was at this point, in August 1991, that Torvalds announced his
kernel project to the world in a Usenet post on comp.os.minix that has
since become something of a legend among Linux acolytes. Confirming
the suspicions of users who had read his query about POSIX
documentation a month earlier, Torvalds opened a Usenet thread on
August 25, 1991, titled “What would you like to see most in minix?” It
began:



Hello everybody out there using minix—

I’m doing a (free) operating system (just a hobby, won’t be big and professional like
gnu) for 386(486) AT clones. This has been brewing since april, and is starting to
get ready. I’d like any feedback on things people like/dislike in minix, as my OS
resembles it somewhat (same physical layout of the file-system (due to practical
reasons) among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work. This
implies that I’ll get something practical within a few months, and I’d like to know
what features most people would want. Any suggestions are welcome, but I won’t
promise I’ll implement them:-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes—it’s free of any minix code, and it has a multi-threaded fs. It is NOT
[portable] (uses 386 task switching etc), and it probably never will support anything
other than AT-harddisks, as that’s all I have:-(. 52

At the time he made his efforts public, Torvalds had not yet given the
kernel a name, asked other people to help him with development, or even
shared his code publicly. (That did not happen until September 17, 1991,
as the next section explains.) Yet his plan to build “a better Minix than
Minix”—an important development because his attitude had originally
been that his kernel “didn’t have to do more than Minix”—was clear in
his request for suggestions from the Minix community regarding features
that were absent in Tanenbaum’s operating system, but which they would
like to see implemented.53 That made Torvalds’s kernel compelling. It
encouraged contributions to Linux from other programmers, whose ranks
steadily grew, along with the Linux code base.

Before examining how Linux evolved after other programmers began
collaborating with Torvalds, it is worth reflecting on the significance of
his achievement in writing an early version of the kernel without outside
assistance. Some members of the FOSS community, such as those who
have called Torvalds a “god,” have perhaps overstated how heroic his
single-handed kernel-development effort was.54 As Tanenbaum noted in
his essay on Minix history, Torvalds was hardly the first programmer to
write a Unix-like kernel with minimal assistance from other people. On
the contrary, by Tanenbaum’s count, “five people or small teams had
independently implemented the UNIX kernel or something
approximating it” before Torvalds began his work.55 Moreover, as
complex as a monolithic kernel is, the amount of coding involved in
writing one is relatively small compared to the work required to produce



all of the other programs that comprise a full operating system. Even by
the late 1990s, when Linux had grown into a mature, feature-rich kernel
that contained many times as much code as the primitive version
Torvalds completed on his own in 1991, Linux accounted for only about
3 percent of the total code in a GNU/Linux operating system. GNU
utilities and programs constituted about ten times as much.56

Yet Torvalds’s ability to transform his Minix terminal emulator into a
complete kernel in a matter of months was no mean feat. Torvalds was
not the first programmer to write a kernel single-handedly, but his
predecessors in that role had all been professional developers or
computer science professors. In contrast, Torvalds had barely a year of
college education behind him when Linux debuted. In addition,
Torvalds’s predecessors had access to many resources that he did not,
including powerful hardware, sophisticated debugging tools, and on-site
colleagues with whom they could share ideas. In contrast, Torvalds
worked from a low-cost 386 computer in his Helsinki apartment, using
only the coding tools available to him on Minix—which included many
vital GNU utilities but not the extensive software resources of an
institution such as Bell Labs, MIT, or Berkeley. In this respect,
Torvalds’s ability to produce a working kernel was truly remarkable—so
much so that, as the next chapter explains, Microsoft-funded researchers
in the early 2000s accused Torvalds of plagiarizing the Linux code by
claiming that it was simply impossible for him to have produced all of it
himself.

Linux Grows Up

On September 17, 1991, about three weeks after Torvalds announced his
kernel project on Usenet, the first version of the software, 0.01, became
publicly available. The release arrived thanks to Ari Lemke, an
administrator at the Helsinki University of Technology, who posted the



Linux source code to the university’s FTP server, where anyone could
download it freely.57

In a decision that exerted a much more enduring effect than anything
in the actual Linux 0.01 code, Lemke uploaded the source into a
directory named put/OS/Linux on the FTP server he administered. That
proved to be important because users came to know the kernel by the
name Linux, which was not the one Torvalds initially intended to give his
software publicly. Although Torvalds had stored the kernel code on his
own computer in a directory called linux, he planned to release it to the
world under the more jocular and modest name Freax—a combination of
the words free and freaks that ended in the letter X, like the names of
most other Unix-like operating systems. “I didn’t want to ever release it
under the name Linux because it was too egotistical,” Torvalds wrote
after the fact. Yet Linux was the name that stuck.58

Torvalds did not publicly announce the availability of Linux 0.01
when it appeared on Lemke’s server in September. “Instead, I just
informed a handful of people by private email, probably between five
and ten people in all,” he wrote in his autobiography.59 Meanwhile, he
worked on transforming Linux into a standalone kernel that was capable
of running a complete development environment. He originally used
Minix as the platform on which to write the Linux code, but after
destroying his Minix installation by accidentally writing data to the
device /dev/hda1 (his computer’s hard disk) instead of /dev/tty1 (a
terminal), he decided to discard Minix and never look back.60

The work toward a standalone kernel was not quite complete when, on
October 5, 1991, Torvalds announced the release of Linux 0.02 in his
next major Usenet post, this one written with strong conviction and
purpose—not to mention Torvalds’s characteristically impressive
command of the English language. It began as follows:

Do you pine for the nice days of minix-1.1, when men were men and wrote their
own device drivers? Are you without a nice project and just dying to cut your teeth
on a OS you can try to modify for your needs? Are you finding it frustrating when
everything works on minix? No more all-nighters to get a nifty program working?
Then this post might be just for you:-)61

The post went on to describe the technical features and limitations of
Torvalds’s kernel, including the requirement that users have a Minix
system because Linux was still not yet a “standalone” kernel capable of
running on its own. Linux also worked only with certain types of hard



disk, which not all potential users possessed. Lastly, Torvalds warned,
“You also need to be something of a hacker to set it up,” emphasizing
that Linux was not at all ready for the masses. If users sought a stable
Unix-like operating system for 386 computers, he wrote, they should
stick with Evans’s Minix port.

Torvalds also thought it necessary, when announcing Linux 0.02, to
justify his project. Previously, when Linux remained only a personal
endeavor, he had not bothered explaining to other people why he thought
the kernel was worth developing. In the October 1991 post, however, he
declared:

I can (well, almost) hear you asking yourselves “why?” Hurd will be out in a year
(or two, or next month, who knows), and I’ve already got minix. [Linux] is a
program for hackers by a hacker. I’ve enjouyed [sic] doing it, and somebody might
enjoy looking at it and even modifying it for their own needs. It is still small enough
to understand, use and modify, and I’m looking forward to any comments you might
have.

In Torvalds’s own words, the fact that the Hurd was not yet ready to use
—and as he joked in another Usenet post a couple of months later, might
not appear for “the next century or so:)”—was one justification for
writing Linux that would make it appealing to other programmers.62

However, the most important part of Torvalds’s pitch was that his
kernel was written “for hackers by a hacker.” He implied in the post that
this characteristic was the chief distinction between Linux and Minix. He
did not elaborate on exactly what made a hacker’s kernel different from
the alternatives. But his thinking on this point came through clearly
enough in other parts of the Usenet post where he emphasized that Linux
was free to use and its source code was fully redistributable. The post did
not mention what Torvalds believed to be the technical deficiencies in
Minix as a reason for other programmers to consider using Linux. The
message was instead about offering the hacker community something it
lacked.

In addition to explaining why Linux might appeal to other hackers,
Torvalds used the 0.02 release announcement to solicit their feedback
and help for developing the kernel further. “I’m also interested in hearing
from anybody who has written any of the utilities/library functions for
minix,” he wrote. “If your efforts are freely distributable (under
copyright or even public domain), I’d like to hear from you, so I can add
them to the system.”63



On this occasion (unlike when Torvalds had requested information
about POSIX standards the previous summer), helpful responses proved
forthcoming. At first, hackers wrote to Torvalds to offer only “maybe
one-line bug fixes.”64 By November 1991, however, many people were
emailing him to help develop Linux. These included programmers who
sent code to implement new features in the kernel and others who merely
troubleshot what Torvalds had written himself. “Each day, the
community of Linux users expanded, and I was receiving email from
places that I’d dreamed about visiting, like Australia and the United
States,” Torvalds wrote of the period in late 1991.65

Collaborators and supporters whom Torvalds never met in person
were also offering cash gifts. Such donations were in step with the
tradition of the PC shareware culture of the time, in which it was
common practice to send the author of a software program who gave
away his work for free something on the order of $10 or its equivalent as
a thank-you.66

Torvalds, however, responded to the offers of cash by asking for
postcards instead.67 “I didn’t want the money for a variety of reasons,”
he wrote in his autobiography. One was that receiving praise and feeling
that he was collaborating with a community of researchers—even though
he had never held any sort of title or formal status as a researcher himself
—was more important to him than material reward. “When I originally
posted Linux, I felt I was following in the footsteps of centuries of
scientists and other academics who built their work on the foundations of
others—on the shoulders of giants, in the words of Sir Isaac Newton,”
Torvalds wrote in 2001. “Not only was I sharing my work so that others
could find it useful, I also wanted feedback (okay, and praise).”68

Torvalds also explained his aversion to cash donations by noting, “I
suppose I would have approached it all differently if I hadn’t been raised
in Finland, where anyone exhibiting the slightest sign of greediness is
viewed with suspicion, if not envy.”69

Whatever the root of his desire to avoid financial compensation for his
work on Linux, the decision underlined how committed Torvalds was to
keeping Linux a completely free operating system, distinguishing it from
Minix and most other Unix-like platforms of the time. Even voluntary
cash donations, in his mind, would have sullied his project.

The enthusiastic responses that Torvalds received for his work on
Linux were not universal. The platform had its critics, chief among them



Tanenbaum, the computer science professor whose work on Minix had
been an important stepping stone for Torvalds in writing his kernel. On
January 29, 1992, Tanenbaum publicly berated Linux as an “obsolete”
kernel, primarily because of its monolithic design. Chiding Torvalds for
being a lowly student rather than a credentialed computer science
researcher like himself, Tanenbaum wrote, “among the people who
actually design operating systems, the debate is essentially over.
Microkernels have won.”70

Tanenbaum also criticized Torvalds for having written Linux
specifically to run on Intel’s 386 computer chips. Tanenbaum wrongly
believed these processors would not remain an important part of the
hardware market. To Torvalds, who had written Linux on a 386 computer
because that was all he happened to have, the attack probably seemed
cruel, coming as it did from a computer science professor who faced no
such constraints obtaining access to different, more expensive hardware
platforms.

“Don’t get me wrong, I am not unhappy with LINUX,” Tanenbaum
concluded. “It will get all the people who want to turn MINIX in[to]
BSD UNIX off my back. But in all honesty, I would suggest that people
who want a **MODERN** ‘free’ OS look around for a microkernel-
based, portable OS, like maybe GNU or something like that.”71

For Torvalds, Tanenbaum’s public attack touched a sensitive nerve,
particularly because it threatened “my social standing” within the hacker
community.72 He responded to Tanenbaum in a Usenet post that made
the affair personal, sarcastically writing that, as “a professor and
researcher,” Tanenbaum had “one hell of a good excuse for some of the
brain-damages of minix.” He added, “I can only hope (and assume) that
Amoeba,” another operating system that Tanenbaum had helped to
develop, “doesn’t suck like minix does.” Torvalds enumerated the
reasons that he found monolithic kernels to be superior to a microkernel
like Minix. He also argued that Linux would prove easier to port to other
hardware platforms than Minix because Linux conformed to POSIX
standards.

The sparring between Torvalds and Tanenbaum continued for several
days. But Torvalds apologized to Tanenbaum for having initially written
with “no thought for good taste and netiquette.” Other users of Minix
and Linux weighed in as well, and a majority supported Torvalds.
Although some Linux sympathizers agreed with Tanenbaum that



microkernels were superior, several stated that they would still opt to use
Linux over Minix because the former was free of cost and available with
full source code. “There are really no other alternatives other [sic] than
Linux for people like me who want a ‘free’ OS,” one user informed
Tanenbaum. In the words of another, “for many people Linux is the OS
to use because it’s here now, is free and works.” The writer added that
another benefit of Linux was that it was possible to run the kernel
“without paying $$ and/or asking permission from someone.”73

Neither Tanenbaum nor Torvalds won the debate. Their final
correspondence occurred near the end of the year, when Tanenbaum
emailed Torvalds to notify him that someone had posted an ad in Byte
magazine advertising a commercial version of Linux. Tanenbaum asked
if that was the sort of thing Torvalds wanted to happen to his kernel. “I
just sent him an email back saying Yes, and I haven’t heard from him
since,” Torvalds wrote in 2001.74

The criticism that Linux faced from some quarters did not stunt its
rapid growth. On the contrary, thanks in large part to the help Torvalds
received from fellow programmers who contributed code over the
Internet, it gained features and functionality rapidly. By the second week
of October 1991, even before Torvalds had completed the transition to
making Linux a standalone system, it was capable of running a variety of
GNU programs, including the GNU compilers, assembler, make, tar,
bash, sed, and awk and a version of Emacs.75 This was an important step
because it meant that Linux had become a kernel capable of supporting a
basic distribution of GNU’s software suite.

By January 1992, when Torvalds released version 0.12 of the kernel, it
had gained page-to-disk support, which allowed the operating system to
use hard-disk space to supplement a computer’s physical RAM
memory.76 This feature, which Torvalds implemented in response to a
request from a Linux user in Germany who wanted to be able to execute
code that required more physical memory than his computer contained,
was the first that truly set Linux apart from Minix because it added low-
level functionality that was entirely absent from Tanenbaum’s kernel.77

Linux 0.12 became “the first release that started to have ‘non-essential’
features, and [that was] being partly written by others,” Torvalds recalled
in 1992. “It was also the first release that actually did many things better
than minix, and by now people started to really get interested.”78



More interest fueled an even faster pace of development. By the spring
of 1992, a mere eight months after Torvalds had announced on Usenet
that he was writing a Unix-like kernel, Linux 0.95 debuted, bringing with
it support for graphical applications via the X Windows System.79 The
version number suggested that release 1.0 of the kernel, which would
signal that Torvalds deemed it sufficiently mature for production-level
use, was tantalizingly close.

But the path to Linux 1.0 proved more difficult than Torvalds
envisioned. By the spring of 1992, the only core component of the kernel
that developers had yet to implement fully was support for networking,
which would make it possible for computers running Linux to connect to
the Internet. Although Torvalds did not think that it would take a great
deal of time to develop the networking code, it was not complete until
late 1993.80

Early the next year, with the networking support in place, Linux 1.0
finally debuted. The University of Helsinki, where Torvalds was still
studying and working, organized a launch event. “We got access to the
auditorium, and the head of the CS department gave a speech, and all
this gave us enough credibility that there was a fair bit of interest from
mainstream media,” recalled Lars Wirzenius, one of Torvalds’s friends
and a fellow programmer: “There was even a television crew, and the
footage is occasionally found in various places on the Internet. During
the speeches, we had a ceremonial compilation of the 1.0 kernel running
in the background.”81

As the Linux code base expanded, so did the kernel’s user base.
Complete quantitative data on the number of people running Linux
during this time period is elusive (as it remains for most segments of the
FOSS world today) because most FOSS software does not require
purchase or registration, which makes tracking users difficult.
Nonetheless, Torvalds told reporters in March 1994, “I guesstimate a
user base of about 50,000 active users: that may be way off-base, but it
doesn’t sound too unlikely.”82

Commercializing Linux



The expansion of commercial activity related to Linux even before the
release of version 1.0 was another sign of the kernel’s rapid adoption.
“During 1992 the operating system graduated from being mostly a game
to something that had become integral to people’s lives, their livelihoods,
commerce,” Torvalds noted.83 “There were all these budding commercial
companies that had started to sell Linux.”84

With the 1.0 release, active efforts to promote Linux emerged. These
developed organically within the growing Linux community and did not
involve Torvalds himself, who remained chiefly interested only in
development of the kernel.85 At the same time, by January 1994, at least
one company, Connecticut-based Field Technology, Inc., had begun
“selling ‘Linux machines’ using only copylefted & public domain
software,” the GNU project reported to its followers. It added, “The
Unix-compatible systems are shipped ready to run, with popular
programs such as TeX, Emacs, GNU C/C++, the X Window System, &
TCP/IP networking. Field Technology makes a donation to the Free
Software Foundation for each system sold.”86

By 1994, the commercial potential of Linux had become so clear that
one opportunistic entrepreneur from Boston, William R. Della Croce Jr.,
who had played no role in Linux development and was unknown to the
people involved in the project, attempted to steal the Linux trademark.
Initially, the Linux community had not secured a trademark for the
operating system’s name because, as Torvalds explained in the spring of
1994, “nobody really found the thing important enough to bother about
(especially as it does require both some funds and work).”87 That created
an opening that Della Croce exploited on August 15, 1994, when he
quietly filed for Linux trademark rights in the United States.88 The action
did not come to the attention of the Linux community until early 1995.
When Torvalds and other developers realized that someone with no
connection to Linux development might use a legal trick to take over the
project, “there was some panic,” Torvalds recalled.89

Because the Linux community at the time lacked the organizational
structure and cash that would be necessary to respond to Della Croce, a
consortium of companies with a stake in Linux’s future pooled their
resources to fund Linux International, a nonprofit association that Patrick
D’Cruze had founded to promote Linux before the trademark affair.
Under the direction of John Hall, Linux International took the trademark
case to court and, in August 1997, settled with Della Croce. The latter



agreed to transfer the Linux trademark to Torvalds himself, who, as
“benevolent dictator” of the Linux community, promised not to use his
control of the trademark to thwart Linux development or business related
to it.90

Settling the trademark case in the United States did not protect Linux
in other countries, however. As Hall reported, “all around the world
people were getting the same strange idea.” He added that Linux
supporters “can’t afford to go to the 200 countries around the world and
buy trademarks, and maintain them, so we have to fight them on a case
by case basis.”91 That is what happened. By 2007, Linux International
had spent $300,000 protecting the Linux trademark from prospectors
around the globe.92 Despite such challenges, Linux managed to thrive in
the business world during the 1990s, as the next chapter explains.

The Art of Licenses

When Torvalds released the first versions of the kernel, Linux’s
commercial success seemed not only improbable but flatly impossible.
That is because he initially protected his code, staring with Linux 0.01,
with a copyright notice that stipulated the following:

This kernel is (C) 1991 Linus Torvalds, but all or part of it may be

redistributed provided you do the following:

— Full source must be available (and free), if not with the distribution
then at least on asking for it.
— Copyright notices must be intact. (In fact, if you distribute only parts
of it you may have to add copyrights, as there aren’t (C)’s in all files.)
Small partial excerpts may be copied without bothering with copyrights.
— You may not distribute this for a fee, not even “handling” costs.

Mail me at “torvalds@kruuna.helsinki.fi” if you have any questions.93



The original Linux license “was just me writing things up,” Torvalds
explained in 2016, adding that “there was pretty obviously no actual
lawyerese or anything there.”94 The crude copyright amounted mostly to
a less sophisticated version of the GPL. It required users of the kernel to
accompany distributions of the software with full source code and to
adhere to the same licensing terms if they modified Linux. Yet it differed
in a key respect. Torvalds forbade distributors of Linux from profiting in
any way from the kernel—even if the charges they imposed were
intended simply to recoup the “handling costs” they incurred. These
terms reflected how profoundly opposed Torvalds was in 1991 to the
idea of charging money for software.

By early 1992, however, Torvalds was rethinking the Linux copyright.
Spurred on by Linux users who distributed the kernel at trade shows on
floppy disks and asked Torvalds if they could charge nominal fees to
cover the cost of their materials, he came to believe that “as long as
people gave access to source back, I could always make [Linux]
available on the internet for free, so the money angle really had been
misplaced in the copyright” that he originally used.95 He grew even more
comfortable with the idea of allowing the sale of Linux as the
community and code base grew, instilling confidence that “momentum
had been established” and developers “couldn’t possibly veer away from
our trajectory,” Torvalds recalled in his autobiography.96

As Torvalds considered adopting a new license for Linux, the GPL
was the obvious option. There were other popular licenses in the free
software community at the time, such as the permissive ones that
governed BSD. But the GPL most closely resembled the homegrown
license Torvalds had originally used, and the GPL governed most of the
tools Torvalds had relied on to produce Linux. Beginning with the
release of Linux 0.12 in January 1992, Torvalds adopted the GPL for the
kernel.97

Still, despite the GPL’s similarity in intent to the original Linux
license, Torvalds has never expressed deep satisfaction with it. That is
not because he deems the GPL and GNU too constraining. On the
contrary, as he noted in 1992, Linux’s original copyright notice “was in
fact much more restrictive than the GNU copyleft” because of the clause
preventing people from making money off of the code in any way.98

Nonetheless, he has criticized the “hard-core GPL freaks, who argue that



every new software innovation should be opened up to the universe
under the general public license.”99

Torvalds also continued for years after adopting the GPL to express
concern that someone might charge for Linux or be punished for
obtaining a commercial distribution without paying. As he wrote in
2001:

Generally speaking, I view copyrights from two perspectives. Say you have a
person who earns $50 a month. Should you expect him or her to pay $250 for
software? I don’t think it’s immoral for that person to illegally copy the software
and spend that five months’ worth of salary on food. That kind of copyright
infringement is morally okay. And it’s immoral—not to mention stupid—to go after
such a “violator.” When it comes to Linux, who cares if an individual doesn’t really
follow the GPL if they’re using the program for their own purposes? It’s when
somebody goes in for the quick money—that’s what I find immoral, whether it
happens in the United States or Africa. And even then it’s a matter of degree. Greed
is never good.100

Even though Torvalds came to believe in 1992 that it made pragmatic
sense to adopt the GPL in order to make it possible for distributors to
charge money for Linux under certain circumstances, his abiding unease
with software that costs money has never fully dissipated.

Ultimately, however, although Torvalds admitted in 1994 that “I’m not
fanatic[al] about the GPL,” he recognized that “in the case of linux it has
certainly worked out well enough.”101 He attributed that success in large
part to the fact that, in the Linux world, cooperating with the copyright
terms and the development community provides benefits that outweigh
those of attempting to subvert the GPL’s terms. According to Torvalds,
“It is the people who actually honor the copyright, who feed back their
changes to the kernel and have it improved, who are going to have a leg
up. They’ll be part of the process of upgrading the kernel. By contrast,
people who don’t honor the GPL will not be able to take advantage of
the upgrades, and their customers will leave them.”102

GNU and Linux



Torvalds’s decision to license his kernel under the GPL aligned the code
in an important way with the GNU project. In other respects, however,
harmony between the Linux community and GNU developers remained
elusive during the 1990s.

Part of the unease between the GNU and Linux camps stemmed from
the rapid rise of commercial activity related to Linux by fledgling
companies whose operations, in the eyes of some hackers, threatened to
tarnish the image of free software as the refined, sophisticated endeavor
that GNU was pursuing. Ian Murdock, a strong supporter of both GNU
software and the Linux kernel, noted that in the early 1990s, “You’d flip
through Unix magazines and find all these business card-sized ads
proclaiming ‘Linux.’ Most of the companies were fly-by-night
operations,” which produced embarrassing implementations of Linux-
based systems.103 From this perspective, Linux appeared to be a poor
tool for helping to fulfill the GNU vision of freeing Unix and saving
hacker culture.

Such concerns inspired Murdock to float the idea on comp.os.linux (a
Usenet group that developers had recently created so that discussions of
Linux would have their own home rather than having to use the Minix
newsgroup) of building a hacker-friendly operating system that
combined the Linux kernel with GNU programs. Stallman responded to
Murdock’s post and indicated, according to Murdock, that “the Free
Software Foundation was starting to look closely at Linux and that the
FSF was interested in possibly doing a Linux system, too.”104 With the
Free Software Foundation’s support, Murdock in 1993 began building
Debian GNU/Linux, which today remains a popular Linux and GNU-
based operating system.

The partnership between the Free Software Foundation and Murdock
surrounding Debian was significant because, until that time, Stallman
and other GNU developers had shown little interest in Linux. That was
due partly to the fact that, until Torvalds adopted the GPL, the Linux
kernel was no more useful to the GNU project than BSD’s alternative or
any other software that could not be distributed under terms that the Free
Software Foundation approved. Stallman also placed little stock in Linux
early on because a friend who had reviewed Torvalds’s code concluded
that it would be difficult to port the kernel to hardware other than the
Intel 386 platform.105 Because GNU developers in the early 1990s
remained uninterested in supporting microcomputers, as the previous
chapter notes, a kernel that ran only on 386 PCs was of little relevance in



their eyes. For them, Hurd remained the only obvious solution to
implementing a complete free software operating system.

Gradually, however, the Free Software Foundation’s interest in Linux
grew. The GNU newsletter mentioned Torvalds’s kernel for the first time
in June 1992 in a brief paragraph within a long section deep in the
newsletter containing updates on free software for microcomputers.
Describing Linux as a “free Unix system for 386 machines” that was
“named after its author, Linus Torvalds,” the newsletter went on to note
the kernel’s ostensible limitations—that it “runs only on 386/486 AT-bus
machines, and porting to non-Intel architectures is likely to be difficult as
the kernel makes extensive use of 386 memory management and task
primitives.” GNU developers did, however, inform readers which servers
they could connect to in Europe and the United States to download the
Linux code. The notice did not explicitly mention that Linux was
licensed under the GPL, but it implied as much by calling it “free.”106

The GNU newsletter continued to provide basic information on Linux
for the next two years, but not until June 1994 did Linux begin featuring
more prominently in GNU’s announcements. At that time, the project
informed followers that GNU developer Arnold Robbins would be
authoring a regular column called “What’s GNU?” in the new Linux
Journal, thereby helping to ensure that GNU’s name would remain a part
of the discussion surrounding Linux.107

The launch of the Debian GNU/Linux distribution, which GNU
developers pitched in 1994 as “a complete, full-featured system based on
GNU and Linux that is easy to install and configure,” also strengthened
the Free Software Foundation’s role in the evolving Linux world.108 The
relationship between Debian and the Free Software Foundation expanded
in the spring of 1995, when the Debian distribution on CD-ROM became
available through GNU’s official software distribution service.

The Free Software Foundation also took clear note by 1995 of the
efforts that were underway by that time to port Linux to hardware
platforms other than the 386. The organization announced to GNU
newsletter readers in January that a port of Linux to the Motorola m68k
architecture for Amiga and Atari computers was already in testing,
adding that versions for the AlphaPC and MIPS processors were in
progress.109 GNU developers’ awareness of Linux’s growing suitability
for a broader range of hardware platforms suggests that, by this time,



they were giving the kernel more serious consideration as a long-term
stand-in for the Hurd.

By early 1996, their position on Linux had grown even firmer. The
January GNU newsletter noted, “The Hurd is not yet ready for use, but in
the meantime you can use a GNU/Linux system.”110 Hurd remained the
centerpiece of the GNU vision, but Linux had emerged as an
increasingly appealing substitute. Since, as the previous chapter notes,
Hurd development was never completed, Linux remains the kernel that
powers most GNU-based operating systems today.

Despite early friendly cooperation, relations between the Free
Software Foundation and the Linux community grew more tense starting
in the summer of 1996. The shift resulted from decisions by both sides.
For one, the Debian project changed leadership, with Murdock stepping
down and Bruce Perens signing on in his place.111 Under Perens, the
Debian team decided to forgo the sponsorship from the Free Software
Foundation that the project had received previously. The reason, Perens
said, was that “I decided we did not want Richard [Stallman]’s style of
micro-management.”112 GNU developers insisted at the time that they
and the Debian team had parted ways “amicably,” yet they also stated
that they “wish the situation were otherwise” and were considering
ceasing to distribute Debian CD-ROMs.113

Also in the summer of 1996, Stallman first went on the offensive
against usage of the word Linux to describe an entire operating system
that combined Torvalds’s kernel with the GNU suite of programs. He
advocated for GNU/Linux instead. Murdock had introduced this term, at
Stallman’s request, to the free software community following Debian’s
launch.114 (Stallman had initially suggested the word Lignux, but hackers
rejected that idea.)115 Whether out of ignorance, haste, or active hostility
toward the GNU project, however, some developers and users of free
software referred to GNU/Linux distributions simply as Linux. That was
a problem, Stallman wrote in an essay on the subject in July 1996, partly
because such usage failed “to give the GNU Project credit for making the
free Unix-like system that it set out for a decade ago.” But he added that

there is a more important reason for friends of GNU to use names like “Linux-based
GNU system” instead of “Linux system.” This is to help spread the GNU Project’s
philosophical idea: that there is ethical importance in freeing users to share software
and cooperate in improving it; that free software belongs to a community, and
people who benefit from the community should feel a moral obligation to help build
the community when they have a chance.116



Stallman’s words made clear that, to him, the greatest danger posed by
people who did not afford full credit to GNU’s role in making Linux-
based operating systems possible was that they undercut the Free
Software Foundation’s effort to protect the community of hackers for
whom Stallman had launched his crusade.

The essay quoted above recalled the 1983 announcement of the GNU
project, when Stallman said that the “Golden Rule” required developers
to share source code. But the language about ethics and moral
obligations that Stallman deployed in 1996 elevated his rhetoric to a new
level. For many supporters of free software, Stallman was laying the
ideology on too thickly. Ultimately, stances such as the one he took in
the 1996 essay contributed to the fracturing of the hacker community
into “free software” and “open source” camps, which chapter 5 details.

The Free Software Foundation continued over the following years to
denounce what it saw as betrayals of the true purpose of free software. In
1997, Stallman lamented in an essay that some supporters of Linux did
not endorse the free software philosophy or the GPL at all:

A conference was held this year on the topic of developing “Linux applications.”
This conference was about using the GNU system, but the conference
announcement did not mention the word GNU. Instead of encouraging users to
write more free software, it did just the opposite. It included a panel entitled,
“Licenses and licensing—I don’t want to give away my application!!!”117

By the spring of 1998, Stallman had come to accept that Linux was
likely to remain the kernel that most people would use to build free
operating systems for the foreseeable future. He acknowledged that year
that completing the Hurd had proved “a lot harder than we expected, and
we are still working on finishing it,” but added, “fortunately, you don’t
have to wait for it, because Linux is working now. When Linus Torvalds
wrote Linux, he filled the last major gap. People could then put Linux
together with the GNU system to make a complete free system: a Linux-
based GNU system (or GNU/Linux system, for short).”118

In the same essay, Stallman remained harshly critical of people who
left the GNU out of GNU/Linux. Indeed, he went on the counterattack by
suggesting that the word GNU alone might fairly be used to describe
operating systems that included the Linux kernel. That usage, he argued,
was valid because statistics showed that GNU software accounted for
nearly ten times as much of the total source code of a GNU/Linux
distribution of the time as the Linux kernel. “So if you were going to



pick a name for the system based on who wrote the programs in the
system,” he concluded, “the most appropriate single choice would be
‘GNU.’”

Significantly, in this essay—which Stallman wrote just as the term
open source entered hackers’ lexicon and some major free software
developers began distancing themselves publicly from the Free Software
Foundation—Stallman no longer portrayed correct usage of GNU/Linux
as a moral or ethical issue. His main argument for giving full credit to
GNU developers for their software was instead that they had done most
of the work required to make possible a free operating system that used
the Linux kernel. Following public suggestions that the Free Software
Foundation had become overly ideological, Stallman seemed to decide to
temper his rhetoric for strategic purposes.

If that was the case, the toning down of Stallman’s rhetoric occurred
too late. As chapter 5 shows, the split between the free software
community that Stallman led and the open source group that grew up
around Torvalds was too divisive by the spring of 1998 to have a clear
resolution. Even worse from the perspective of the GNU camp, observers
of the Linux revolution would soon be calling Stallman a “forgotten
man.”119

Why Did Linux Succeed?

Why did Stallman and the GNU developers, who had breathed the first
life into the FOSS movement and written most of the code that made
FOSS possible, end up on the sidelines as Linux exploded in popularity?
How did a cheeky undergraduate end up—in the eyes of many hackers,
at least—inheriting the fruits of the revolution that Stallman had
launched?

These were outcomes that few people could have predicted. In August
1991, it would have been almost absurd to expect that the kernel
Torvalds had just announced to the world would ever find a large



following outside his Helsinki apartment or power millions of computers
across the planet. Other people—including Tanenbaum, the BSD
programmers, and the GNU developers—were in the process of building
freely redistributable Unix-like kernels or had already completed them.
By the standards of the time, their kernels were much more technically
impressive than the one Torvalds aimed to create. Those other
programmers also had many more credentials to their names than the
Finnish undergraduate who created Linux, and they enjoyed immensely
larger development budgets.

It was telling that Salus’s monumental study of the history of Unix-
like operating systems, which he published in 1994, devoted only a
handful of sentences to the Linux kernel.120 As late as that year, even
someone as tuned into the ecosystem of Unix-like operating systems as
Salus did not foresee how important Linux would become. Yet barely
five years after Torvalds announced his project on Usenet, Linux had
evolved into the kernel that, by all realistic measures, had beat out all of
the better-funded, more elaborate alternatives.

Historically, most observers of the FOSS community have attributed
Linux’s success to fortunate timing. Wirzenius, the Finnish programmer
who shared an office with Torvalds at the University of Helsinki, wrote
in 1998, “The success of Linux wasn’t automatic, and things might well
have gone differently. For example, if the Hurd had been finished a few
years ago, Linux probably wouldn’t exist today. Or the BSD systems
might have taken over the free operating system marketplace.”121

Tanenbum made a similar point when he noted that the legal troubles
surrounding BSD “gave Linux the breathing space it needed to catch
on.”122

To a significant extent, such interpretations account for Linux’s
improbably rapid and widespread growth during the early 1990s.
Uncertainty over the legality of kernels derived from the BSD code base
stunted their adoption, creating an opening for Linux that might not
otherwise have been so broad. Meanwhile, as Torvalds himself noted, he
likely would not have bothered to develop Linux at all if the Hurd had
been closer to completion or if Minix had worked better on his PC.

Yet good timing alone does not fully account for Linux’s ability to
bloom during its first years. Although BSD’s legal battles were
significant, the Unix Systems Labs lawsuit did not begin until January
1992. By that time, Linux already had a small following, which extended



beyond Torvalds’s personal circle. Moreover, the BSD case was settled at
the start of 1994, just as Linux 1.0 made its debut. Linux at that time was
no more sophisticated in technical terms than the free BSD kernels,
which at any rate supported a broader range of hardware platforms. Plus,
for most users BSD and its derivatives were also just as free of cost as
Linux. The legal troubles between 1992 and 1994 certainly helped to
push developers and users away from the BSDs and toward Linux, but
the differences between these two options were not great enough to make
Linux the only obvious choice by the time the dust had settled in the
courtrooms.

On a similar note, Linux faced its own legal uncertainties during the
trademark case that began in 1994 and lasted until 1997. Della Croce’s
attempt to usurp the Linux trademark was not as dangerous for the Linux
kernel as the challenges over code ownership were for BSD. But it was
still a serious concern. Despite this fact, it did not lead to a massive
desertion from the Linux community in the years before Torvalds
obtained the Linux trademark. It did not even stop companies from
taking a serious commercial interest in Linux. This outcome showed that
there was something intrinsically different about Linux, which emerged
relatively unscathed from the same genre of legal trouble that had placed
the BSD community in crisis.

What was that difference? Above all, licensing. The BSD license was
in a sense even freer than Linux’s GPL. As noted above, the BSD
licensing terms allowed developers essentially to do whatever they
wished with code derived from BSD’s code base, even if they did not
make the source code of derivative software publicly available. For that
reason, BSD might have seemed more attractive for developers than
Linux because it was more flexible. Yet because the FOSS camp’s chief
goal was to nurture hacker values, not develop software with as little fuss
as possible, the GPL-licensed Linux kernel, which respected hacker
mores, proved more attractive than BSD code to many hackers.

It mattered, too, that the Linux kernel code never cost a penny. That
set it apart from most of the other freely licensed Unix-like kernels of the
early 1990s. NET 2, the first complete BSD-based operating system that
did not require users to purchase a Unix license from AT&T, could be
legally copied and distributed by individuals without paying, but an
official copy from Berkeley itself cost $1,000.123 Some of the other BSD
derivatives were similarly priced.124 Minix cost a fair amount of money,
too, as Torvalds bitterly noted.



The role of cost in Linux’s success should not be overstated. By 1992,
several BSD-based systems that cost no money, no matter how users
obtained them, were in circulation. And again, it was always possible for
users to obtain NET 2 without cost if they copied it themselves. Yet
Torvalds’s adamant opposition during Linux’s early days to charging
money for the kernel made his project a true outlier. It also probably
augmented Linux’s appeal for hackers who, having witnessed the
troubles that ensued when AT&T commercialized Unix in 1983, were
wary of any activities by software distributors that smacked of
commercialism—even if the distributors also offered ways to obtain
code without paying.

Lastly, the developer community that Torvalds cultivated helped to
ensure the kernel’s rapid growth. To an extent, as noted above,
programmers were attracted to Linux because of uncertainty over BSD’s
legal future, which sapped the BSD community of its momentum and
made some programmers wary of contributing code. Yet programmers
who liked Linux’s nonexistent price tag and the openness of its code
began helping Torvalds write the kernel before the BSD lawsuits
commenced. On October 10, 1991, several months before the start of the
first BSD case, Torvalds wrote that his kernel “never would have seen
the light of day or would have been much worse without the help of
some others.”125 He went on to name collaborators who were helping
him develop Linux via the Internet. By the time of the Linux 0.11 release
in late 1991, “a small following” of programmers had arisen, according
to Torvalds.126 From there, the community of Linux developers
continued to grow.

Torvalds was not the first programmer to endorse a decentralized,
Internet-based community of developers. Keith Bostic, a lead BSD
developer, did something similar in 1990 when he enticed hundreds of
volunteer programmers from across the Internet to help rewrite Unix
utilities without AT&T code in preparation for the release of NET 2.127

And according to Tanenbaum, Linux followed “essentially the same
development model as MINIX,” which also received contributions of
code from users who wished to add new features.128

Yet Torvalds’s project was different in several key ways from other
collaborative, Internet-based development efforts. First, because Linux
was completely free of cost, programmers who donated code to Torvalds
could reap what they sowed without having to pay a penny. They could
not do the same in the case of Minix. Second, Linux came of age as



email access became widespread and the Internet ceased “being an
enclave of a few research universities,” as Torvalds recalled.129 That
lowered the barrier to participation.

Third and most important, at least in Torvalds’s own view, was that the
community of programmers who contributed to Linux early in its history
was not based at a single institution or derived from a core group of
original participants. “There was no historical insider group,” Torvalds
told me, “so we were a lot easier to approach if you came from a
DOS/Windows background, for example.” He added, “there was no
cabal, it was easy to send me patches, I wouldn’t have stupid paperwork
rules like a lot of other projects had, and it really was a much more open
project than a lot of software projects that preceded it.”130

Not until the late 1990s, when Eric S. Raymond published work on the
“bazaar” mode of software development, did FOSS developers fully
recognize and articulate the novelty of the decentralized, Internet-based
Linux development model. And it was only in 2008, with the
introduction of GitHub, which reduced barriers to FOSS contribution
even more than email-based development had, that open collaboration on
FOSS code saw its complete incarnation. Yet the effects of the model
Torvalds helped to pioneer were apparent much earlier. They were why
observers noted in the spring of 1994, “The number and frequency of
new releases of Linux, and drivers and utilities, are amazing to anyone
familiar with traditional UNIX development cycles.”131 The approach
Torvalds adopted in 1991 remains highly influential today, when most
major FOSS projects—from the OpenStack cloud computing platform to
the Linux Foundation’s various “collaborative projects”—follow the
same model.

A variety of factors combined to make Linux into the sophisticated,
feature-rich kernel that it became by the mid-1990s. From there, they
continued to fuel the remarkable expansion of the Linux ecosystem,
which, as the next chapter shows, assumed outsize importance within the
computing industry by the end of the decade.



4 The Moderate FOSS Revolution

One of the main acts in the revolutionary script is the moderate phase. In
this part of a revolution, consensus prevails, and competing parties find
enough common ground to establish a new, stable order. The moderate
phase tends to precede and be less exciting than the dramatic, battle-
ridden periods that usually follow. But it is generally during the moderate
stage that the most productive and enduring revolutionary changes arise.

For the French revolutionaries, the moderate phase began after Louis
XVI bowed to popular demands by accepting constitutional monarchy in
the summer of 1789. Over the next few years, the French abolished
feudalism, reconfigured church-state relations, and pioneered new modes
of representative democracy. After foreign and civil wars began and the
king was overthrown and imprisoned in 1792, however, the French
Revolution descended into the radical phase known as the Reign of
Terror.

The Russian Revolution followed a similar trajectory. A relatively
peaceful revolution in March 1917 resulted in a new, provisional
government that was dominated by centrist factions. These groups shared
power with the more radical Bolsheviks until the latter launched a
second revolution in November. The struggle between Red Bolsheviks
and their White Russian enemies then enveloped the country in a
prolonged civil war, complicated by foreign intervention, which erased
hopes for moderate reform.

The free and open source software (FOSS) revolution also had a
moderate phase. The early and mid-1990s constituted an eventful yet
peaceable period during which different factions within the FOSS
community collaborated readily with one another. The unchecked
momentum of the Linux kernel and the various programs that GNU
developers produced gave rise to operating systems through which FOSS
reached the masses for the first time. Meanwhile, new values and
methods, like those that grew up around the Apache Group (which in
1999 became the Apache Software Foundation), were integrated into the
rapidly expanding FOSS ecosystem. FOSS was sufficiently successful to
show that a new world was possible but not yet threatening enough to
enter the crosshairs of companies like Microsoft, and it flourished.



This chapter chronicles the moderate phase of the FOSS revolution. It
focuses on the advent of GNU/Linux distributions, the proliferation of
FOSS productivity applications, and the surging commercial significance
that these developments introduced to the FOSS world. It also highlights
the beginnings of the fissures that started emerging in this period.
Despite a general spirit of consensus, opposing factions began staking
competing claims to the FOSS revolutionary legacy by adopting
different types of licenses and development strategies. FOSS
programmers also began attacking closed source software companies
loudly for the first time.

Free New World: GNU/Linux Distributions in the 1990s
and Early 2000s

The First GNU/Linux Distributions

The code that Ari Lemke posted on a University of Helsinki file transfer
protocol (FTP) server in September 1991 represented the first
“distribution” of the Linux kernel. But that was not a complete Linux-
based operating system. At the time, Linux included little beyond basic
kernel code, and users still required Minix to run the system.

Within less than a year, however, free software supporters began
combining the Linux kernel with suites of other utilities, most of them
from the GNU project, to build what hackers eventually called
GNU/Linux distributions. The first example of such a system came from
England, where Owen Le Blanc of the Manchester Computing Centre
created MCC Interim Linux, named after the institution where he
worked. Le Blanc’s distribution was basic. It provided Linux kernel



version 0.12 in conjunction with a small set of programming tools and an
installer. Nonetheless, it demonstrated that the Linux kernel, though still
novel at the time and hardly as promising in appearance as the more
sophisticated kernels under development by the GNU and BSD teams,
could constitute the basis for a viable operating system.1

A more feature-rich distribution appeared several months later in the
form of Softlanding Linux System (SLS), which was the first
GNU/Linux system to gain a large following. Launched in May 1992,
SLS extended free software functionality by integrating the X Windows
System and TCP/IP Internet connectivity alongside the Linux kernel and
GNU utilities.2

The end of 1992 saw the debut of the first commercial GNU/Linux
distribution, Yggdrasil. Sold by Berkeley-based Yggdrasil Computing,
Inc., and named after a holy ash tree from Norse mythology, Yggdrasil
became available for testing in December 1992. The distribution was
based in its initial incarnation on Linux kernel version 0.98 and cost $50
in beta form. For the production release, the price increased to $99.3

Significantly, Yggdrasil was the first major GNU/Linux distribution to
ship on a “live CD.” That made it possible for users to run a complete
Yggdrasil system in their computer’s random access memory (RAM)
using only removable media. They also could use the live CD to install
Yggrdasil permanently on their hard drives, but making permanent
changes to the computer was not a requirement. The Yggdrasil live CD
made it easier to test a FOSS system. It was also an attractive feature in
an era when other GNU/Linux distributions required as many as seventy-
three floppy disks for installation.4

GNU/Linux Grows Up

The first public GNU/Linux distributions were plagued by software bugs
and lacked user-friendliness. Demand for software that performed better
fueled rapid improvements. In July 1993, version 1.0 of Slackware
GNU/Linux appeared. It originated as an effort to create an enhanced,
less buggy version of the SLS distribution. Featuring a user-friendly
installer named dialog, Slackware quickly gained a large following. It



remains under active development today, a fact that distinguishes it as
the oldest continuously developed GNU/Linux distribution.5

Slackware spawned several other important GNU/Linux distributions.
These included SuSE, whose name is an acronym for the German term
Software- und System-Entwicklung (Software and System Development).
The SuSE operating system, which first shipped in 1994, was the product
of a group that Roland Dyroff, Burchard Steinbild, Hubert Mantel, and
Thomas Fehr founded in 1992 to do consulting work, not distribute free
software.6 Although the early SuSE releases were derivatives of
Slackware, the SuSE developers in 1996 integrated another GNU/Linux
distribution, Jurix, into their platform, helping to form the distinctive
SuSE ecosystem that has sustained both a commercial GNU/Linux
distribution, SUSE Linux Enterprise, and a community-supported
variant, openSUSE, into the present. (Modern versions of SUSE
capitalize all letters in the operating system’s name, although SuSE was
used historically.)

Another GNU/Linux distribution that was destined for long-term
commercial success, Red Hat, had its humble beginnings around the
same time as SuSE. Named after a Cornell University lacrosse hat that
the distribution’s founder, Marc Ewing, wore as a student at Carnegie
Mellon, the Red Hat distribution (though not the company now
associated with it) was born in October 1994. Its rise to commercial
importance in the late 1990s, which this chapter details below, followed
the distribution’s acquisition by a company called ACC Corporation,
which originally sold software and documentation for Unix and Unix-
like systems.7

While some entrepreneurs were pursuing commercial opportunities
related to Linux-based operating systems, wariness toward such
activities prompted other developers to create distributions for the
purpose of keeping the software freely available. The most prominent
example of this was Debian GNU/Linux. As the previous chapter
explains, Debian began as an independent project under the direction of
Ian Murdock. The distribution’s name was an amalgamation of the first
names of Murdock and his girlfriend and later wife, Deb.8 Billed as “an
attempt to create a non-commercial distribution that will be able to
effectively compete in the commercial market,” Debian was the first
operating system based on Linux and the GNU software suite to endorse
the name “GNU/Linux.”9 It received support from the Free Software



Foundation until November 1995 and was available through GNU’s
official distribution service.10

As the previous chapter notes, the Free Software Foundation and
Debian later parted ways due to concerns among Debian’s leaders with
what they called Stallman’s “micromanaging” tendencies. After the split,
the Debian team founded a group named Software in the Public Interest
to oversee development of the distribution.11 In its effort to distinguish
itself from organizations using Linux for commercial purposes, the
Debian project touted its system as being “entirely free to use and re-
distribute,” adding that “there is no consortium membership or payment
required to participate in its distribution and development. The
developers are 100 unpaid volunteers from all over the world who
collaborate via the Internet.”12

Despite Murdock’s death in December 2015, Debian remains actively
developed, freely available, and independent of direct ties to commercial
parties—although it serves as the basis for other GNU/Linux
distributions created by organizations with commercial ambitions.13

Ubuntu, a younger operating system whose history chapter 6 details, is
the most notable example of these.

The distributions discussed above helped to encourage Linux kernel
adoption in the early and mid-1990s. By the turn of the new millennium,
however, the landscape of GNU/Linux distributions had grown even
more diverse. The most interesting newcomers included operating
systems designed to integrate the FOSS and proprietary software worlds
by allowing users to run Microsoft Windows applications seamlessly
alongside GNU programs and other free software, all atop the Linux
kernel. In 1999, Corel Corporation, a Canadian company, introduced
Corel Linux. Based on Debian, the system included a customized variant
of the Wine compatibility layer, the tool for executing Windows binaries
on Linux that this chapter discusses below in greater detail. Using Wine,
Corel Linux could run Windows programs, including those in the
WordPerfect productivity suite, which Corel owned.14

Corel Linux intrigued observers in both the FOSS and proprietary
software worlds for a time. But ultimately, it failed to entice Windows
users to adopt Corel’s Windows-friendly GNU/Linux platform or people
using a different GNU/Linux distribution to migrate to Corel.15 By
August 2001, Corel Linux folded, although Corel the company remained
in business. Xandros, a company that was formed the previous May,



purchased the Corel distribution source code and development team and
used them as the basis for building its own Linux-based system, which
became an important—though not record-breaking—GNU/Linux
distribution during the first decade of the new millennium.

Despite Corel Linux’s lack of success, similar distributions arose in its
wake that also aimed to integrate Windows and FOSS environments. In
August 2001, another start-up, Lindows, Inc., was launched in California
to develop a GNU/Linux distribution that used Wine to support Windows
binaries seamlessly. To set their system apart from Corel Linux, the
developers also produced a one-click application installer, Click-N-Run,
which they promoted as the easiest way to add software to a Linux-based
platform. The first version of the operating system, called Lindows,
appeared in autumn 2001. It enjoyed endorsement by the trade press,
although admirers doubted Lindows’s ability to compete with Microsoft
Windows in a sustainable way.16

Microsoft took Lindows GNU/Linux seriously enough to sue
Lindows, Inc. in 2002, alleging copyright infringement in the operating
system’s name. A court dismissed the charges, but Microsoft renewed
the legal battle by requesting a second trial. The parties reached a
settlement in 2004, when Lindows, Inc., changed its name to Linspire,
Inc., in exchange for an undisclosed cash sum from Microsoft.17

Despite Lindows’s success in the courtroom, the project failed, as did
Corel Linux before it, to build a self-sustaining user base. It was not
successful in the late 2000s in attempts to forge partnerships with
Canonical, the company that develops Ubuntu Linux, and with
Microsoft. In July 2008, Xandros acquired Linspire and discontinued
development of the operating system the following month.

In addition to Corel Linux and Lindows, the other major commercial
GNU/Linux distribution to emerge near the turn of the new millennium
was Mandrake, which debuted in July 1998 under the direction of a
company named MandrakeSoft. Mandrake’s developers, who used Red
Hat’s distribution of GNU/Linux as the foundation for their operating
system, aimed to innovate by enhancing usability.

They enjoyed good success. By 2002, reviewers were hailing
Mandrake as “one of the easiest to install and [most] user-friendly Linux
distributions … on the market.”18 Ordinary users compared it favorably
to other GNU/Linux distributions. “Mandrake is a solid distro and a great
tool if you want to actually use your computer to get work done,” one



Slashdot commenter wrote. “Such a company deserves our support if we
ever want to see Linux prosper on the desktop. Debian sure isn’t
anywhere close to the ‘just install it and it works’ stage yet.”19

Yet like many other distributions in the early 2000s, Mandrake was
embroiled in legal battles. In Mandrake’s case, the challenger was not
Microsoft but King Features Syndicate, a media company. King Features
alleged that the Mandrake name infringed on its trademark of Mandrake
the Magician, a cartoon character. The challenge prompted
MandrakeSoft to change the name of its GNU/Linux distribution to
Mandrakelinux. In 2005, following the acquisition of the Brazilian
company Conectiva, the company modified the name again, to Mandriva
Linux. A number of distributions appeared under the Mandriva brand
from the mid-2000s until the spring of 2015, when Mandriva developers
apparently ceased operations.20

While distributions such as Mandrake, Lindows, and Corel Linux
were launched with the goal of making Linux and GNU-based software
easier to deploy and use, another segment of the FOSS camp in the late
1990s and early 2000s moved in the other direction—by building
distributions that prioritized not user friendliness but users’ freedom to
customize software to the maximum extent possible. In this sense, these
distributions mirrored Debian GNU/Linux, which, as noted above, had
appeared in the earlier 1990s in response to concerns that the free
software world was coming under the sway of commercial entities intent
on privileging profit-driving usability over software freedom.

Gentoo was the most enduring distribution emphasizing
customizability that was born around the turn of the millennium. A
derivative of Enoch, this GNU/Linux distribution debuted in December
1999. It stood out from other offerings because rather than shipping
precompiled binaries, it provided users with source code for compiling
their own Linux-based operating systems. Version 1.0 of Gentoo, named
after a species of penguin, appeared in May 2002. Although Gentoo’s
source-code-only distribution model required users to have a significant
amount of technical expertise, the reward for the time and energy they
invested was a system that could support a broad range of hardware
platforms. In addition, at least in theory, Gentoo boasted excellent
performance because compiling from source meant that users could
optimize the software for their particular needs.



Gentoo held enough appeal for the FOSS community that, by 2003,
observers were calling it “the fastest growing Linux distribution of all
time.”21 Ultimately, however, the distribution’s momentum failed to
endure. Its initial rapid pace of adoption slowed later in the decade. Still,
Gentoo remains under active development today and continues to cater
to a small community of technically inclined users.

In addition to the major GNU/Linux distributions described above, at
least dozens and possibly hundreds of others (depending on how they are
counted) appeared during the 1990s and 2000s. In 2001, Linux User
magazine estimated that about 140 distributions were in existence. In the
same year, DistroWatch.com was founded to track free software usage
and provide news, and by 2015, it identified eight hundred distinct
distributions, some under active development and others long extinct.22

(Some of the distributions that DistroWatch tracked include operating
systems that use kernels derived from BSD rather than Linux, although
these represent a small minority compared to the Linux-based systems.)
The difference between these two figures probably does not mean that
new GNU/Linux distributions have appeared at a more rapid pace since
2001 than they did in the 1990s. Instead, it reflects the lack of the
existence of an official body that maintains statistics on the distributions,
as well as the subjective nature of defining what constitutes a distinct
distribution as opposed to a variant of a distribution that already exists.

Although many GNU/Linux distributions have emerged over the
previous twenty-five years, a small—though changing—minority of
them have attracted the vast majority of GNU/Linux users. Most
distributions, both historically and today, garnered only small followings.
More than a few probably have never been used in a serious way by
people other than their creators. That is no surprise, given the availability
of tools that allow users with only a moderate level of technical expertise
to create distributions of their own. One website in 2015 offered a
tutorial on “How to Build Your Own Linux Distro” that consisted of only
seven easy steps.23

Free BSDs



A survey of the FOSS landscape in the 1990s and early 2000s would be
incomplete without reference to the derivatives of the BSD Net 2
operating system that emerged alongside the early GNU/Linux
distributions. Most of the BSD-based systems combined GNU software
with the Net 2 kernel and other utilities from the BSD project to
implement freely redistributable Unix-like operating systems.

As of 2015, DistroWatch.com identified twenty-six BSD-based
distributions that have existed historically or remain under active
development. Of these, only three have enjoyed enduring followings
over the long term. The first, NetBSD, appeared in the spring of 1993. Its
developers emphasized compatibility with a broad variety of hardware
platforms (a goal that spawned the project’s official motto, “Of course it
runs NetBSD”) as well as fitness for running Internet-based software.24

The latter trait helped to make NetBSD popular as FOSS became an
increasingly important part of the growing market for Web servers and
other Internet platforms.

The second major BSD-based distribution, FreeBSD, debuted in
November 1993 as a community-developed operating system. It soon
gained commercial support from a company named Walnut Creek
CDROM, which distributed the system on disk.25

The third long-lasting BSD variant, OpenBSD, originated in 1995
when Theo de Raadt, one of the NetBSD developers, left that project due
to disagreements with other programmers and founded his own
distribution. The OpenBSD developers distinguished themselves by
adopting a purist approach to licensing. They rejected the GPL as too
restrictive and preferred, whenever possible, to license components of
their operating system under terms derived from the original BSD
licenses. This commitment led them to rewrite the GPL-licensed utilities
that were present in the operating system in order to make almost all of
the software in the distribution compatible with BSD-style licenses.

Even though BSD licensing terms did not require source code to
remain publicly available, the OpenBSD team chose to release its code
this way by posting it on Internet servers, a practice that was innovative
in the mid-1990s. A strong focus on documentation, which was a weak
point in many other FOSS projects, was an additional distinguishing
feature for OpenBSD, as was extensive attention to software security.26

NetBSD, FreeBSD, and OpenBSD all survive into the present, but the
various spin-offs that they have spawned over the years have generally



not fared as well. Yet even if BSD-based distributions account for only a
small fraction of the total FOSS ecosystem, users who have adopted
these systems tend to be particularly dedicated to them. Today’s BSD-
based distributions also attest to the long-lasting influence on the FOSS
space of the Berkeley team’s efforts to develop a free Unix-like system,
even though the main BSD project, as the previous chapter notes, ceased
operations more than two decades ago.

Adventures in Userland: Building FOSS Productivity
Applications

The proliferation of GNU/Linux and BSD-based operating systems
discussed above depended in large part on the steady expansion of FOSS
applications and tools. In the early 1990s, the GNU software suite and
the Linux and BSD kernels sufficed for building basic operating systems
that were suitable for technically inclined users who were comfortable
working from a command line. As the decade progressed, however, more
sophisticated programs—ranging from enhanced user interfaces to office
productivity applications—appeared. They made FOSS a compelling
offering to a much wider demographic of users.

Freeing the Graphical User Interface

The first software to extend the functionality of FOSS systems beyond
the bare essentials was X Windows, a framework for building graphical
interfaces on Unix-like systems. X Windows—which developers
colloquially call X—was the successor to W, a display system developed
for use on a platform known (confusingly enough) as the V operating
system. Seeking a windowing system that would be portable across



different Unix-like operating systems and various hardware platforms,
programmers at MIT started developing X in 1984. By 1986, the
software had spread beyond MIT, which distributed the code under
liberal terms that came to be known as the MIT License. The license
allowed anyone to reuse the X code, including as part of software
packages that were otherwise closed, provided they afforded the same
liberties to people to whom they redistributed X. GNU adopted X as the
display solution for its system in 1987. By 1988, X had become the
standard graphics platform for GNU and most other Unix-like systems.
That made it one of the first widely distributed FOSS platforms at a time
when much of the GNU software suite remained under development.27

Virtually all of the GNU/Linux distributions of the 1990s that
provided graphical interfaces adopted the implementation of X known as
XFree86. Although some programmers contended that the software
architecture behind X (which was designed to deliver graphical displays
on both local computers and over a network) was needlessly complex for
standalone computer systems and the X developers themselves warned
from the project’s start that X “is not the ultimate window system,” it has
remained the graphical backbone of free and open source operating
systems into the present.28

Only in recent years have FOSS developers begun seriously
considering alternatives to X. The most momentous change in this
respect occurred in 2010, when Canonical, the company that develops
the Ubuntu GNU/Linux distribution, announced plans to replace X with
a display server called Wayland. In 2013, Canonical modified its course
by announcing that it would create its own display server, Mir, instead of
adopting Wayland.29 Mir remains under development, however, making
X the main display server for Ubuntu and most other GNU/Linux
distributions as of 2016.

X provides only the backend that developers need to build graphical
applications. It does not include the code that draws elements such as
windows, toolbars, and animations on the screen. The type of program
that does the latter is called a desktop environment. By the early 1990s, a
variety of desktop environments existed for Unix and Unix-like system.
Some, notably the Common Desktop Environment, were commercial
products that most supporters of GNU and Linux found uncompelling
because they were not freely redistributable. Other graphical applications
of the early 1990s were inconsistent in look and feel or incomplete in
functionality—which meant that they “quite frankly sucked big time, and



hence no non-literate computer user would’ve touch Linux with a barge
pole,” as one Slashdot user put it.30

These deficiencies prompted FOSS developers beginning in the mid-
1990s to build a variety of free desktop environments that offer a
consistent, sophisticated graphical experience across an entire
GNU/Linux (or GNU/BSD) system. Like the distributions themselves,
the free desktop environments that have appeared in the FOSS world
over the preceding two decades are too numerous to list exhaustively
here. But an overview of the two most important environments—KDE
and GNOME—is in order.

KDE, the oldest FOSS desktop environment that remains popular
today, was born in 1996 when Matthias Ettrich, a German student,
announced on Usenet that he planned to create a new graphical interface
for GNU/Linux systems. Describing his frustrations with the mishmash
of different menus, windows, and widgets that existed for FOSS systems
at the time, Ettrich called for “a modern and common look & feel for all
the applications.” He explained (in German-inflected English) that the
comprehensive nature of the graphical solution he envisioned was
“exactly the reason, why this project is different from elder [sic]
attempts.”31 Ettrich invited other programmers to join his efforts to
create the new graphical platform, which he dubbed the Kool Desktop
Environment. The project soon came to be known simply as KDE.

In leading KDE development, Ettrich displayed an appreciation for the
needs of ordinary end-users that was unusual among the highly technical
programmers who populated FOSS-related Usenet groups in the 1990s.
That strength helped KDE advance. Yet Ettrich also unwittingly erected
a major obstacle to KDE adoption by choosing to develop the platform
using Qt, a new programming library. Qt, which was owned by a
company named Troll Technology and subject to a proprietary software
license, was far more mature than any graphics library that was available
at the time under a FOSS-friendly license. And because Troll
Technology allowed Qt’s use with applications running on X free of cost,
it was possible to license KDE under the GPL and distribute it with free
GNU/Linux systems even if the KDE software relied on the Qt library to
run. Yet developers like Stallman denounced Qt as a “trap” because
using it made FOSS programmers dependent on a proprietary software
framework. Ultimately, critics warned, Qt left users at risk of being
unable to run free software in the event that Troll Technologies decided
to cease supporting the software or made it incompatible with GPL-



licensed code—both of which it could do at any time, with no need to
consult the FOSS community.32

Nonetheless, as Perens of the Debian project noted, “the prospect of a
graphical desktop for Linux was so attractive that many users were
willing to overlook” the licensing issues associated with Qt.33 Enough
FOSS developers endorsed the KDE project that the desktop
environment rapidly matured. On July 12, 1998, the KDE team issued its
first stable release, offering users of GNU/Linux systems a graphical
experience that greatly surpassed anything previously available from the
FOSS community.

Yet even as the KDE team made steady progress building and
spreading its platform, the Qt dependency continued to worry some
hackers. With GNU’s support, two of them, Miguel de Icaza and
Federico Mena, started work in 1997 on an alternative desktop
environment called GNOME (GNU Network Object Model
Environment).34 (I have been unable to locate evidence that the name
was a jab at Troll Technologies, even though trolls and gnomes are not
often friends in the fantasy tales that are popular among some
programming geeks.) They aimed to create “a free and complete set of
user friendly applications and desktop tools, similar to [the Common
Desktop Environment] and KDE but based entirely on free software.”35

Instead of Qt, GNOME relied on a GPL-licensed programming library
named GTK+, which originally was developed in conjunction with the
GNU Image Manipulation Program (GIMP)—a free, cross-platform
application for creating and editing images.

GNU developers were so wary of Qt that they did not stop with
GNOME, however. Hedging their bets, they also launched the Harmony
project, which aimed to create a clone of the Qt library and license it
under the GPL. If fully implemented, the Harmony library would have
permitted users to run KDE without relying on software from Troll
Technology.36

The goal of both the GNOME and the Harmony initiatives was to
force Troll Technology’s hand by obliging it to release Qt under more
liberal terms. They succeeded. Threatened by the prospect that the Qt
library might become irrelevant to FOSS users either because GNOME
outpaced KDE in popularity or because the Harmony library evolved
into a complete substitute for Qt, Troll Technology relented. In June
1999, the company released an updated version of the Qt library under



terms it developed called the Q Public License, which guaranteed that
the source code for derivatives would remain available.37

This decision was not satisfying to the Free Software Foundation,
however, because the Q Public License and the GPL were not mutually
compatible. The organization therefore continued its dual campaigns to
provide GPL-licensed alternatives to Qt-based KDE. Its efforts prompted
Troll Technology in 2000 finally to release the most up-to-date version
of Qt under the GPL.

Some GNOME supporters were underwhelmed by this development,
partially because KDE remained dependent at the time on earlier
versions of the Qt library that were not redistributable under the GPL.
Worse, KDE contained code that had been copied from GPL-licensed
software in ways that violated the GPL. For this reason, Stallman warned
that work remained to be done before the “Free Software Movement will
be able to think of KDE/Qt as a contribution and not as a problem.”38 He
promised “forgiveness” to KDE developers who had improperly used
GPL-licensed code but only if they adopted the version of the Qt library
that was licensed under the GPL.

Stallman’s reaction to the new licensing of Qt did little to smooth over
the tensions that had arisen within the FOSS community between
supporters of GNOME and KDE. Some users agreed that KDE
developers should renounce non-GPL code fully to ensure that the goals
of the FOSS community were reached. “Proprietary software is like a
cancer, even a little will kill over time,” one user wrote in support of
Stallman’s statement about Qt.39 (Ironically, the writer deployed a
metaphor that Microsoft’s CEO used the following year to denounce
Linux, which is discussed in chapter 5.)

In a sign of growing wariness about views from the Free Software
Foundation that seemed overly radical to many people, some FOSS users
were critical of Stallman’s obstinacy. “Here is a man who get’s [sic]
exactly what he wanted (GPL’ing of Qt) and not once does he say thank
you to trolltech,” one Slashdot user wrote: “Instead, he switches from
license bashing, to other forms of insults.” Another satirically mocked
Stallman’s refusal to embrace the KDE community until it begged
forgiveness:
Oh what a wicked generation of thieves and harlots. Repent now, and be
saved. Accept the One True Way(tm).
Blessed are they who walk among the gnomes, for they will be Free(tm).



Blessed are those [who] change their licenses, for they will be forgiven.
Blessed are those who assign copyright to the FSF, for they will inherit
the Kingdom of GNU(tm).
If you truly be followers of RMS [Richard Stallman], you must daily
take up your soapbox and follow him.
—1 Perenthians 2:14–20.40

Despite such tensions, Trolltech’s decision to release Qt as FOSS
signaled an important victory for the FOSS community in one of its first
major confrontations with a proprietary software company. The battle
over the Qt license was not comparable in scale or in kind to the struggle
against Microsoft that also erupted in the late 1990s. But it was an
example of the FOSS community’s ability to secure the leverage it
needed to overcome proprietary software companies whose leaders chose
to play by rules with which FOSS developers disagreed.

The Qt affair was a victory in particular for the “free software”
segment of the FOSS community, which centered around GNU and
Stallman. This faction’s counterpart, the “open source” camp, considered
the Q Public License to be a valid open source software license. But
GNU developers were able to orchestrate enough support to prevail in
their efforts to suppress use of any non-GPL-protected version of Qt.
They sent a message that compromise with proprietary-software
companies was not necessary.

As for the GNU desktop environment projects, the release of the Qt
library under the GPL obviated the need to continue work on Harmony,
whose developers declared the project “effectively dead” on August 4,
1999.41 GNOME, however, remained under development. Version 1.0 of
the desktop environment appeared in 1999, followed by the 2.0 version
in June 2002. By the time of the 2.0 release, GNOME had evolved into a
feature-rich interface that offered customizable themes,
internationalization options, and accessibility support for users with
impaired vision or reading abilities. It also supported a range of
operating-system platforms, including not only systems based on GNU,
Linux, or BSD but also proprietary alternatives, such as Solaris, HP-UX,
and Unix itself.42 Some third-party groups even attempted to port
GNOME to Microsoft Windows in the early 2000s, with moderate
success.43



Office, Email, and Cross-Compatibility Applications

KDE, GNOME, and other desktop environments that emerged in the
FOSS world around the turn of the millennium did much to make FOSS
operating systems more pleasant and convenient platforms for users who
preferred to work with graphical interfaces. Yet their effect was
multiplied by the evolution of productivity applications, such as office
suites and sophisticated email programs, which also greatly refined the
FOSS user experience.

There were several attempts to bring modern office suites to the FOSS
community at this time. One was GNOME Office, a short-lived package
released in 2003 that failed to gain a large following. GNOME Office
combined the GPL-licensed AbiWord word processor with database and
spreadsheet software developed by GNOME programmers.44 Another
effort, discussed earlier in this chapter, was Corel’s attempt to make
WordPerfect available in a GNU/Linux environment.

Yet one office FOSS productivity platform fared better than these. By
the mid-2000s, OpenOffice.org, which included a word processor,
spreadsheet program, presentation software, and other tools, dominated
the FOSS world. It also established a significant presence within the
proprietary one.

OpenOffice.org originally was a proprietary office suite called
StarOffice, which the German company Star Division began developing
in 1985. In October 2000, Sun Microsystems acquired the StarOffice
source code and released it to the public as an open source project named
OpenOffice.org. The first stable version of the office suite appeared a
year later.

By 2004, OpenOffice.org controlled 14 percent of the enterprise
market, a significant feat for a project that faced entrenched competition
from proprietary competitors like Microsoft Office. The achievement
resulted, in part, from Sun’s investment of significant sums of cash in
OpenOffice.org development, which relied more heavily on paid
programmers than did most other FOSS projects of the time.45

OpenOffice.org remained the most popular office suite for FOSS
systems until 2010, when Oracle’s acquisition of Sun fractured the
OpenOffice.org development community. At that time, a team of



programmers who were wary of Oracle’s commitment to keeping the
code free launched an alternative office suite, LibreOffice. LibreOffice
was a fork of OpenOffice.org, meaning it was based originally on the
OpenOffice.org code but was developed and distributed independently.
In August 2011, OpenOffice.org came under the governance of an
Apache license, which helped to allay concerns regarding the freedom of
its code. Nonetheless, even though some GNU/Linux distributions
continue to ship with OpenOffice.org today, LibreOffice has gained a
wide following in recent years. It is now the default office suite on most
of the flagship distributions.

Another productivity coup for FOSS users arrived with the 2001
release of Evolution 1.0, a free email client developed by a company
named Ximian. Evolution was not the first FOSS email program, but it
offered more features than the alternatives, as well as a rich graphical
interface. Equally important was its support for email accounts hosted by
Microsoft Exchange, a closed source email server that was widely used
in the enterprise. Exchange support initially required the purchase of a
proprietary plug-in for Evolution, but Novell’s acquisition of Ximian in
2003 led to the release the next year of Evolution 2.0, which included
Exchange support for free.46 Attempts to port Evolution to Windows and
Mac OS X in the mid-2000s saw little success, but Evolution remains a
popular email client for GNU/Linux distributions today.47

FOSS users gained a second feature-rich email option with the release
in summer 2003 of Mozilla Thunderbird. Although the first version of
Thunderbird failed to gain a sizable following, the program saw wider
adoption with the release of Thunderbird 1.5 in 2006. Evolution’s tight
integration with the GNOME desktop environment, along with KDE’s
reliance on native email clients of its own, positioned Thunderbird
somewhat awkwardly within the application stack of GNU/Linux
systems. Yet Thunderbird’s support for multiple platforms, including
Windows and Mac OS X as well as FOSS systems, ensured that the
program would have enduring relevance as a leading open source email
and collaboration solution. Mozilla’s decision in 2012 to reduce its
investment in Thunderbird slowed development significantly, but
community programmers continue to work on it today.48

By the early 2000s, the introduction of programs such as Thunderbird,
Evolution, and OpenOffice.org made FOSS operating systems much
more viable productivity platforms for end users. But the lasting
presence of the Wine project as a significant part of the FOSS landscape



attests to the enduring demand of FOSS users for more applications than
those natively available to run on free Unix-like systems. As noted
above, Wine is a compatibility layer that allows operating systems based
on the Linux kernel to execute programs compiled for Windows. As the
project’s acronymous name implies, Wine is not an emulator, meaning
that it does not virtualize a Windows system or require Microsoft
software to run. Instead, Wine implements reverse-engineered functional
equivalents of Windows system calls within a Linux environment. This
means that applications that run via Wine theoretically perform about as
well as those running natively on Windows and can sometimes be even
faster.

The ability to run Windows applications on a GNU/Linux distribution
might appear to be advanced functionality, and Wine did not become
commercially important until the launch of platforms like Corel Linux in
the late 1990s. Yet Wine is nearly as old as the Linux kernel itself, and it
was not an especially innovative idea at the time of its birth. In the early
1990s, when the operating system ecosystem was much more diverse
than it is today, demand was high for solutions that allowed programs
designed for one type of system to be run on a different platform. This
was true not only in the Unix-like world but beyond. IBM also built a
Windows binary-compatibility mode into its OS/2 operating system in
the 1990s, for example.49

The development of Wine dates to June 1993, when some members of
the early Linux programming community—who were inspired by a
proprietary compatibility layer called Wabi that Sun had demonstrated in
1993 to run Windows programs on its Solaris operating system—began
collaborating to develop a similar solution for Linux. Although Torvalds
was not involved in Wine development, he was an early backer of the
idea.50 By July 1994, the Wine team had its own Usenet group—
comp.emulators.ms-windows.wine. Development remained steady
despite the introduction of 32-bit programs for Windows later in the
1990s, which made it more difficult to implement binary compatibility
between Windows and Linux applications.

Beginning in 1998, Corel marketed a GNU/Linux distribution that
offered Windows compatibility via a customized version of Wine as one
of its headline features, as noted above. Lindows followed Wine
development closely as well, for similar reasons.51 Microsoft was
sufficiently wary of Wine to note in an internal memorandum from 1998
(which is one of the Halloween documents discussed in detail in chapter



5) that “Linux advocates … are working on various emulators and
function call impersonators” that could make it easier for users to
migrate away from Windows.52

The Wine-related endeavors of Corel Linux and Lindows failed to
garner much commercial following, and Microsoft ultimately had little to
fear from Wine. Even so, development of the platform continued steadily
throughout the early 2000s. In March 2002, in response to concerns that
a commercial entity might appropriate their work, Wine developers
voted to adopt the Lesser General Public License (LGPL) to govern the
Wine code, which initially had been available under a less restrictive
BSD-style license. (A subsequent fork of the project called Rewind,
which retained the original licensing terms, fizzled due to lack of
developer interest.) Three years later, Wine developers released the first
“beta-quality” version of the platform, which they followed in 2008 with
the introduction of Wine 1.0. The Wine compatibility layer remains a
common feature of many GNU/Linux distributions today, enabling
FOSS users to run applications such as Microsoft Office. Ports also have
extended Wine’s functionality to other Unix-like operating systems,
including the Darwine project for Mac OS X.53

FOSS and the Web: Apache, Samba, PHP, and MySQL

The rapid expansion of the scope and sophistication of the FOSS
software suite in the 1990s and early 2000s—when GNU/Linux
distributions proliferated and applications grew increasingly diverse—
was a clear indicator of the viability of FOSS development models.
However, many of these new platforms centered on desktop computing,
where—despite endeavors like Corel Linux and Microsoft’s occasional
expression of concern over products such as Wine—they enjoyed
relatively limited adoption. The saturation of the desktop market with
proprietary software made this difficult ground for FOSS developers and
companies to conquer.



The story was different in the rapidly expanding market for the
software that powered Internet-connected servers. In the 1990s, the
explosive importance of FOSS applications and operating systems for
servers demonstrated FOSS’s large-scale viability more clearly than ever.
It also eventually placed the FOSS ecosystem squarely in Microsoft’s
sights, fomenting the “war” described in the following chapter.

In most ways, it is not surprising that FOSS enjoyed its greatest
successes during the 1990s in the Internet market. Of all the technology
sectors at the time, the Internet depended most closely on the principles
and practices that were central to FOSS developers. The Internet was a
decentralized, collaboratively maintained network. It functioned because
open standards and protocols allowed computers that were built with
different hardware and ran diverse operating systems to send email, files,
Usenet posts, and eventually HTML-based Web pages to one another.
“The Internet is, in many ways, the original Open Source venture,” as
one set of chroniclers wrote in 1999 in an essay about what they called
the “Open Source Revolution.”54

When discussing the 1990s, however, generalizations should not be
made about openness in different parts of the Internet. Although open
standards were important in the history of the Internet as a whole, in the
early 1990s it was less clear that openness would prevail within the
emerging segment of the Internet known as the World Wide Web. Tim
Berners-Lee famously created the Web starting in 1990 at the CERN
(Conseil Européene pour la Recherche Nucléaire or European
Organization for Nuclear Research) lab in Switzerland by developing the
hypertext markup language (HTML); a browser that could display
documents in HTML format; a server that served HTML files; and the
HTTP protocol, which allowed communication between servers and
browsers. CERN distributed its Web software relatively freely, but there
was little collaboration between the organization and the FOSS
movement in the years when the Web was emerging.

By around 1994, according to CERN’s official history, “the Free
Software movement had become … better known at CERN.”55 It was
probably for that reason that CERN in 1993 released its Web software
into the public domain. However, as Stallman emphasized in the early
1990s, public domain software was not at all the same as adopting free
software because placing code in the public domain does not ensure that
it will always remain open.56 CERN later endorsed the GPL, but initially,
its programmers did not consciously attempt to build the Web using



software protected by the same licenses that governed Linux, GNU, and
other major FOSS projects of the era.

In this sense, it was significant that the Apache Web server succeeded
spectacularly in making FOSS code a key part of the Web in the mid-
1990s. Apache’s origins can be traced to a public-domain HTTP server
called NCSA HTTPd, which was developed at the University of
Illinois’s National Center for Supercomputing Applications as an
alternative to the Web server that Berners-Lee had created at CERN.
NCSA HTTPd evolved into the most popular server for the Web in the
early 1990s, but Netscape’s poaching from the project of its lead
developer, Rob McCool, in 1994 stunted its momentum. Administrators
of websites around the world then found themselves modifying their
versions of NCSA HTTPd locally to suit their various needs, leading to
incompatible implementations of the software. “Uncertainty over the
future of the NCSA httpd license” was also a concern, according to
developers.57

Apache was born as an effort by a small group of webmasters to solve
this problem. By February 1995, eight developers had begun
collaborating as an organization they called the Apache Group to build a
new Web server based on the NCSA HTTPd code base.58 “Our goal,” as
one of the founding developers, Robert Thau, described it at the project’s
start, “is to produce a revised version of NCSA [HTTPd server version]
1.3 which has all the popular fixes in it directly, in order to have a
supported server which actually meets our needs.”59 They relied on a
series of patches to do that, giving rise to the server’s name, Apache,
which was a play on the phrase “a patchy server.”60 (Months into the
project, Apache developers confronted concerns that the title might lack
“political correctness,” which they planned to address by vowing to
change the name “if any authorized representative of the Apache Nation
asks us” to do so. They also proposed offering Web hosting for “native-
American-related pages” to mollify people who objected to the name.)61

By mid-March 1995—despite disagreements among the early
developers regarding whether to announce their project publicly or keep
the initiative to themselves—Apache had a logo and an official mission
statement, which declared the group’s intention to create the de facto
server for the Web based on open standards:

The Apache project has been organized in an attempt to answer some of the
concerns regarding active development of a public domain HTTP server. The goal



of this project is to provide a secure, efficient and extensible server which provides
HTTP services in sync with the current HTTP standards.62

Over subsequent months, the development team overhauled the server’s
design and added new features, leading to the release in December of
Apache 1.0. By early 1996, less than a year after the project’s launch,
Apache had become the world’s leading Web server, according to usage
statistics from Netcraft.com.63

The Apache Group introduced an important freely redistributable
software product to the Web at a crucial moment. However, the launch of
the Apache server did not ensure the influence on the Web of existing
FOSS initiatives as much as it gave rise to a new faction within the
FOSS community. As the Apache server and the other software that
came under the Apache Group’s umbrella grew in importance, the
Apache community took steps to distinguish itself from other FOSS
projects.

One of those distinctions centered on licensing. The Apache 1.0
license allowed free redistribution of the Apache server in source or
binary form. It also permitted developers to create and distribute
derivative works of the software so long as they clearly distinguished
their work from the original product and retained the same licensing
terms. However, the license did not compel or even encourage
developers of derivative works to share their source code publicly, and it
contained a clause that required all advertising materials for software
packages that included Apache to give credit to the Apache project.64

For multiple reasons, these licensing terms sparked tense debate
within the FOSS community. A key issue was the lack of protection for
source code in the Apache 1.0 license, which did not meet the Free
Software Foundation’s standards. There were practical objections to the
licensing, as well. By July 1995, the clause regarding advertising
prompted complaints to the Apache developers from Yggdrasil
Computing that the licensing terms made it unfeasible to include Apache
in the company’s GNU/Linux distribution. “I understand the intent
behind the Apache license, but I feel that other licenses may do a better
job of legally protecting the Apache Group and keep the price low,” a
Yggdrasil representative informed the Apache team. He suggested that
“one license that would accomplish the same goal is the GNU General
Public License, which also prevents proprietary extensions of software
from becoming not free.”65



The Apache programmers’ reactions to such advice highlighted the
wariness of some members of the FOSS community to accept aggressive
free software licenses such as the GPL. As one developer wrote at the
time:

I’m no legal expert, and I don’t even understand all of the GPL, but from other
discussions, I get the feeling that it introduces many headaches, and that a [liberal]
copyright would be a better idea. GPL wants to be the exclusive licensing
agreement, so if you include any GPL source code in your product, everythign [sic]
else that ships with it must also fall under GPL. Or something silly like that. That
may become a factor if Apache incorporates code under different copyrights and
distribution agreements.66

Another developer commented that if the Apache team were to adopt the
GPL, then the move “would only cause us similar grief in the BSD
camps” because supporters of permissive, BSD-style licensing terms like
those of Apache would have been displeased to see the server come
under the governance of the GPL.67

Ultimately, the Apache team opted to retain the original license for the
duration of the 1990s. The developers modified the licensing terms in
2000, when they removed the burdensome language requiring
advertising for Apache software to give the programmers credit. Instead,
only the documentation supplied with GNU/Linux distributions and
other software packages that contained Apache needed to mention the
server’s developers.68 A further update in 2004, when the Apache 2.0
license was introduced, gained the approval of the Free Software
Foundation, which deemed the new license compatible with the GPL.69

In addition to licensing differences, the Apache Group also adopted a
somewhat different approach to code development in certain respects.
Most significantly, it consciously avoided the “benevolent dictator”
model that prevailed in some other major FOSS projects. As the
organization’s official history notes:

Unlike other software development efforts done under an open source license, the
Apache Web Server was not initiated by a single developer (for example, like the
Linux Kernel, or the Perl/Python languages), but started as a diverse group of
people that shared common interests and got to know each other by exchanging
information, fixes and suggestions.70

For that reason, the Apache developers granted direct access to their
source code repository to anyone whom they deemed—on the basis of
suggestions or small code contributions submitted via email—deserving



of becoming an official member of the project. This strategy was
different from the carefully choreographed development methods of the
GNU project. And although in a certain respect it resembled the
“bazaar”-style approach of the Linux kernel, it was a more liberal
version of this model. Many developers could propose changes to Linux,
but their modifications required explicit approval from Torvalds before
becoming part of the official Linux code. In contrast, the Apache
approach allowed a broader group of developers to control the code
directly.

The appeal of the Apache model for many FOSS developers was made
clear by the rate at which the organization grew. Although conceived
initially only to develop a Web server, the Apache Group expanded its
focus during the late 1990s to include a number of other projects. A 1996
proposal for creating an Apache Web browser never bore fruit, but by
1999, the organization was launching initiatives such as Jakarta, which
develops several different programs based on the Java programming
language. So-called because the project was conceived in a Cupertino,
California, conference room of the same name, Jakarta was made
possible by Sun’s agreement to transfer Java code to the Apache
developers “so that development of these technologies could take place
in an open and collaborative way.”71

The growth of the Apache Group’s purview, combined with the
commercial significance of its Web server software, spurred calls for the
project to establish a more formal structure. In October 1998, the core
Apache developers—who by that date totaled eighteen—met for the first
time in person at the inaugural ApacheCon conference in San Francisco.
They were joined by nearly five hundred other attendees, as well as
representatives of IBM, Red Hat, and approximately ten other
companies, which provided proof of Apache’s importance for industry.72

Several months later, in March 1999, the Apache Software Foundation
was incorporated “to formally shepherd the development of the #1 Web
server worldwide—the Apache HTTP Server Project—and other projects
under the Apache umbrella.”73 With the incorporation, the loose
collaboration that began in 1995 between programmers in the Apache
Group became another major institutional presence within the FOSS
community.

Again, that did not mean that Apache community leaders saw eye to
eye on all issues with their counterparts in the Linux community, the
Free Software Foundation, or other FOSS groups. The announcement of



the Apache Software Foundation’s incorporation quoted one of the
founding board members, Brian Behlendorf, who said that part of the
foundation’s goal was to “do what we can to make the open-source
development model really work,” suggesting that the Apache supporters
perceived flaws in the operations of other FOSS organizations. In
documents related to an apparently abortive effort to write an official
history of the Apache project in the early 2000s, Apache supporters
similarly stated that “one of the most important roles that Apache plays,
apart from being a damned fine product, is as a model of how [open
source software] projects are *supposed* to work.”74

Despite differences in licensing and development methodologies from
other factions within the FOSS community, the Apache Software
Foundation has thrived since its creation more than fifteen years ago. By
2016, it hosted nearly three hundred different FOSS projects.75 Only a
minority of them are directly related to Web server software. Instead, the
list includes projects such as Hadoop, an important platform for
processing big data, and Cassandra, a distributed database system that is
designed for cloud computing infrastructure. As one of the most
important centers of FOSS software development since the late 1990s,
Apache has shown that the GPL is not the only way to license FOSS
software effectively. It also highlights the rich diversity of FOSS
ideologies and methodologies and makes the point that there is no single
way to “do” FOSS.

The Samba project was another important component of the FOSS
community’s ability to compete against proprietary encroachment in the
Internet market in the 1990s. Launched in late 1991 by a lone
programmer, Andrew Tridgell, who reverse-engineered Digital
Equipment Corporation’s networking protocol for servers, Samba
evolved by the late 1990s into a full-featured suite for integrating
different types of operating systems across a computer network. This
meant that companies using Windows and GNU/Linux-based computers
concurrently could share data, printers, and resources between devices
over the network. In the Samba developers’ own words, the software
made it “possible for many kinds of systems to share files that have been
incompatible until now.” As such, Samba, which was and remains
licensed under the GPL, became an important tool for resisting efforts by
proprietary software companies to “lock in” customers to their products
by making them incompatible with third-party solutions.76



Samba was also significant as the first major FOSS project to confront
challenges that arose from closed protocols rather than closed code.
Unlike the developers of Linux and GNU, Tridgell and his team were not
working to create new networking software that would replace
proprietary solutions. Their goal was instead to discover the details of the
protocol that defined how Windows computers exchanged information
over the network, which was not publicly documented. Samba increased,
rather than undercut, the market share of a proprietary networking
protocol—albeit by offering a FOSS alternative to the closed source
software that Microsoft distributed. In this way, the Samba developers
showed that the FOSS community could mount effective responses to
organizations that sought to limit the openness not only of code but also
of protocols and application programming interfaces (APIs).

In a similar way, free programming languages designed for the
Internet age helped to keep standards open as the Web grew increasingly
important, just as the C language had done for Unix decades earlier by
providing an easily portable coding framework. These included PHP,
which was born in 1994 out of an effort by the Greenlandic programmer
Rasmus Lerdorf to track visits to his personal website. (He accordingly
named the language Personal Home Page, from which the shorthand
PHP was derived.) In June 1995, Lerdorf made the source code for the
PHP package, which by then had expanded to support database
interaction and the creation of dynamic Web pages, publicly available.77

Initially, PHP worked only on Unix-like operating systems and had a
relatively small following. In May 1998, a mere 1 percent of the world’s
Web servers deployed PHP. After an Israeli company took over PHP
development from Lerdorf later that year, however, and released PHP 3.0
with additional features and support for Windows servers as well as
Unix-like ones, the platform’s popularity grew. At its peak, PHP 3.0 ran
on about 10 percent of servers around the world. The release of PHP 4
two years later made the programming language yet more popular with
Web developers, and PHP 5, which debuted in July 2004, enjoyed even
wider deployment, thanks in part to the decision by Mark Zuckerberg to
adopt it as the basis for building Facebook. PHP’s popularity has
declined somewhat in recent years, but it remains a vitally important
FOSS language for Web programming today.78

Alongside PHP, the Perl and Python languages also emerged as
favorites of the FOSS programming community in the 1990s. These
languages, which date respectively to 1987 and 1989, emerged as the



efforts of individual programmers to create elegant high-level
programming languages tailored to the needs of hackers.79 Although
neither Perl nor Python caters to Web development in as direct and
exclusive a way as PHP does, they nonetheless helped to drive
innovation as FOSS developers defended their slice of the Internet
market.

The last essential ingredient in ensuring FOSS’s leading role as the
Web grew was MySQL, a database for storing information. MySQL
originated from database software called Unireg that Michael “Monty”
Widenius developed in 1979 for a Swedish company named TcX.
Starting in 1994, Widenius and David Axmark began work on an
updated version of Unireg, called MySQL, which they released publicly
in October 1996. The first public version of MySQL was available only
in closed source form for the Solaris operating system, but a Linux
release with full source code debuted in November 1996.80

MySQL’s appearance filled a crucial niche in the burgeoning FOSS
software stack for the Web. It provided a FOSS solution for storing data,
which an Apache server could then retrieve and deliver over the Web in
response to commands from PHP scripts. Running on top of a Linux-
based server, Apache, MySQL, and PHP constituted what systems
administrators came to call a LAMP stack. As a cost-free and
customizable way to create the software infrastructure needed to serve
Web pages or other applications, the LAMP stack had obvious value as
the Web entered millions of homes and businesses in the late 1990s. The
LAMP stack, which academic researchers in 2011 said “approaches the
intellectual complexity of the Saturn V rocket,” remains common
today.81

FOSS and Business

The success of Apache, Samba, MySQL, and other Internet-related
FOSS projects in the 1990s helped to diversify the FOSS community. It



also raised the importance of FOSS within the business world to a new
level. As earlier chapters of this book show, profitable commercial
ventures related to FOSS were not new in the late 1990s. Companies
such as Cygnus Solutions had been making money by selling support
and other services related to free software for a decade by that time. And
in the early 1990s, a variety of start-ups experimented with business
models that centered on Linux. Yet by the end of the decade, a larger set
of companies was turning profits by leveraging FOSS’s newfound
relevance within the Internet market as well as the many other FOSS
applications and operating systems that had become available.

One of these companies was Red Hat, Inc. The business traced its
origins to the humble ACC Corporation, an outfit owned by Bob Young
that distributed software and documentation for Unix-like systems in the
early 1990s. In January 1995, realizing that sales of Linux-based CDs
were outpacing his documentation business, Young partnered with Marc
Ewing, creator of the Red Hat GNU/Linux distribution, to found Red Hat
Software, Inc. The new company intended to sell Red Hat GNU/Linux
and other FOSS products through major retail outlets, such as
CompUSA.82

For Red Hat, identifying a business goal proved easy, but developing a
strategy for achieving it was harder. Young wrote in a 1999 essay on the
company’s history that he and Ewing initially considered several
different types of industries to emulate as they pondered how to profit by
distributing software that cost nothing in its original form. One of the
industries they contemplated was the legal industry because one of its
chief commodities, legal arguments, is free and exists in the public
domain. Another idea was to mimic the automotive industry, where
companies use an assembly process involving parts from hundreds of
distributors to manufacture a vehicle and then guarantee the final
product, just as Red Hat intended to do by combining an array of
different FOSS programs to build its GNU/Linux distribution.83

Ultimately, however, Red Hat settled on the model of the commodity
industries, including companies that sell such items as bottled water,
soap, and ketchup. For these companies, success is based on marketing
strategies that build strong brands, without which their products would
have little value. “Ketchup is nothing more than flavored tomato paste,”
Young wrote: “Something that looks and tastes a lot like Heinz Ketchup
can be made in your kitchen sink without so much as bending a
copyright rule.” Yet at the time of Young’s writing, Heinz controlled 80



percent of the ketchup market, and almost no one made ketchup at
home.84 One reason that this is so is that buying ketchup from Heinz is
more convenient than making it. But more important, Heinz has defined
how ketchup should look, smell, and taste, according to Young. In the
same way, Red Hat sought from its early days “to offer convenience, to
offer quality, and most importantly to help define, in the minds of our
customers, what an operating system can be,” in Young’s words.85

Red Hat faced stiff competition in that regard from Microsoft, which
had a two-decade head start in the quest to define the type of operating
system users thought they should want. As a result, Red Hat set out to
distinguish its products by emphasizing their ability to give users control
over software. In that respect, the company transformed a core tenet of
the FOSS movement—Stallman’s aggressive emphasis on user freedom
as opposed to development efficiencies—into a marketing pitch. The
company thus showed that, even though some FOSS supporters found
rhetoric related to freedom overly bombastic, the Free Software
Foundation’s message was not incompatible with commercial endeavors.
Red Hat also proved that selling support services related to free software,
as Cygnus Solutions had done, was not the only way to make money in
the FOSS market. Customers would also pay for code if it came
compiled and packaged in a compelling way that added value, even
though they could obtain the constituent parts elsewhere for free.

With this approach, Red Hat flourished. On August 11, 1999, it
became the first FOSS business to go public. In November of the same
year, the company merged with Cygnus Solutions, combining the latter’s
support services for FOSS with Red Hat’s enterprise-grade GNU/Linux
distribution. Although the FOSS commercial space has grown more
diverse since that time, Red Hat remains the flagship company in this
market today and is among the top corporate contributors to Linux kernel
development.

The other major FOSS company to go public in the late 1990s, VA
Linux Systems, fared less well. Founded in 1993, VA Linux attempted to
pioneer yet another FOSS-based business strategy. It sold computers
with GNU/Linux preinstalled, aiming to compete with the likes of
Dell.86 The company expanded rapidly and was making $100 million in
annual sales by 1998. In the same year, it received capital investments
totaling $5.4 million from Intel and Sequoia Capital. The next year, an
additional $25 million in funding arrived from an assortment of other
backers.



On December 9, 1999, to great anticipation, VA Linux became a
publicly traded company, operating under the stock symbol LNUX.
Priced initially at $30 per share, the company’s stock gained 698 percent
in its first day of trading, the highest rise in NASDAQ history. But the
momentum of VA Linux did not endure. A year after the company’s
stock began trading publicly, LNUX had declined in value to $8.49 per
share, about 3.3 percent of its initial high.

To most observers at the time, the astounding rise and fall of VA
Linux reflected the wild nature of the broader Internet “dot-com bubble”
of the late 1990s, when overvaluation of technology companies was
routine. The New York Times, which summarized the company’s initial
public offering with the headline “A Tiny Company with Dim Prospects
Goes Public with a Bang,” was pessimistic about VA Linux’s outlook
even before the stock flopped.87

Yet VA Linux’s failed public launch was not the result of the dot-com
bust alone. Its fate was also attributable to its attempt to compete in the
desktop computer market, where it fared no better against entrenched
proprietary competitors than ventures like Corel Linux did in the same
period. In addition, VA Linux suffered from a lack of strong
contradistinction against other desktop and server hardware
manufacturers at the time. Selling computers with Linux and GNU
software preinstalled was not a unique value proposition.

Despite the bursting of its initial bubble, VA Linux survives today as a
testament to the commercial viability of media related to FOSS software.
In early 2000, the company began shifting its focus away from selling
computer hardware after it acquired Andover.net, which owned a variety
of news outlets that catered to the programmer crowd, including
Slashdot. The next year, VA Linux changed its name to VA Software and
excised itself from hardware sales entirely. After a series of subsequent
mergers, the company today operates as Geeknet, Inc., and continues to
focus on websites and other media offerings for the FOSS niche.88

It was not only startups like VA Linux and Red Hat that fueled the
explosion of FOSS commercial activity in the late 1990s. Taking note of
the investor enthusiasm with which these companies began trading
publicly, as well as figures such as the one showing that businesses
installed 750,000 Linux-based servers during 1998 alone, established
companies took a keen interest in the Linux kernel, the Apache Web



server, and GNU software during this period.89 Of these, the most
significant by far was IBM.

IBM began investing in the FOSS space in June 1998, when it
announced that it would sell and support the Apache Web server.90 From
there, the company’s interest in Linux grew as follows, according to Big
Blue:

By the late 1990s, Linux was almost good enough to run high-volume servers—and
it was free. Sam Palmisano, at the time an IBM senior vice president, came back
from a global tour of Internet companies and reported that he kept hearing all about
Linux from young programmers. As IBM’s head of internet strategy, Irving
Wladawksy-Berger similarly kept hearing about Linux. IBM commissioned an
internal study, which turned into a plan to use Linux to deliver innovation in new
ways and create a new force of openness, quality, performance and security.
Wladawsky-Berger and Palmisano supported this plan and helped convince then-
CEO Lou Gerstner to make a big bet on the forces of open innovation. Adopting
Linux as an IBM open operating system looked like a gigantic, risky, counter-
culture bet. But “Linux perfectly fit what we needed,” Wladawsky-Berger said later.
Over time, it became obvious that it wasn’t a counter-culture bet at all, but a
leadership step towards the mainstream culture of the future.91

In January 2000, IBM made its endorsement of Linux public. At the
end of that year, it took the further step of announcing that it would
invest $1 billion to support the development of the kernel and related
projects. IBM’s chief executive at the time, Louis Gerstner, said the
company viewed Linux as “a major force in IT and moving IT to the
next generation of the Internet business,” particularly because he
believed that open, standards-based systems were the future. “The
movement to standards-based computing is so inexorable, I believe Sun
—and EMC and Microsoft for that matter—is running the last big
proprietary play we’ll see in this industry for a good long while,”
Gerstner said.92

As IBM’s CEO indicated, the company’s embrace of FOSS, which
Torvalds called “Linux’s biggest coup,” was about much more than
altruism.93 By supporting the development of GNU/Linux systems, IBM
aimed to ensure that Microsoft, which by the late 1990s had cornered
most other sectors of the operating system market, would not
monopolize software for server platforms. If it did, IBM or its customers
would likely have faced steep prices when deploying the server hardware
that IBM sold. For IBM, the combination of Linux with GNU programs
and Web software such as Apache’s to build freely redistributable server
operating systems promised to prevent that eventuality.



IBM’s billion-dollar Linux investment infused enormous cash into the
FOSS community, augmenting the momentum of FOSS development
even further.94 And beyond cash, IBM’s investment in Linux lent crucial
credibility to the FOSS ecosystem by showing that multinational
corporations believed that code that cost nothing was worth billions of
dollars.

While IBM was pouring vast sums into FOSS development, another
long-established technology company, Apple, was making FOSS
investments of its own as it built a new operating system on a FOSS
foundation. The OS X operating system, which Apple introduced in 2001
as a major reworking of the software platform it included on the
computers it sold, originated from the Unix-like OPENSTEP operating
system that the company NeXT had developed under the direction of
Steve Jobs during his hiatus from Apple from 1985 to 1997. OS X was
based on the Mach microkernel (the same one that the GNU developers
experimented with, as chapter 2 notes) as well as components drawn
from the BSD operating system (such as the networking stack). Because
all of this software was available under permissive licenses that allowed
free redistribution, Apple was able to integrate the code into OS X
without legal or financial constraints.

Apple’s inclusion of Mach and BSD code in OS X ultimately brought
FOSS to the computers of millions of people who might not otherwise
have used it, but the development did not sit well with leading members
of the FOSS community, which has tended historically to have a tense
relationship with Apple. In part, the animosity predated the development
of OS X by nearly a decade. As chapter 2 notes, the Free Software
Foundation encouraged supporters to boycott Apple products between
1988 and 1995 as a result of the company’s efforts to sue competitors for
infringing on the “look and feel” of Apple products.95

Animosity toward Apple was also evident in Torvalds’s 2001
autobiography, where he lashed out against a company that, perhaps
more than any of its peers, has built a thriving business selling highly
proprietary software with a FOSS core. Torvalds describes a meeting
with Jobs in the late 1990s, when OS X remained under development:
“Basically, Jobs started off by trying to tell me that on the desktop there
were just two players, Microsoft and Apple, and that he thought that the
best thing I could do for Linux was to get in bed with Apple and try to
get the open source people behind Mac OS X.”96 The creator of Linux
was not at all receptive to this idea, partly because he believed that, from



a technical perspective, the OS X kernel was “a piece of crap. It contains
all the design mistakes you can make, and managed to even make up a
few of its own.”97

Philosophical disagreements over kernel design were only part of the
issue. Torvalds also found Jobs to be out of touch with the purpose and
potential of Linux and FOSS generally. “Jobs made a big point of the
fact that Mach’s low-level kernel is open source,” Torvalds writes,” yet
“he sort of played down the flaw in the setup: Who cares if the basic
operating system, the real low-core stuff, is open source if you then have
the Mac layer on top, which is not open source?” For Torvalds, Jobs’s

main argument was that if I wanted to get the desktop market I should come join
forces with Apple. My reaction was: Why should I care? Why would I be interested
in the Apple story? I didn’t think there was anything interesting in Apple. And my
goal in life was not to take over the desktop market.98

Torvalds also disdained Jobs’s self-flattering approach, writing that “He
just basically took it for granted that I would be interested. He was
clueless, unable to imagine that there could be entire segments of the
human race who weren’t the least bit concerned about increasing the
Mac’s market share. I think he was truly surprised at how little I cared
about how big a market the Mac had—or how big a market Microsoft
has.”99

Stallman was similarly critical of Jobs and Apple long after the “look
and feel” lawsuit battles of the late 1980s and early 1990s ended.
Following Jobs’s death in 2011, Stallman, misquoting the statement of a
former mayor of Chicago in response to the passing of a political
opponent, wrote on his personal website:

“I’m not glad he’s dead, but I’m glad he’s gone.” Nobody deserves to have to die—
not Jobs, not Mr. Bill, not even people guilty of bigger evils than theirs. But we all
deserve the end of Jobs’ malign influence on people’s computing.100

In a subsequent post, Stallman clarified the misquotation of the Chicago
mayor but remained unapologetic about his comments on Jobs’s efforts

to make general-purpose computers with digital handcuffs more controlling and
unjust than ever before. He designed them to refuse even to let users install their
own choice of applications—and installing free (freedom-respecting) applications is
entirely forbidden. He even tried to make it illegal to install software not approved
by Apple.101



In 2013, Stallman reaffirmed his position on Jobs and Apple once again.
He told Internet users that, as crude as his comments after Jobs’s death
may have been, the issue was one of “substantive good and evil,” which
transcended concerns of political correctness.102

Despite strongly worded criticisms of Apple such as these, the
tensions between the company and the FOSS community in the late
1990s could not compare to the existential struggle that erupted between
FOSS and Microsoft. That conflict, along with battles within the FOSS
community that comprised the other part of the FOSS “revolutionary
wars,” is the subject of the next chapter.



5 The FOSS Revolutionary Wars

Free Software, Open Source, and Microsoft
Warfare frequently accompanies revolutions, and the free and open
source software (FOSS) revolution was no exception. In the late 1990s
and early 2000s, the FOSS revolutionaries found themselves fighting not
one but two wars born out of the momentous changes their activities had
brought about in the world.

They waged the first of those conflicts among themselves. As hackers
with divergent interpretations of what free software—or open source
software, to use the term coined by one of these groups in 1998—should
be and do vied for control of the FOSS universe, an ongoing rift
developed within hackerdom.

Meanwhile, the FOSS community as a whole found itself waging a
different struggle against external enemies. Alarmed by the way FOSS
was revolutionizing the computing industry in the late 1990s, proprietary
software companies, with Microsoft chief among them, poured huge
amounts of resources into an effort to destabilize the FOSS community
and stymie FOSS software’s surge into the business world. The FOSS
revolutionaries confronted this challenge at the same time that they
battled among themselves.

This chapter explores both of these revolutionary wars, their influence
on the technical and political evolution of FOSS, and their outcomes. It
also explains why the winning factions—the open source camp in the
case of the FOSS civil war and the FOSS community in the war against
Microsoft—triumphed.

The FOSS Civil War



Stallman and Torvalds were in agreement regarding Apple, as the end of
the previous chapter notes, but by the late 1990s, their views on other
important issues had grown much less harmonious. By that time, these
programmers had emerged, willingly or not, as figureheads for
competing factions within the FOSS community. These two groups—the
“free software” camp (led by Stallman) and its “open source” adversary
(associated with Linux and Torvalds)—found themselves battling for
control over the meaning of the FOSS revolution and software freedom.
This struggle became the FOSS civil war.

The FOSS civil war of the late 1990s was not completely novel. As
previous chapters show, the free software community, like any large,
voluntary group, had always lacked total consensus on various political
and technical issues. In the 1980s and early 1990s, for instance, the GNU
project and the BSD developers took very different approaches to
licensing. Yet during that period, these developers got along well enough
to continue collaborating with one another.

By the late 1990s, however, differences between the free software and
open source camps had grown so irreconcilable that each group began
excluding the other from its plans and activities. The factions also
questioned the legitimacy of competing interpretations of the meaning of
software freedom.

Previous attempts to explain the unprecedented tensions that affected
the FOSS community in the late 1990s attribute them to a shift in the
predominant hacker mores. That interpretation emerges from Raymond’s
essay “Homesteading the Noosphere,” first published in 1998 and
updated several times through 2000, in which he examines different
strands of hacker culture. Raymond contends that “historically, the most
visible and best-organized part of the hacker culture,” which he identifies
with Stallman and the Free Software Foundation, “has been both very
zealous and very anticommercial.” Only after “the Linux explosion of
early 1993–1994,” he writes, did a more pragmatic group of hackers
establish “a real power base,” which centered on Linux development.1

Painted in broad strokes, the historical narrative aligns with
Raymond’s suggestion that the center of gravity within the hacker
community was shifting toward “pragmatism” by the mid-1990s. Yet a
closer analysis reveals a more complex picture in several respects. For
one, as chapter 2 shows, it is inaccurate to describe Stallman and GNU
as unpragmatic or anticommercial, especially in their early years.



Stallman and his cohorts were firm in their beliefs but did not oppose
commercial endeavors related to free software. On the contrary, they
helped to pioneer them. Nor were they unwilling to make pragmatic
compromises, as they did, for instance, when scaling back the stringency
of the GPL licensing terms in the late 1980s.

In addition, Raymond’s depiction of Linux hackers as more pragmatic,
less zealous, and less anticommercial than their GNU counterparts is a
messy one. Those descriptors fit some of the Linux developers at certain
points in the kernel’s history. But developers like those in the Debian
project, which was born out of a fear that the Linux ecosystem was
becoming too commercial and was consequently losing its value for
hackers, do not fall cleanly into Raymond’s interpretation. At the same
time, Torvalds himself, as the previous chapter shows, was doggedly
anticommercial when he first released the Linux kernel, an attitude
highlighted by the no-money clause of the original Linux license. This
further complicates the notion of a clear distinction between the ways
that the Linux crowd and Stallman and his cohorts thought about
software and hacker values.

Finally, although hacker culture had evolved by the 1990s from what it
had been decades earlier, the core hacker values endured. True, a
singular, universal hacker ethic remained just as elusive in the 1990s as it
was in the 1950s and 1960s. Yet as Steven Mizrach shows in a
comparison of hacker literature from different time periods, most hackers
in the 1990s continued to embrace a basic set of principles that included
the imperatives of sharing and open communication.2 Mizrach also
demonstrates a clear continuity between these values in the 1990s and
their origins among 1950s- and 1960s-era hackers. There was no
fundamental shift in the type of hacker who stood at the fore of the
community between the 1960s and the 1990s.

For all of these reasons, the FOSS civil war of the late 1990s cannot
be described as a struggle between pragmatic and unpragmatic hackers
or between different generations of hackers or groups that endorsed
wholly opposite forms of the hacker ethic. The conflict centered instead
on defining the meaning, goals, and limits of the FOSS revolution, which
hackers had never clarified despite having spent many years working to
advance free software projects.

Ambiguity regarding the nature and aims of the free software
revolution had been embedded within the movement since its origins. As



chapter 2 notes, when Stallman announced the GNU project in
September 1983, he failed to specify what he had in mind when he used
the word free to describe the Unix-like operating system he envisioned.3
Readers found it easy to assume that Stallman meant that he would give
away the software at no cost. The “GNU Manifesto,” which Stallman
published in 1985 and updated a few times in subsequent years,
emphasized the importance of sharing source code more than the 1983
announcement had done, but the primary focus of the “Manifesto”
remained on producing cost-free software. Stallman later admitted in
comments on the document that his “wording was careless” and that
when he published the text, he “had not yet clearly separated the issue of
price from that of freedom.”4

Yet even if Stallman eventually became better at articulating how, for
him, ensuring the freedom of the user by distributing source code was
the chief goal of free software development, the persistence during the
GNU project’s early years of ambiguity regarding what “free software”
meant birthed a confusion that Stallman’s later rhetoric could not fully
erase. This confusion laid the foundation for different groups of hackers
in the 1990s to stake competing claims regarding what free software
should entail.

One of the earliest examples of this conflict involved debate over what
to call GNU/Linux distributions. As chapter 3 explains, the common
practice of referring to operating systems based on the Linux kernel and
GNU software simply as “Linux” spawned a vociferous campaign by
Stallman to promote the “GNU/Linux” nomenclature to emphasize what
he called the “ethical importance” of free software.5 That campaign was
largely a failure, and even today, the term GNU/Linux rarely appears
outside of circles of programmers who strongly support the Free
Software Foundation. (This book uses the term GNU/Linux out of a
concern for balance and not as an endorsement of a particular FOSS
ideology or camp.)

In 1999, one typical free software user suggested that Stallman lost the
GNU/Linux battle because the term was simply too awkward to gain
wide acceptance. “I recognize it as GNU/Linux but I don’t call it
GNU/Linux because I’m lazy,” he said.6 Yet the notion of laziness only
hints at the real issue at stake. For many hackers who opposed Stallman,
the chief problem was not that the GNU/Linux name and other initiatives
of the Free Software Foundation demanded too much of users but rather
that these initiatives were not sufficiently utilitarian to serve what many



people deemed to be the true goals of the FOSS revolution—which, for
them, was about making coding more efficient, not fulfilling an ethical
obligation.

The varying values that different hackers placed on ethics and utility
was also evident in a major disagreement during the 1990s over the pace
of development of the GNU C Library (glibc). A group of developers
working on Linux felt that updates to the library were being issued too
slowly to support the rapid pace of Linux development, so they forked
glibc by launching their own version of the library, which they developed
independently of the GNU version of the software.7 The forking
initiative proceeded for several years until GNU’s release of a new
version of glibc in January 1997 prompted developers of the competing
implementation to embrace GNU’s release once again. Even then,
tensions remained bitter enough that Stallman refused to integrate code
from the fork back into the updated version of glibc, citing concerns over
the ambiguity of authorship of the fork.8

At its heart, the glibc fork resulted from dissent regarding how
utilitarian free software should be. The priority for GNU, which was still
operating in cathedral-style development mode, was having infrequent,
feature-rich, well-tested releases of the library because the GNU
project’s ultimate goal was creating an elegant free software operating
system that would benefit users above all. In contrast, the programmers
who forked glibc wanted an implementation that catered to the needs of
the Linux kernel development community and was released early and
often enough to sustain quick advances in Linux coding.

Disputes over whether utilitarian advantage should drive the big-
picture vision for the FOSS movement escalated as the 1990s
progressed. Matters came to a head in 1998, when Netscape announced
that it would open-source its Web browser (a decision that led to the
creation of Mozilla, which is discussed later in this chapter). The news
prompted the publisher Tim O’Reilly, a FOSS supporter, to convene a
meeting in April of what Raymond called “a select group of the most
influential people in the Open Source community.” Among them were
Raymond, Torvalds, representatives of Mozilla and Apache, the creators
of the Perl and Python programming languages, and several others.9 Not
present was Stallman, whom O’Reilly excluded because he deemed him
“inflexible and unwilling to engage in dialogue.”10 Although O’Reilly
invited other representatives of the GNU project, John Gilmore and
Michael Tiemann, to the summit in Stallman’s stead, the decision not to



invite the father of the FOSS movement irked some hackers. It also
prompted Bruce Perens, of Debian fame, to refuse to attend in protest.11

The invitee list for the April 1998 meeting divided the hacker
community into opposing factions, and the policies that emerged from
the event inflamed the situation further. At the meeting, by a vote of nine
to six, hackers officially endorsed the term open source as an alternative
to free software, an idea Raymond had first suggested in February
1998.12 The meeting attendees intended that the new terminology—
which they approved after considering a variety of other ideas that
included freeware, sourceware, and freed software—would serve the
utilitarian purpose of convincing “the corporate world to adopt our way
[of software development] for economic, self-interested, non-ideological
reasons,” according to a report Raymond published following the
summit.

For Raymond and others who supported the open source
nomenclature, catering to business interests was merely a means toward
an end. Like Stallman, they also viewed the protection of hacker culture
as the most important thing. Raymond even wrote that he deemed the
open source movement to be necessary because it was the only way to
liberate hackers from the “ghetto” in which they had dwelt for two
decades by the 1990s, when they found themselves “walled in by a vast
and intangible barrier of mainsteam prejudice” against hacker culture.13

All major figures in the FOSS community agreed on the importance of
saving hacker culture. What separated them was that Raymond and his
supporters viewed utilitarianism as the best means of achieving the ends
they sought, while Stallman remained firm in his belief that abandoning
the rhetoric of freedom would undermine the goal of protecting hacker
culture.

To sustain their movement, the hackers in the open source camp also
promoted a document written primarily by Perens called the “Open
Source Definition,” which defined what constituted an open source
software license and differentiated open source from free software. In
addition, the Open Source Initiative, an organization that had launched
earlier in 1998 amid the excitement of Netscape’s Mozilla
announcement, ensured for the open source faction the same sort of
institutional backing that the free software community received from the
Free Software Foundation.



Predictably, Stallman and hackers close to him reacted with scorn to
the open source campaign. At the 1999 LinuxWorld Convention and
Expo, Stallman called the open source endeavor a “half measure” that
doomed the free software movement from ever fulfilling its purpose of
ensuring users’ freedom.14 Similarly, he described Torvalds in an
interview in March 1999 as “basically an engineer” who “likes free
software, but isn’t concerned with issues of freedom.” He added that,
because of the open source campaign, “people are no longer exposed to
the philosophical views of the GNU project,” suggesting that GNU’s
high-minded vision was being compromised toward utilitarian ends.15

Stallman was not alone among prominent hackers in expressing such
views. Perens—despite having written the “Open Source Definition” and
straddling perhaps better than anyone else at the time the chasm that was
dividing the FOSS community—resigned from the Open Source
Initiative in 1999 because he believed that it had grown too distant from
the Free Software Foundation.16

Raymond and other members of the open source camp fought back
against the free software faction. They suggested that the Free Software
Foundation’s message failed to resonate with individuals who were not
hackers, especially those within the business community. Raymond
warned that Stallman’s rhetoric “confuses and repels most people.”17

Torvalds, despite writing that Stallman “deserves a monument in his
honor for giving birth to the GPL,” nonetheless lamented that he “sees
everything in black and white. And that creates unnecessary political
divisions. He never understands the viewpoint of anybody else. If he
were into religion, you would call him a religious fanatic.”18

Part of the reasoning behind such criticisms of Stallman was the
notion that his radical rhetoric stemmed from deep-seated opposition to
commercialism. That is why, for example, it was only after protests by
Stallman that Raymond revised his “Homesteading the Noosphere” essay
to register Stallman’s “assertion that he is not anticommercial.” Initially,
Raymond argued in the text that Stallman was the leader of the part of
the hacker community that was most anticommercial.19

In reality, as this chapter has already noted, such depictions of
Stallman do not stand up to the evidence. Stallman and the Free Software
Foundation disagreed with the open source faction’s contention that
making the FOSS movement as palatable as possible to business leaders



should be a primary goal. But they did not oppose making money with
FOSS as long as profit did not come at the expense of other priorities.

Portrayals of Stallman as antibusiness were also inconsistent with the
image he tried to paint of himself, even though choices he began making
in the mid-1990s made it hard for much of the business community to
take him seriously. In 1996, for example, he invented a new persona for
himself that he adopted at public events. He called himself St. Ignucius,
dressed up in mock-religious garb with a paper halo on his head, and
proclaimed himself a saint of the “Church of Emacs.” Yet such activities,
which Stallman has said represented an effort to poke fun at himself and
to introduce some lightheartedness to the free software community, were
not anticommercial or necessarily alienating.20 They were just strange.
Meanwhile, Stallman was keen to insist in the late 1990s that “I’m not
against commercial anything,” as he told one reporter.21

Ultimately, such statements exerted little influence on the perception
of Stallman and the Free Software Foundation that has endured since the
1990s. Neither side completely won or lost the FOSS civil war. Both
factions have continued to operate smoothly, though with limited mutual
cooperation, since the 1990s. Nonetheless, the rift between them that
emerged at that time has never fully closed. Stallman continues to
denounce the open source terminology today. He told me, for example,
that “it is a mistake to cite my statements as an example of the thought of
open source, just as it would be a mistake to cite [Franklin Delano
Roosevelt] as an example of conservatism. I am not a supporter of open
source; what I stand for is free software.”22 And in contrast to figures
like Torvalds, whom Reader’s Digest named “European of the year” in
2001, Stallman has remained relatively unknown outside of technical
communities.23 The GNU camp did not lose the FOSS civil war, but it
emerged from it wielding considerably less influence over the way FOSS
code was developed and distributed than it had in the 1980s and earlier
1990s.

The War against Microsoft



Conflict within the FOSS community did nothing to calm the
hawkishness of proprietary software companies, which by the late 1990s
had grown increasingly wary of FOSS’s expanding role in the business
world. Attacks from these companies, especially Microsoft, fueled
another war, which pitted FOSS advocates against external enemies as
the FOSS revolution continued.

Prelude to War: The Birth of Mozilla

The long-term causes of Microsoft’s anti-FOSS campaign lay in
developments that occurred over the decade following Linux’s founding.
Those happenings, described in the previous chapter, involved the
introduction of new FOSS products, FOSS’s endorsement by deep-
pocketed companies such as IBM, and the launch of successful FOSS
start-ups. Yet perhaps the most important trigger of Microsoft’s war
against FOSS was the birth of the Mozilla Web browser, which became
an open source project in January 1998.

Unlike most of the other major FOSS projects of the 1990s, the
Mozilla browser was conceived of as a business strategy. The developers
of its progenitor—the proprietary, closed source Communicator browser
owned by Netscape—evinced no deep-seated ideological commitment to
the FOSS movement. The company was in the final stages of its losing
war against Microsoft’s Internet Explorer browser and hoped that
opening the Communicator code to third-party contributions and
distributing the browser free of charge would help to regain users and
reduce development costs. Those goals were clear from the company’s
announcement of the change, which said it aimed “to accelerate
development and free distribution by Netscape of future high-quality
versions of Netscape Communicator to business customers and
individuals, further seeding the market for Netscape’s enterprise
solutions.”24

Yet because Netscape management prominently and publicly justified
the open sourcing of Communicator with reference to what had become
a canonical text of the FOSS community, Raymond’s “The Cathedral and
the Bazaar,” Netscape’s move served as a key endorsement of FOSS by a
well-known technology company. The fact that the company had



previously shown no interest in FOSS made the decision to open-source
Communicator all the more striking. For these reasons, Mozilla
represented a threat that gained Microsoft’s attention in a serious and
pressing way.

Netscape executives’ consideration of the merits of open-sourcing
Communicator dated to a whitepaper written by one of the company’s
employees, Frank Hecker. Hecker referenced Raymond’s ideas regarding
the pragmatic benefits of “bazaar”-style open source development
models. Raymond’s articulation of the strategy was new at the time,
having begun circulating within hacker circles only in May 1997, when
Raymond presented a paper at the Linux Kongress conference that
became the basis for “The Cathedral and the Bazaar.” (The essay was not
formally published until August 1999, although versions of it appeared
online before that time.)25

As Raymond noted, however, the conference paper and essay merely
formalized the description of what some FOSS developers, particularly
those working on Linux, had been doing for years by that point. “What I
saw around me,” Raymond wrote of the time when he began
participating in Linux development, “was a community that had evolved
the most effective software-development method ever and didn’t know
it! That is, an effective practice had evolved as a set of customs,
transmitted by imitation and example.”26

According to Raymond, Linux developers had accidentally discovered
the principle that he called Linus’s law, in honor of Torvalds. He defined
Linus’s law as follows: “Given enough eyeballs, all bugs are shallow.”
This meant that when many developers—and, ideally, users with
programming skills—become involved in a software project, it becomes
easier to identify and fix flaws and implement new functionality. That is
why Raymond analogized Linux development to a bazaar, where many
people interact rapidly and constantly with no central authority
overseeing them. The bazaar in this sense operates quite differently from
the construction of a cathedral, which a comparatively small team of
builders slowly and steadily erects over a long period of time, with few
opportunities to deviate from the central plan.

For a generation of programmers who had grown up following Fred
Brooks’s mantra that adding more developers to a project leads only to
greater complexity and diminishing returns on labor—a principle that, as
chapter 2 notes, was just as prevalent within the GNU developer



community as it was within proprietary software companies—
Raymond’s interpretation of the merits of bazaar-style development was
an inspiring innovation. For a company like Netscape, it also represented
a logic that profit-oriented business managers could appreciate much
more than the Free Software Foundation’s rhetoric about morality and
user freedom. Like others in the open source camp, Raymond
emphasized the utilitarian efficiencies of bazaar-style development rather
than ideological issues.

Spurred on by Raymond’s arguments, the familiarity of many of
Netscape’s engineers with open source projects, and their recognition
that open, community-developed languages such as HTML had been
crucial to the company’s previous successes, Netscape executives
announced on January 23, 1998, that they would release the source code
of Communicator publicly and invite third-party developers to contribute
to the program.27 Shortly thereafter, they set March 31 as a target date
for making the code public. In the meantime they worked to excise
proprietary sections of code from the Communicator code base—which
developers inside the company called Mozilla, the name by which the
public eventually came to know the browser—and perform other tasks
necessary for publishing the code on the Internet.28

Netscape employees also spent the late winter and early spring of
1998 working to identify the best license to use for their browser after it
became open source. After considering various existing licenses and
consulting with Raymond, Torvalds, and O’Reilly, Netscape executives
deemed BSD-style licenses to be too permissive. They found the GPL to
be “untenable for commercial software developers” because it did not
allow third parties to integrate their projects with Mozilla unless they
also accepted the GPL. The Netscape team consequently opted to write a
new, original license, the Netscape Public License, which it posted in
draft form on the Internet on March 5, 1998, in order to seek feedback
from the community. That was a novel decision because previous FOSS
licenses had not been developed in a public way.29 For a project
embracing the bazaar mode of programming, however, asking for the
community’s help in writing a license made sense.

Reaching community consensus on licensing terms for Mozilla proved
to be harder than expected. This challenge prompted the Netscape team
to create an additional license, the Mozilla Public License. The Netscape
Public License governed the original Mozilla code derived from
Communicator, and the Mozilla Public License applied to contributions



that developers made to the code base after Mozilla’s birth. With this
compromise, Netscape developers were able to protect the company’s
interests using the license they wrote themselves while also offering
contributors a middle ground between BSD- and GPL-style licensing
terms in the form of the Mozilla Public License. That decision pleased
many programmers in the FOSS community.30

Completing their work just in time for the March 31 deadline,
Netscape developers released the full source code for the Mozilla
browser, which totaled 1.5 million lines, on that day. Some leading
figures in the FOSS community celebrated this success with vibrant
enthusiasm. As Torvalds recalled, this was especially true of Raymond,
who “took it really personally” and assigned himself much of the credit
for the process that resulted in Mozilla’s debut.31 Torvalds himself
“thought it was wonderful that Netscape” open-sourced its browser, but
in contrast to Raymond he “didn’t view it as a personal achievement.”32

Despite the support of FOSS leaders for Mozilla, the prospects of the
open source browser seemed uncertain for some time following its
release. Jamie Zawinski, one of the project’s founders and its most
important public face, resigned a year after the launch, citing
mismanagement of the project and lost opportunities. Meanwhile, fewer
third-party developers signed on to donate their time and expertise to
Mozilla development than Netscape had hoped for. And Internet
Explorer continued to dominate the market, leading some observers to
question whether open-sourcing the Communicator code would prove an
effective business strategy after all.33 In 1999, even Raymond admitted
that, as of that time, the project had proved to be “only a qualified
success.”34

Not until 2003, when Netscape (as the result of decisions by the
leadership of its parent company, AOL) sharply reduced its support for
Mozilla, did the project gain greater momentum. The news that Netscape
would no longer fund significant browser development prompted the
reorganization of the Mozilla project, which thereafter began developing
a suite of applications rather than just the browser and received greater
support from the community.

Although the Mozilla project’s performance was lackluster during its
first years, it served as a symbol of the FOSS community’s strength as
much as an embarrassment. As Raymond noted, Linux and other FOSS
platforms continued to flourish and grow steadily in commercial



importance even as Mozilla flagged. That success highlighted FOSS’s
evolution into a movement large and broad enough to sustain a major
setback and keep moving forward.35 It is easy to imagine a single crisis
having demolished the free software community in earlier years. For
example, had Linux not appeared at just the right moment to provide a
GPL-licensed kernel for GNU to use, the problems with the Hurd may
have fatally undermined the work of Stallman and his collaborators. By
the late 1990s, however, the FOSS community possessed sufficient
strength to work through setbacks.

The Halloween Documents

The community was also strong enough to confront effectively the
various attacks that Microsoft mounted against it in the wake of
Mozilla’s launch. These campaigns were based primarily on two main
susceptibilities that affected FOSS software and the FOSS community.
One of them was a perceived lack of usability in GNU/Linux
distributions and other FOSS products, which was a perennial complaint
among many computer users. In one typical example of such criticism, a
Usenet reader in February 1999 published a post titled “Linux Sucks!!
Long Live Windows,” in which he cautioned, “I would avoid Linux like
the plague. It may be good but it is by no means easy to install or remove
from a hard drive. That’s what the [sic] DON’T tell you when you try it
out and as it is distributed free the author is not liable for your losses.”
Many readers agreed and were not persuaded by arguments that the lack
of user-friendliness in Linux-based operating systems stemmed primarily
from Linux’s being newer than Windows.36

Hackers also recognized usability as a problem in much of the
software they had built. They particularly lamented the paucity of good
graphical user interfaces. In 1999, for example, Raymond wrote that
FOSS needed better “ergonomic design and interface psychology, and
hackers have historically been poor at these things.”37 Even though KDE
and GNOME had been under development for a fair amount of time by
that point, user interfaces that could be used by ordinary people, not just
hackers, remained a major FOSS weakness.



Microsoft also endorsed a strategy that executives described internally
as “embrace, extend, extinguish.” First developed to win the browser
wars against Netscape (whose investigation by the United States
government had brought the tactic to public attention), this strategy
entailed integrating community-developed, standards-based technology
into Microsoft products, extending those standards with proprietary
extensions to attract customers to the Microsoft implementation, and
finally leveraging the proprietary extensions as a way to stifle
competitors’ products and corner the market.38 Microsoft’s adoption of
this tactic rather than a campaign based solely on promoting the
functionality of its products relative to FOSS alternatives suggested that
the company believed that FOSS was sufficiently mature by the late
1990s to compete successfully with proprietary alternatives in areas
where it mattered most, despite the usability criticisms noted above.

Proof of Microsoft’s plans for thwarting the momentum of the FOSS
community via a campaign based both on publicizing usability issues
and embracing, extending, and extinguishing open protocols arrived in
October 1998, when Raymond obtained a copy of an internal company
memorandum. Written by Microsoft product manager Vinod Valloppilli
at the request of senior vice president James Allchin for the attention of
Paul Maritz, another senior vice president, it was titled “Open Source
Software: A (New?) Development Methodology” and dated August 11,
1998. The document revealed the extent and seriousness of Microsoft’s
concerns over FOSS development and warned executives at the company
that “OSS,” or open source software, “poses a direct, short-term revenue
and platform threat to Microsoft, particularly in server space.
Additionally, the intrinsic parallelism and free idea exchange in OSS has
benefits that are not replicable with our current licensing model and
therefore present a long term [sic] developer mindshare threat.”39

The paper then detailed several specific ways that FOSS development
trumped the proprietary model that Microsoft embraced. It said that the
FOSS “release-feedback cycle is potentially an order of magnitude faster
than commercial software’s” and noted “the ability of the OSS process to
collect and harness the collective IQ of thousands of individuals across
the Internet.”

To respond to the FOSS threat, the paper’s author recommended
targeting “a process rather than a company.” It continued, “Linux can
win as long as services/protocols are commodities. … By extending



these protocols and developing new protocols, we can deny OSS projects
entry into the market.”

Recognizing the usability flaws that some users associated with FOSS,
the report also noted that “a key barrier to entry for OSS in many
customer environments has been its perceived lack of quality.” It
suggested that ensuring that Microsoft products would be superior in
quality to their FOSS alternatives constituted an additional strategy for
stifling the FOSS threat. Yet because the rise of FOSS products in the
Internet space, including projects like Apache, had provided “very
dramatic evidence in customer’s [sic] eyes that commercial quality can
be achieved/exceeded by OSS projects,” the report’s author suggested
that challenging FOSS on the basis of quality and usability required a
careful approach that would entail dismissing the success of FOSS
Internet software as merely “anecdotal.”

Raymond, who published the report on his website as the first of a
series of leaks he titled The Halloween Documents because the first were
posted near Halloween, adopted an alarmist stance. In comments on the
paper, he warned his followers—who were numerous because Raymond
was a leading figure in the FOSS world at the time and had played a
prominent role in launching the open source campaign—of Microsoft’s
“sinister” plan to undercut open standards in order to facilitate “the
erosion of consumer choice” and “monopoly lock-in.”40

On balance, Raymond’s reaction to the paper—which he used as an
opportunity to promote himself because the Microsoft report made
extensive reference to his own writings—did not take into account the
limitations of Microsoft’s assessment of the FOSS threat. The paper
primarily identified FOSS as a challenge for Microsoft in the server
market but concluded that “Linux is unlikely to be a threat on the
desktop.” It also suggested that Netscape’s Mozilla effort would gain
little traction over the long term. From these perspectives, the paper’s
tone was less consistent with the sky-is-falling picture that Raymond
presented.

Nonetheless, the first Halloween document offered the FOSS
community proof that Microsoft was concerned about the software it was
developing in some key sectors of the market. That realization was
reinforced when Raymond published the second Halloween document,
which also was written in August 1998 and leaked to him a few days
after he posted the first. Titled “Linux OS Competitive Analysis: The



Next Java VM?,” the second paper focused on the challenge that
GNU/Linux distributions presented to Microsoft’s business. Like the first
report that Raymond published, the second one was dismissive of the
likelihood that desktop Linux-based systems would gain wide adoption.
Its author also doubted the ability of Linux programmers to continue “to
achieve the big leaps the development team is accustomed to” after the
kernel had grown more mature and had no more obvious features to gain.
However, the paper identified a number of Linux strengths as well and
concluded that an embrace-extend-extinguish approach was necessary
for Microsoft to contain the GNU/Linux threat.41

A press statement from Microsoft’s Netherlands division, which
Raymond published as the third Halloween document, confirmed the
authenticity of the August 1998 reports.42 In a more detailed response
dated November 5, 1998, the company again acknowledged them as
genuine while also downplaying their significance. Microsoft called the
leaked documents merely “an engineer’s individual assessment of the
market at one point in time” rather than “an official statement by
Microsoft on the issue of open source software or the Linux model.”43

The FOSS community, however, perceived a real threat and a need to
respond in kind by aggressively discrediting Microsoft products.
Stallman wrote that “Microsoft has explicitly targeted our community.”44

Perens described the Halloween documents as evidence “that MS will
launch an offensive” against FOSS users and developers.45 And although
Raymond at times cautioned fellow FOSS leaders “that we need to be for
software quality, not just against something,” the perception that the
FOSS community was locked in an existential struggle against Microsoft
led by the early 2000s to discussions of “the hacker community’s
perennial war against Microsoft.”46

“Shared Source”

Proof of Microsoft’s execution of the embrace-extend-extinguish
strategy that Valloppilli had advocated against FOSS seemed to arrive by
May 2001, when the company announced an initiative it called Shared
Source. According to senior vice president Craig Mundie, Shared Source



constituted “a balanced approach that allows us to share source code
with customers and partners while maintaining the intellectual property
needed to support a strong software business.” Under the initiative,
Microsoft proposed to share source code with licensed customers, though
not with the public as a whole, in order to assist third-party developers.
Mundie contrasted Shared Source with GPL-licensed software, which he
said “has inherent security risks and can force intellectual property into
the public domain.” He also made the case that the FOSS economic
model was flawed because making money based on distribution or
services, rather than software itself, would “not generate the revenue
needed for major investments in technology.”47

Other Microsoft executives adopted this line of argument. In June
2001, Steve Ballmer, who had become the company’s CEO the year
before, declared that “Linux is a cancer that attaches itself in an
intellectual property sense to everything it touches.”48 He also suggested
that FOSS was fundamentally at odds with business, claiming that “open
source is not available to commercial companies.”49 Such statements
presumably reflected a calculated effort to frighten users away from
FOSS rather than Ballmer’s true beliefs because he was undoubtedly
aware that the GPL and other FOSS licenses he criticized did not
actually prevent the commercial use of code.

Microsoft’s efforts to steer consumers toward its Shared Source
program and away from FOSS bore less fruit than the company hoped. A
survey that Microsoft presented internally in September 2002, which was
leaked to Raymond and became another Halloween document, reported
that “most respondents had heard only ‘very little’ about the initiative.”50

Nonetheless, the effort seemed to the FOSS community to confirm
Microsoft’s intent to embrace, extend, and extinguish not just a particular
FOSS product but the FOSS development model as a whole—by
coopting it in favor of a process that provided source code to third parties
under particular conditions and yet did not make the code publicly
available or freely redistributable.

Proxy War: The SCO Lawsuits



The next phase in the war between Microsoft and the FOSS community
began in March 2003, when the SCO Group filed a billion-dollar suit
against IBM alleging that IBM had copied code from the System V
release of Unix.51 The SCO Group, which had a long history in the Unix
and Linux business, claimed distribution rights over Unix. (Prior to
2002, the company operated under different names, including Caledra,
Inc., under which it had sold a GNU/Linux distribution called Caldera
during the 1990s.) The scope of the confrontation expanded during the
months that followed, when the SCO Group filed additional suits against
companies that used Linux, including Novell, DaimlerChrysler, and
AutoZone, on the basis of claims that the kernel illegally incorporated
code derived from Unix.

From the perspective of the FOSS community, the SCO Group’s
lawsuits seemed dubious for multiple reasons. First, in June 2003, the
company promised in a letter to its customers that it would not sue them
if they used its version of Linux, suggesting that the lawsuits constituted
a selfish strategy by the company to gain marketshare through legal
maneuvering. A second problem was the SCO Group’s refusal to put on
public display the code that it claimed Linux developers had stolen from
Unix, prompting FOSS advocates to launch a “Show Us the Code”
campaign. Third and most damning in the eyes of FOSS supporters, it
emerged from a leaked memo in March 2004, which Raymond obtained
and posted as part of the Halloween document collection, that Microsoft
had supplied financial backing to the SCO Group. Although there was no
conclusive evidence that Microsoft did so with the specific goal of
funding the lawsuits related to Linux or that top-level Microsoft
executives were aware of the operations, Raymond and other hackers
concluded as much, especially after the SCO Group confirmed the
authenticity of the document Raymond had posted.52

The various legal battles continued for several years until August
2007, when a judge in the case between the SCO Group and Novell ruled
that the SCO Group could not claim rightful ownership over the Unix
copyright. Although that decision did not resolve the other lawsuits,
some of which remain open today, it shattered the foundation of the SCO
Group’s major claim involving the improper integration of Unix code
into Linux. The FOSS community welcomed the ruling as a decisive
victory, which proved that “Linux is a safe solution and people can
choose it with that in mind,” in the words of Jim Zemlin, executive
director of the Linux Foundation.53



Samizdat

At the same time that Microsoft was funneling money to the SCO Group,
the company also supported the Alexis de Tocqueville Institution, a
Washington, D.C.-based research organization that was preparing a book
written by Kenneth Brown called Samizdat: And Other Issues Regarding
the “Source” of Open-Source Code. (Samizdat is a Russian word that
refers to the clandestine distribution of dissident writings within the
Soviet Union.) Drawing his conclusions largely on the basis of the notion
that a kernel like Linux, even in its first iterations, was too complex for
one person to have written independently, Brown contended that
Torvalds must have plagiarized much of the Linux source code from
Tanenbaum’s Minix operating system. More generally, his work
criticized the FOSS community for peddling what Brown called “hybrid
code,” by which he meant programs that integrated code from a variety
of sources and did not always give proper credit to all of the
programmers who had contributed.54

Brown’s thesis, which was never actually published in book form but
appeared in a prerelease report that the Alexis de Tocqueville Institution
posted online in 2004, faced rejection by the FOSS community.
Tanenbaum himself, whom Brown interviewed in Amsterdam, reported
in an essay he posted online after the meeting that “Ken Brown doesn’t
have a clue what he is talking about.” Tanenbaum strongly dismissed the
idea that Torvalds had produced Linux by copying Minix code on several
grounds but especially because the monolithic Linux kernel differed so
starkly in design from the microkernel that Tanenbaum had written for
Minix. Although Tanenbaum stated that Torvalds perhaps had not given
as much credit as he might have to the people, including Tanenbaum,
whose ideas had influenced the general design of Linux, he concluded
that Torvalds “did write Linux. I think Brown owes a number of us an
apology.”55

Tanenbaum also suggested that Brown’s project might be politically
motivated. He reported that when he asked Brown during his interview
whether Microsoft was funding the Samizdat book, Brown did not deny
it. Instead, he insisted ambiguously that the Alexis de Tocqueville
Institution had multiple funding sources.56 Microsoft later confirmed that



it funded the organization, although it claimed that it did not direct its
support toward any of the Institution’s specific projects.57

In addition to Tanenbaum, other major figures in the Unix and FOSS
worlds, including Dennis Ritchie and Stallman, repudiated the Samizdat
report.58 In June 2004, even Microsoft disavowed Brown’s work, calling
it “an unhelpful distraction from what matters most—providing the best
technology for our customers,” although the company remained silent
regarding what role it might have played in funding or encouraging the
report’s creation.59 Ultimately, the Samizdat project ended in
embarrassment for the Alexis de Tocqueville Institution, which shuttered
in 2006.

The Microsoft War in Retrospect

The collapse of the Samizdat project and the failure of the SCO Group’s
legal campaign against FOSS development placed the FOSS community
on firmer ground than it had ever before known. It also represented a
positive outcome for FOSS that was remarkably different from the one
the BSD community had suffered in the early 1990s. Then, disputes over
the ownership of the NET 2 code stunted adoption of the first complete,
free Unix-like operating system. The BSD community never fully
recovered from these troubles despite eventual legal settlements in its
favor. In contrast, in the early 2000s, FOSS developers and users
emerged relatively unscathed from the drama that beset them during the
Microsoft war.

Those divergent outcomes reflected several key differences between
FOSS as it existed in the early 1990s and what it became by the 2000s.
One difference was that, by the latter period, there was historical
precedence for legal disputes to resolve in FOSS users’ favor. That fact
likely made it easier for companies and individuals to continue using
Linux even as the SCO Group sued over the kernel’s code.



At the same time, the enormous commercial importance that Linux
and other FOSS technologies had assumed by the 2000s meant that a
strong coalition of well-funded companies and organizations could resist
legal challenges to FOSS. In the early 1990s, the BSD developers had
only the University of California system to come to their aid. Although
that intervention eventually proved successful, it was not as powerful as
the response that FOSS organizations mounted against Microsoft in the
2000s, when, for example, Red Hat countersued the SCO Group in
response to the latter’s lawsuit against IBM.

Finally, by the 2000s, the FOSS ecosystem had grown so diverse and
was exerting its influence through so many different programs and
segments of the market that it could weather even deep-pocketed legal
attacks against one of its hallmark products, Linux. Snuffing out the
FOSS movement was no longer possible. It had become too big to fail.

The end of the SCO Group’s legal campaigns and the failure of the
Samizdat project did not engender complete harmony between the FOSS
community and the world of proprietary software. Legal flare-ups with
Microsoft continued, especially in the realm of patents, into the late
2000s. Yet the fact that, by the second decade of the new millennium,
FOSS companies were burying their swords and actively collaborating
with Microsoft signaled fundamental shifts in the trajectory of the FOSS
world. So, too, did the diverse range of new niches, from mobile devices
to embedded applications, into which FOSS expanded during those
years. These changes and their significance for helping to drive the
FOSS revolution toward new frontiers are the subject of the next chapter.



6 Ending the FOSS Revolution?

Shortly after seizing power in 1799, Napoleon Bonaparte declared to the
people of France that the French Revolution “has been settled on the
principles with which it began; it is over.” The statement reflected the
Corsican dictator’s eagerness to end the ten years of upheaval that had
gripped France since the revolution’s start.

Yet declaring the end of a revolution and actually ending one are very
different things. In 1799, it still was difficult to bring the revolution to a
decisive conclusion. In fact, both Napoleon’s dictatorship of 1799 to
1815 and the restoration of the Bourbons to the throne (the new French
monarch was the brother of the king who was killed by revolutionaries in
1792) failed to halt the revolutionary impulses in the country. France
erupted into revolution again in 1830, 1848, and 1871, and those were
only the large-scale upheavals. As recently as 1968, the country was
subject to widespread revolt inspired in part by the principles of 1789. In
this sense, the French Revolution did not end with Napoleon’s 1799
pronouncement.

To a large extent, revolution in France proved difficult for successive
generations to end because it was impossible for a single regime to
embody the revolutionary tradition of 1789 to the entire country’s
satisfaction. Whenever one faction claimed to have imposed a political
order legitimated by the principles of 1789, another faction arose to
challenge it. Within the series of recurring revolts that ensued, the
meaning and intended aims of the original revolution of 1789 were
continually contested and reformulated.

Other than a violent encounter between Torvalds and a penguin in an
Australian zoo (which gave rise to the Linux mascot, Tux), the FOSS
revolution lacked the bloodshed of the French Revolution.1 Yet both
revolutions followed a similar trajectory in the sense that bringing them
to an end has been a messy, subjective affair. Today FOSS reigns
supreme and is popular across the entire technology world. It has become
the de facto mode of producing, distributing, and using software for
hundreds of millions of people. Even Microsoft now embraces FOSS
warmly. From this perspective, the goals of the revolutionaries who
began promoting FOSS decades ago—when few people had heard of it



and the future of computing seemed to be heading in a decidedly
different direction—seem to have been fulfilled.

Yet a struggle continues today between different groups seeking to
define what FOSS should be, which behaviors properly fulfill the aims of
the FOSS movement, and how much more—if anything—needs to be
done to make the world truly safe for FOSS (and the hackers who
endorse it). This chapter describes the debates and major developments
that have shaped the FOSS landscape since the early 2000s—when
FOSS established a solid footing outside of hacker circles. It shows that
FOSS has become even more successful than many of its proponents
fifteen years ago could have imagined by conquering markets like
mobile devices and cloud computing. Yet as this chapter also
demonstrates, this growth has added to the debates about the nature of
FOSS and whether FOSS’s successes have betrayed the original aims of
the FOSS revolution.

FOSS Takes Command

By the early 2000s FOSS’s success had become indisputably clear for
the first time to many people, even though it remained “hard to find a
computer that doesn’t run a Microsoft product,” as a journalist wrote at
the time.2 Even if FOSS controlled only tiny shares of most markets, its
enduring presence within them reflected its success in the eyes of its
advocates. One forum poster wrote in 2001 that “the key to success has
already been gained by Linux” because “it is used by the people who
matter”—by which the commenter meant those involved in “the
advancement of computing.”3 A few years later, Steven Weber deemed
FOSS successful enough to write an entire book whose titular aim was to
explain “the success of open source.”4

Yet if observers in the early 2000s measured FOSS’s success primarily
in terms of its persistent presence as a minority part of the technology
world, FOSS’s success today is defined by a dominance that far



surpasses mere survival. Tens of millions of computers—not just
traditional desktops and servers but also mobile phones, “Internet of
Things” devices, and virtual application images running in the cloud—
now depend mostly on FOSS code. Seventy-eight percent of companies
report running “part or all” of their operations on FOSS, a number that
has nearly doubled in just the past five years.5 These are changes that
researchers such as Weber and FOSS luminaries like Raymond could
barely foresee fifteen years ago.

The following sections explore how FOSS has evolved since the early
2000s by examining five key developments of the past fifteen years:
FOSS’s endorsement by large companies, including Microsoft, that
previously espoused no interest in FOSS or actively combated it; the
emergence of the Android mobile operating system; the introduction of
Ubuntu GNU/Linux; the advent of the OpenStack operating system for
cloud computing; and the use of FOSS in embedded computing devices.

FOSS and Business

IBM went out on a limb when it announced its support for Linux in the
late 1990s. At the time, no other company of comparable size was
willing to stake part of its image on FOSS code.

Starting in the mid-2000s, however, moves like IBM’s became
common for large technology companies. Dell began selling computers
with GNU/Linux preinstalled in 2007.6 In 2009, Google introduced
Chromium OS, an open source project to build a lightweight Linux-
based operating system for the Web-centric devices that Google sells.7
HP’s CTO in 2015 declared that “open source software” is “part of the
fabric of everything we do,” referring to the company’s operations.8
These are just a few of the numerous examples of the large-scale
endorsement of FOSS in recent years by companies that have not
traditionally engaged in the FOSS space.

Of equal historical significance is the friendliness Microsoft has
shown in recent years toward the FOSS community. FOSS companies
such as Canonical, whose history is detailed below, readily collaborate
with Microsoft on cloud computing, technology for the Internet of



Things, and more—a move made easier when Canonical’s founder, Mark
Shuttleworth, declared in 2013 that unseating Microsoft from its leading
position in the PC software market was no longer a primary goal of
Ubuntu GNU/Linux developers.9 In fall 2014, Microsoft’s new CEO,
Satya Nadella, declared that his company “loves Linux.”10 A year later,
Microsoft announced that it was building its own Linux-based operating
system to help run its internal network of cloud servers.11

These kinds of changes did not alter Microsoft’s image in the hearts of
all FOSS advocates. Some expressed worries that the company might
have a “hidden agenda” in launching its own Linux-based operating
system, even though the platform was designed only for internal use.12

Another FOSS advocate wrote, “Despite Microsoft’s continued assault
on Linux and on Android (using software patents, which it still discreetly
lobbies for), some figures in the media are perpetually peddling the
Microsoft-serving lie that ‘Microsoft loves Linux.’”13 Yet Microsoft’s
engagement with the FOSS community remains ongoing. Most recently,
the company introduced Linux Subsystem for Windows, a platform that
provides binary compatibility between GNU/Linux applications and
Windows operating systems—essentially the reverse of what Wine does
for Windows applications running on GNU/Linux.14

Microsoft and other major technology companies have not endorsed
FOSS wholesale; they tend to use FOSS products only for certain
purposes. In most cases, they combine FOSS with closed source software
in a way that provides end users, such as those using Google
Chromebooks or accessing websites hosted on Microsoft’s Azure cloud,
with little inkling that they are relying in part on FOSS software. In this
sense, the developments discussed above are little different from the role
that Linux and Apache software assumed in the mid-1990s on Web
servers, where end users usually knew little about the software hosting
the websites they visited. This trend has also fueled concerns that the
widespread endorsement of FOSS in the business world is merely an
expedient pursued by companies wishing to acquire “both software and
the associated research and development … at very little expense …
without offering anything much in return themselves” to the FOSS
community, as Hall has noted.15

In addition, most of business activity related to FOSS has focused on
the “open source” strand of the ecosystem. Stallman and his free
software cohorts generally have remained on the sidelines as FOSS



commercial activity reached new heights in recent years. That detail
matters little to the organizations that deploy FOSS, which they eagerly
endorse regardless of whether the Free Software Foundation approves of
the licensing terms behind particular products. But it nonetheless
highlights how FOSS’s widespread adoption by major companies has
deepened fractures within the FOSS community, making it harder for
FOSS hackers to reach consensus about whether their revolution has
achieved its goals.

Android

Another key marker of FOSS’s rise to dominance within certain markets
in recent years is Android. Android is the mobile operating system that
has placed the Linux kernel and some other key FOSS programs (such as
the WebKit rendering engine) in hundreds of millions of smartphones
and tablets in recent years.

In the broadest sense, Android’s history dates to 2003, when a team of
California entrepreneurs launched Android, Inc. Their initial goal was to
develop software for digital cameras.16 In 2005, Google acquired the
company, which at the time remained an obscure venture.17 Google put
Android, Inc. developers to work building an operating system for
phones that was based on the Linux kernel and adaptations of some other
FOSS utilities. At the same time, Google courted industry partners to
help launch what it saw as an important competitor to closed smartphone
operating systems, especially Apple’s iOS for iPhones.

Google’s programming and partnership efforts came to fruition on
November 5, 2007, when it announced Android to the world. The
company billed the operating system as “the first truly open and
comprehensive platform for mobile devices.”18 At the same time, Google
launched a partner network called the Open Handset Alliance that it built
to promote and distribute Android. The next year, T-Mobile introduced
the first Android-based smartphone, the G1. Other carriers quickly
followed suit. Google’s own Android-powered phone arrived in 2010,
when the company began selling Nexus smartphones online. Soon
Google’s Linux-based operating system became a major contender in the



mobile operating system market, in which Android powered 80 percent
of devices by 2013.19 In 2016 the figure reached ninety percent.20

That was the type of market-share conquest that FOSS developers in
other niches could only dream of. On Web servers—which represent the
second-greatest FOSS success story—the market share of Apache
software running in conjunction with Linux peaked at around 70 percent
in the mid-2000s and has since declined to below 40 percent today (some
of that market share has been replaced by NGINX, another open source
Web server).21 FOSS software’s penetration of the PC market, a
longstanding focus of many FOSS advocates, has been much smaller.
Realistic estimates suggest that no more than about 5 percent of desktop
computers worldwide have ever run GNU/Linux platforms.22 Against
these figures, Android’s sustained conquest of more than four-fifths of
the global market for mobile operating systems is spectacular.

Yet not all FOSS supporters welcomed this feat. Because Google and
the Open Handset Alliance placed little emphasis on the FOSS core of
the Android platform, some FOSS advocates viewed Android as a threat
to openness and interoperability more than an outsize example of FOSS’s
success.

The decision by Google and its partners to downplay the importance
of FOSS to Android was no mistake. From the beginning, Google was
circumspect about advertising the platform as a distribution of Linux.
The company did not mention the kernel in the official announcement of
the platform in 2007. By 2009, Google engineer Patrick Brady publicly
declared that “Android is not Linux,” primarily because it does not
include the standard “Linux utilities” (most of which were actually GNU
programs, not the work of Linux kernel developers) and lacks support for
the glibc C library.23 Instead, Android uses a customized C library called
bionic, which is derived mostly from the BSD code base.24

For the most part, Google executives even avoided using the term
open source in describing Android, despite their extensive emphasis on
the “openness” of the platform. To them, open referred to the
collaborative nature of the development and marketing ecosystem
surrounding Android rather than the code itself. Most other organizations
that belonged to the Open Handset Alliance similarly stuck to the open
term without referencing Linux or open source software when Android
was announced. Texas Instruments and Wind River were the only
exceptions.25



For licensing, Google and its partners adopted permissive Apache-
style terms for most of the Android platform. The Linux-based kernel
code, which they could not legally switch from its original GPL license,
was the only major part of the Android code base that remained subject
to licensing terms that aggressively protected the openness of the code.26

Thus, just as some Linux proponents had failed to acknowledge the
importance of GNU code to GNU/Linux distributions in the 1990s,
Google and most of its partners gave short shrift to the hacker
community and culture that had unwittingly done so much to make
Android a reality.

Both politically and technically, the disconnect between Android and
the mainstream FOSS community irked many hackers. After the
November 2007 Android announcement, critics contended that the
Apache-style licensing of most of the Android platform stunted the
potential of Android to become a truly innovative operating system for
mobile devices by encouraging more FOSS development in that market.
One critic wrote that

Google has sacrificed an opportunity to encourage greater openness in the broader
mobile software space. If Android was distributed under [version 2 of the GPL],
companies building on top of the platform would have to share their enhancements,
which could theoretically lead to widespread sharing of code and a more rapid
acceleration of mobile software development.27

Others complained that “the use of the Apache license is the biggest
problem with Android.”28 Such remarks reflected worries that the
permissive licensing of most of the Android code meant that
“manufacturers might fork the code road in a non-interoperable kind of
way” by building their own Android variants without sharing their
modified code with the Open Handset Alliance members or the FOSS
community more broadly.29

Google responded to such criticisms by requiring members of the
Open Handset Alliance to agree not to “fragment” the code by releasing
mutually incompatible variants of the platform.30 That mandate,
however, did nothing to prevent companies that did not belong to the
group from doing as they wished with Android. Nor did it placate users
who argued that “if Android had just used the GPL (which prohibits
forking), then this problem would have [been] avoided.”31

This argument was flawed; nothing in the GPL prohibits software
forks. Nonetheless, the idea that Android’s openness would have been



assured if only Google had licensed all of the code using the GPL
reflected the persistent belief among some hackers that the GPL alone,
rather than alternative FOSS licenses, could facilitate the goals of the
FOSS revolution.

Leading hackers have also been critical of the way Android
incorporates FOSS code. Although Stallman in September 2011 called
Android “a major step towards an ethical, user-controlled, free software
portable phone,” he lamented that Google had originally refused to
release the source code of the non-GPL-licensed components of the
platform. He also complained that Android makes it easy for hardware
manufacturers and software programmers to incorporate nonfree
software applications into Android-based devices.32

Linux kernel developers excised the Android driver code from the
kernel in 2009, a decision they said they were “so sad” to have to
make.33 That change effectively divorced Android from the mainstream
Linux kernel code base, a situation exacerbated by Google programmers’
decision to develop their own solutions for tasks such as power
management on Android rather than borrowing the code from Linux.34

By March 2011, in another example of confusion over the GPL’s
provisions regarding software forks, some critics speculated that Google
might face legal action for having violated the GPL by forking the
Android code base.35 Torvalds dismissed such claims as “totally bogus,”
and he has since expressed optimism that the Android and Linux code
bases will eventually return to a state of mutual compatibility.36 Still, it
was clear since Android’s introduction in 2007 that many FOSS hackers
were unhappy with Google’s approach to Android and the practical lack
of opportunities for collaboration that the forking of the Android kernel
code has imposed.

Ubuntu

Android is not the only Linux-based operating system whose impressive
success within the marketplace has outpaced the enthusiasm it generated
among hackers over the past decade. Ubuntu, which emerged as one of



the most popular GNU/Linux distributions of the 2000s and 2010s,
followed a similar trajectory.

From a technical perspective, nothing sets Ubuntu apart in a
fundamental way from other GNU/Linux distributions. Launched in
2004, it is much newer than other distributions of enduring commercial
importance, such as Red Hat and SUSE. But especially in its early years,
the Ubuntu code base was little more than a spinoff of Debian
GNU/Linux. (In the 2010s, Ubuntu acquired a distinctive technical
profile by adopting original components like the Unity desktop
environment.)

In nontechnical ways, however, Ubuntu bears little resemblance to
other GNU/Linux distributions. One important distinction is the unique
circumstances surrounding its founding. In contrast to most of the
hackers who launched the other major GNU/Linux distributions, the
South African who created Ubuntu, Mark Shuttleworth, had a
background in finance and cybersecurity, not operating-system design or
Unix. While GNU/Linux distributions like Red Hat and Debian were
appearing in the mid-1990s, Shuttleworth was founding a company
called Thawte. Launched in 1995, its main business was to provide
digital certificates that websites require to encrypt online content.
Shuttleworth became a millionaire four years after starting the company
by selling it to VeriSign for the equivalent of about $575 million.

Shuttleworth spent part of his fortune paying for a trip into space,
which he completed in 2002. By 2003, however, when he began writing
on his blog about funding free software development, he had become
interested in FOSS.37 The next year, he founded Canonical as a private
for-profit company to sponsor development of a new GNU/Linux
distribution. That system became known as Ubuntu, a name that derived
from words in the Xhosa and Zulu languages that signify “solidarity”
and “allegiance.”38

Shuttleworth’s attraction to FOSS was remarkable because there was
little in his background to suggest that he would become a major figure
in the FOSS community. Born and raised in South Africa, he was far
removed from any of the geographic centers of FOSS development. As
he tells the story, he was “not at all” a follower of the Free Software
Foundation or Linux development before the period when he became
interested in the Ubuntu project. In fact, his first experience with Linux
happened when he “snuck into the University of Cape Town,” where he



was a student, “late one night with a key I wasn’t supposed to have” and
installed GNU/Linux—from a pile of floppy disks—on a lab computer in
place of Windows. (He reinstalled Windows before morning to cover his
tracks.) Yet despite this early experimentation with FOSS, Shuttleworth’s
company had little involvement with Linux or other FOSS projects,
although it did use some Apache-licensed software.

What eventually caused Shuttleworth to focus on FOSS after the
success of Thawte, in his own telling, was his belief that GNU/Linux and
similar software could provide a foundation for helping to improve
society. He told me that by 2004, “I didn’t have to work, I wanted to help
people do great things” and FOSS seemed the best vehicle for achieving
that goal.39

Toward that end, Canonical unveiled the first version of Ubuntu, 4.10,
in October 2004, inaugurating a tradition of assigning Ubuntu version
numbers according to the month and year of each release. The release
was also known as “Warty Warthog” because its lack of refinement made
it “wartier” than Shuttleworth hoped Ubuntu would eventually become.
Accompanying Ubuntu 4.10 were a series of philanthropically informed
promises by Canonical. The company declared that Ubuntu would
always be available free of cost; that the system would deliver “the very
best in translations and accessibility infrastructure that the Free Software
community has to offer, to make Ubuntu usable by as many people as
possible”; that new versions of Ubuntu would be released according to a
regular and dependable schedule; and that the Ubuntu team was “entirely
committed to the principles of open source software development; we
encourage people to use open source software, improve it and pass it
on.”40

In sum, the Ubuntu promise was to empower people by providing
them access to software they might not otherwise have and by promoting
the philosophy of the open source world. (Although Shuttleworth in
2003 used the term free software, by 2004, the terminology within the
Ubuntu camp had shifted primarily to open source.) Through the Ubuntu
initiative, Shuttleworth hoped to resolve what he called “a deeply
unhealthy situation in personal computing,” which was Microsoft’s near-
monopoly in the early 2000s over the operating-system market for PCs.41

As a result of that situation, Shuttleworth believed, access to affordable
quality software was limited, as was the availability of programs that
catered to users outside of dominant linguistic or cultural demographics.



To see the Ubuntu mission through to completion, Shuttleworth and
Canonical adopted a pragmatic strategy. Although Shuttleworth assigns a
great deal of credit to Stallman and the GNU developers for introducing
much free code to the world, he told me they “lost touch” long ago with
the momentum and purpose of free software development. He said that if
most FOSS developers adhered only to Stallman’s principles, the FOSS
community “would be stuck in a world of ideological pain” and unable
to produce viable software.42

Shuttleworth was certainly not the first person to criticize the free
software camp for an ostensible lack of pragmatism. That debate had
raged throughout the 1990s, as the previous chapters show. Yet what
made Ubuntu and Canonical different from the FOSS initiatives that
preceded them was just how far Shuttleworth and his collaborators were
willing to go in prioritizing pragmatism over free software ideology.
Although the Ubuntu distribution has always been available under open
source licenses, Canonical introduced a number of related tools, such as
the Landscape server-management service and parts of its Ubuntu One
file-syncing service, as proprietary software. (It eventually made some of
these products open source, but not until they were already in widespread
use.) The company also expressed no qualms about integrating bits of
closed source firmware—known to hackers as binary blobs—into
Ubuntu in order to power hardware devices that would not function
without it. And in recent years, Canonical has opted to internalize much
of the Ubuntu development effort by requiring programmers to work
behind closed doors rather than in the public FOSS bazaar, even for code
that it intends eventually to release as FOSS.43

By many measures, Ubuntu developers’ ultrapragmatist take on FOSS
has served the Ubuntu community well. Canonical has succeeded in
issuing timely new versions of Ubuntu every six months for more than a
decade without fail, excepting Ubuntu 6.06, which appeared in June
2006, two months later than initially planned. Few other FOSS projects
can match that record of punctuality, which no doubt owes much to the
decision by Shuttleworth and his collaborators to ignore political
distractions related to free software ideology.

Ubuntu has also proven popular among users. Canonical’s status as a
private company means its financial records are not available for
scrutiny, and reliable statistics on the number of people using Ubuntu,
which is distributed for free and requires no registration, remain elusive.
Nonetheless, the available evidence suggests that Ubuntu has seen



remarkable levels of adoption in the thirteen years since its first release.
Canonical estimated in 2015 that Ubuntu’s user base totaled 40 million
people and reported (presumably on the basis of server statistics to which
the company has access) that thirty thousand Windows users download
Ubuntu each day.44 Governments and other organizations, especially in
Europe, have installed hundreds of thousands of Ubuntu systems.45 On
servers, Ubuntu was the second-most popular GNU/Linux distribution
for hosting websites in 2015, and it runs more than half of the virtual
servers in Amazon’s popular EC2 cloud computing platform.46

Much of Ubuntu’s success stems from the unique advantages it enjoys
over competing GNU/Linux distributions that lack supporters who are as
wealthy as Shuttleworth, who remains centrally involved in Ubuntu
design today despite having stepped down as chief executive officer of
Canonical in 2009. Thanks to Shuttleworth’s fortune, Ubuntu benefits
from a purpose trust, the Ubuntu Foundation, which Shuttleworth
founded in 2005 and seeded with $10 million. The trust ensures that the
Ubuntu project will have a financial cushion that is independent of
Canonical.47

Ubuntu adoption also received a boost from a program called ShipIt.
From 2005 until 2011, when Canonical discontinued the initiative, ShipIt
made Ubuntu CDs available through the mail at no cost worldwide. The
program helped to ease the adoption of Ubuntu for users who otherwise
would have lacked the Internet bandwidth or technical expertise required
to download an Ubuntu installation CD on their own or the cash to
purchase one from another distributor.48

In Shuttleworth’s own estimation, Ubuntu’s focus on usability also
does much to explain the distribution’s impressive growth. “The fact that
Ubuntu just works is enormously valuable to millions of people,” he said
in an interview. He believes that this characteristic sets Ubuntu apart
from other GNU/Linux distributions, which have sometimes privileged
factors other than usability.49 Shuttleworth also attributes the
distribution’s success to the strong commercial backing it received from
its association with Canonical, a relationship that enables Ubuntu to “do
things Debian can’t, and vice versa” because distributions like Debian
have no corporate backing. Lastly, he contends that the ability of the
Ubuntu leadership, including himself, to be blunt and make dictatorial
decisions when necessary has kept the operating system in good health.50

“I think that one of the reasons Ubuntu has kept moving,” despite having



grown into a large and complex project, is that its leadership has been
willing to “put people off” if necessary, he said. In contrast, “too many
good projects” in the FOSS space “have been completely hijacked
because they didn’t have any mechanism to calm” tensions between
competing factions within the generally decentralized infrastructure of
FOSS communities.51

Many FOSS users have praised the perceived usability and
predictability of Ubuntu. “This product just seems to work,” one user
wrote of Ubuntu in response to criticism of Canonical for having made
few code contributions to the Linux kernel. He continued, “So, to that
end I do thank Mark Shuttleworth for his efforts and I hope he realizes
that he has made others’ lives better.”52 Another called Shuttleworth
“some kind of Heinlein-esque hero,” referring to the science fiction
author, Robert Heinlein, who popularized the notion of “paying forward”
one’s success by helping others to achieve the same positive outcomes as
oneself.53 Torvalds has praised Ubuntu for its “very user-centric”
approach to computing.54

Ubuntu does have its critics, however. Stallman has complained that
when Ubuntu developers “present convenience as their goal rather than
freedom, they’re teaching people not to value freedom.” He also has
described the operating system as a form of “spyware” because of
features that communicate data about users’ behavior with Canonical for
marketing purposes, a concern shared by users who complain about
Ubuntu’s “spyware-inspired keylogger.”55 Online commenters have
wondered whether Ubuntu chose to pursue a policy of “selling out” by
focusing on profit rather than on Canonical’s ostensible mission of
making computers more accessible.56

Similarly, Canonical’s attempt in 2009 to introduce an “Ubuntu Store”
feature into the operating system, through which users could download
both free and for-purchase programs, prompted a revolt within the
Ubuntu community. One user complained that the effort “inclines me
towards thinking [Ubuntu is] a for-profit venture, and I guess that’s
because the word ‘store’ is now tainted by all the proprietary software
repos[itories] out there that have previously been listed.”57 Another,
confused by news that Canonical did not actually plan to sell software in
the Ubuntu Store at the time but instead aimed to offer only free
downloads, asked, “Doesn’t ‘store’ imply that the user will be paying for
the software?”58 Canonical eventually changed the name of the feature to



“Ubuntu Software Center,” reflecting the company’s awareness that not
all of its supporters were comfortable with what some viewed as stark
departures from the ideals of free software.

Ultimately, Ubuntu’s legacy is undeniable as a GNU/Linux
distribution that introduced FOSS technology to millions of people who
otherwise may never have used it in a prominent way. Yet its
effectiveness in advancing the FOSS cause has proven more
controversial. Through Ubuntu, Shuttleworth fulfilled his goal of
providing “Linux for human beings” (the original tag line of the
distribution), and Canonical’s focus today on “converging” Ubuntu
across multiple types of hardware profiles—including PCs, servers,
phones, and televisions—extends that mission by aiming to provide a
common, FOSS-based user experience on all of the digital devices on
which users now rely.59 But in the eyes of hackers such as Stallman,
Shuttleworth has accomplished little to bring the FOSS revolution to
completion.

FOSS and Cloud Computing

Similar tensions exist within the world of cloud computing, the most
significant new frontier that FOSS has entered in recent years. The term
cloud computing refers to managing data by using software on servers
hosted on the Internet rather than running the software directly on local
devices. In a sense, cloud computing has existed since computers were
first networked together in the late 1960s to allow people at one
computer to access computational and data resources from another
computer remotely. The World Wide Web, which lets users connect to
remote servers in order to retrieve or process information, has also
essentially been a cloud-based service since its earliest years.

Yet not until the mid-2000s did organizations embrace the cloud as a
mechanism for delivering sophisticated types of software programs.
Over the last decade, for instance, it has become common to edit
documents via the cloud using Web-based word processors, a type of
program that traditionally worked only on local computers. Companies
also now commonly leverage the cloud paradigm as a way to expand
their computing infrastructure without having to buy and maintain



equipment on their own premises. They create cloud-based servers that
run as virtual machines and can be set up almost instantaneously.
Management of the virtual machines can be outsourced to cloud service
providers, reducing staffing costs for the company itself. In this and
other ways, the cloud has become a vital part of the computing
experience for businesses as well as end users who rely on computers to
store information, complete work, watch videos, or perform other
common tasks.

In two key ways, the cloud is home territory for FOSS. First, the cloud
entered into widespread use in the 2000s, after FOSS had already proved
its mettle and programs like the Apache Web server and Samba had
demonstrated how effectively FOSS code could help to deliver
information over the Internet. Second, because the cloud blends together
servers, storage software, and desktop computers that often run different
types of operating systems, it demands a high degree of interoperability.
Open standards and source code that can be freely shared are therefore a
vital resource for building clouds that are agnostic with regard to the
types of devices that comprise or connect to them.

Executives at Rackspace, a company that sells access to virtual servers
running in the cloud, had interconnectivity in mind when they announced
a major Apache-licensed platform in July 2010 “to help drive industry
standards, prevent vendor lock-in and generally increase the velocity of
innovation in cloud technologies.”60 Called OpenStack, the project was
based on code created by Rackspace for its hosting business and
technology from Nebula, a hosting platform used by the National
Aeronautics and Space Administration (NASA). For its first release in
October 2010,61 OpenStack had two major components—Object
Storage, which allowed users to create storage servers designed to
communicate data over the Internet, and Compute, which managed
computational resources for virtual cloud-based servers. Together, these
components made it possible to build clusters of virtual servers running
in the cloud, which organizations could use for tasks like storing
information and running Web-based applications.

OpenStack has grown steadily since its introduction. Today it includes
several components not available in 2010, such as programs for
managing networking resources on clusters of cloud servers. The number
of organizations and individuals developing OpenStack code has also
risen tremendously since Rackspace launched the project in 2010. In
April 2016, more than 110 companies and 1,100 individuals were active



OpenStack contributors.62 Although analysts continue to debate whether
OpenStack is yet ready for large-scale enterprise deployment, the
platform is indisputably the most important FOSS component of the
evolving cloud-computing ecosystem.63 Combined with the importance
of open standards generally within the cloud, OpenStack seems to have
ensured that FOSS will play a prominent role in this increasingly
important market and eliminated the risk that proprietary code will end
up powering the cloud.

Nonetheless, some FOSS leaders remain wary of the cloud in general.
Chief among them is Stallman, who warned in 2008 that the cloud
computing paradigm is “worse than stupidity.”64 Part of his criticism
centered on the perception that the cloud was more of a marketing fad
than a meaningful reality. This was a fair argument in light of the fact
that, as noted above, cloud computing was not actually a new idea when
usage of the term exploded in the mid-2000s.

Yet Stallman also expressed deeper anxieties about the cloud. In
certain situations—particularly those that he described as “Service as a
Software Substitute,” mocking the popular “Software as a Service” term
that companies use to market some cloud products—software programs
running in the cloud “wrest control from the users even more inexorably
than proprietary software,” Stallman wrote.65 He meant that because
users of cloud-based programs do not have control over the server on
which the programs run, cloud users place their data and computing
resources at the disposal of whoever owns the cloud server to which they
are connecting. Even cloud-based applications that are composed of
FOSS code force users to surrender personal data to someone else’s
server, Stallman has noted.66

Complicating matters is the fact that cloud-based software code cannot
be regulated in the same way as software that is designed for end users to
run directly on the computers they use. The GPL contains a provision
that allows developers to use and modify GPL-licensed code without
sharing their modifications with the public if they do not distribute the
software publicly. Because the cloud makes it possible to run a program
on a private server while allowing third parties to access that program
over the Internet, it gives rise to ambiguity in determining whether such
a program has been publicly distributed and is therefore subject to the
GPL mandate that publicly shared software must come with source code.
To address this issue, the Free Software Foundation in 2007 introduced a



special license, the GNU Affero General Public License, which was
based on a license created in 2002 by a FOSS funding organization
named Affero.67 The license provided a way for FOSS supporters to help
prevent abuse of the GPL in the context of the cloud, but to date it has
seen relatively limited adoption. Moreover, as the Free Software
Foundation emphasizes, the Affero GPL does not protect users against
the loss of control over their computing environment that occurs when
they access software programs through the cloud. It only helps
programmers to keep their code open.

For these reasons, the prominent role played by FOSS projects like
OpenStack in the cloud computing market has not made the cloud a
FOSS-friendly environment in the eyes of figures such as Stallman. Like
Android and Ubuntu, cloud computing in some ways has undercut the
goals of the FOSS revolution and created challenges that FOSS
enthusiasts could not envision when they began creating free software
decades ago.

Embedded Computing

A similar trend has occurred in the embedded-devices market. This
sector involves special-purpose hardware whose functionality is
generally limited to a small set of specific operations. The devices
usually lack the resources to run traditional operating systems. Like the
cloud, embedded computing is by no means a new idea; minimalist
hardware devices have long existed. However, the increased
technological sophistication of devices (such as home appliances) and
the demand for the ability to control hardware remotely (via the Internet
of Things) have made embedded computing more visible in homes and
offices in recent years. Because the openness of FOSS code makes it
easy for device manufacturers to keep their code lean (by selecting only
the software components needed to work with a certain type of device)
and to modify the components if necessary (to ensure compatibility with
their hardware), all without paying licensing fees, FOSS is ideal for
vendors in the embedded-device market.

Embedded devices have created new opportunities for FOSS software
like Linux, which now commonly powers such hardware as wireless



routers, “smart” TVs, and TomTom GPS products. Meanwhile,
consortiums of researchers, nonprofit groups, and businesses are
currently investing millions of dollars to build FOSS solutions for
embedded-computing applications in hardware as diverse as drones and
automobiles.68

Yet if embedded computing has provided new opportunities for FOSS
to grow, the limited functionality of the hardware has meant that users
often have little control over their computing experiences, no matter how
free and open the code that powers their devices is. A smart thermostat
that runs Linux is unlikely to provide an interface that would allow an
ordinary user to modify the way the device works or to customize its
software. The FOSS code that powers a portable music player cannot be
easily copied or shared, even if software licenses make it legally
permissible to do so.

To make matters worse, embedded devices frequently pair FOSS
programs with proprietary software, especially hardware-specific device
drivers, whose code is not open. This trend does not sit well with
developers interested in an open software ecosystem. As security
researcher Bruce Schneir wrote about Internet of Things devices in 2014,
for instance, “many of the device drivers and other components are just
‘binary blobs’—no source code at all. … We need open-source driver
software—no more binary blobs!”69 Similar challenges exist on
traditional computers, where certain hardware components, like wireless
cards, have sometimes required proprietary drivers to operate properly
even if the rest of the software on the system is open. In these cases,
dedicated FOSS programmers have generally found ways to write
reverse-engineered FOSS code to make the devices work, although this
can raise legal issues.70 However, the great diversity of the types of
processors, storage hardware, and other device components in the
embedded-computing sector makes reverse engineering a less feasible
solution there.

Because embedded computing favors the use of FOSS but limits the
ability of users to inspect or modify the software that powers them, it
also constitutes both a challenge and a boon for the FOSS revolution.

Beyond Software: FOSS and Free Culture



A different story has emerged within the realm of the “free culture”
movement, where the effects of the FOSS ethos on society as a whole
have become clearer than ever in recent years. Here, perhaps more than
in the realm of software itself, the FOSS revolution’s legacy will endure
most prominently over the long term.

Broadly defined, the term free culture refers to the idea that, to
maximize the creative and productive potential of individuals, society
should remain open, transparent, collaborative, and unfettered by the
restrictions of traditional copyright or arbitrary hierarchy. The idea is not
a new one. As one of the free culture movement’s chief proponents,
Lawrence Lessig, noted in his 2004 book on the topic, “the norm of free
culture has, until quite recently, and except within totalitarian nations,
been broadly exploited and quite universal.”71

Yet since the turn of the new millennium, the Internet and other new
forms of media, along with attempts to control them or rein them in,
have vaulted the debate over free culture into the public sphere. They
also have prompted the creation of organizations to promote free culture
that take their cues directly from the FOSS movement. These groups
apply FOSS principles to issues far outside the realm of software.

The most prominent of these organizations is Creative Commons.
Lessig, a law professor and former board member of the Free Software
Foundation, founded Creative Commons in 2001 with a small team of
collaborators. He was inspired by Stallman, whom he credited with
having first developed “all of the theoretical insights” that Lessig later
associated with the free culture movement.72 That attribution was
unsurprising. As chapter 3 notes, beginning in the 1980s, Stallman and
the GNU project endorsed and supported such endeavors as Project
Gutenberg and the Open Book Initiative even though those organizations
had nothing directly to do with software development or distribution.
The relationship between the FOSS movement and the free culture
movement dates to FOSS’s earliest days.

Yet Creative Commons was novel in that it was the first organization
to apply, in a systematic way, ideas that had been born in the FOSS
community to society more broadly. To do this, the group developed a
series of intellectual property licenses, modeled on the GPL, that writers,
artists, and other producers of creative materials including but not
limited to code could use to “copyleft” their work. Like the GPL, the
licenses, which Creative Commons began releasing in 2002, were



designed to provide “an alternative to traditional copyrights by
establishing a useful middle ground between full copyright control and
the unprotected public domain,” according to one early analysis.73

Over the past fifteen years, Creative Commons’ activities have
expanded to include efforts to build more open and collaborative models
for scientific research, promote the sharing and reuse of educational
materials, and facilitate open collaboration in the realms of culture,
government, and science. The organization has endeavored to do for
public life as a whole what FOSS hackers did for software—challenge
traditional, closed-access modes of production and supplant them with
ones in which all users are free to participate on the basis of their
demonstrated merits, unencumbered by bureaucratic or hierarchical
barriers that privilege the interests of particular groups over those of the
public in general.

Wikipedia—the free online encyclopedia that volunteers have
collaboratively developed via the Internet since its launch by Jimmy
Wales and Larry Sanger in 2001 (shortly after Stallman published an
essay calling for a free, online encyclopedia)—is another prominent
example of a project that has extended FOSS principles into new
territory.74 By allowing anyone to write and edit articles and relying on
community consensus to determine what material becomes available for
public consumption, Wikipedia adopts a production strategy for text that
is similar to the bazaar-style development model behind most FOSS code
today. The encyclopedia, which the historian Roy Rosenzweig compares
to Linux and other FOSS projects, shares a direct affinity with both GNU
and Creative Commons by licensing most of its articles under the GNU
Free Documentation License and the Creative Commons Attribution-
ShareAlike License.75

Economically, FOSS has exemplified and helped to advance new
modes of production with positively revolutionary consequences for
society. As Yochai Benkler has persuasively argued, the new “networked
information economy” has placed “the most important components of
the core economic activities … in the hands of the population at large”
for the first time since the Industrial Revolution.76 FOSS projects are
only one way that distributed modes of production, powered by
computer networks, have challenged traditional economic models that
centralize wealth and the means of production at the top of an industrial
hierarchy. The advent of what Benkler calls “open source economics”
cannot be attributed to FOSS alone. Yet FOSS projects are a prime



example of this phenomenon, and the code that FOSS developers
produce is deeply intertwined with the technology that makes the new
information economy function. In these regards, the networked
information economy is another area where the effects of the FOSS
revolution are playing out beyond the realm of software.

FOSS and Demographic Diversity

Despite the wide-ranging effects that FOSS has exerted on economic and
cultural practices within society as a whole, one puzzling trend has
persisted within the FOSS community. This is the lack of diversity
among FOSS developers and, to a lesser extent, users.

In theory, FOSS development models make it much easier than the
alternatives for anyone to contribute to software production, regardless
of race, gender, nationality, age, professional status, or any other outward
characteristic. As chapter 1 notes, the principle that “hackers should be
judged by their hacking, not bogus criteria” (like innate traits) is baked
into the hacker ethic itself, at least as Levy articulated it in 1984.77 And
the fact that FOSS programmers most often collaborate not in person but
via electronic channels, where participants often cannot infer the races or
genders of their counterparts, suggests that FOSS should be an especially
color- and gender-blind space.

With few exceptions (most notably Mitchell Baker, a woman who has
been a key figure in Mozilla since the late 1990s), however, FOSS has
tended to remain the realm largely of white men. These men are diverse
in terms of their national origins, but otherwise, their dominance of the
FOSS space appears to come at the expense of women and minority
contributors who might otherwise play a greater role.

This trend may seem unsurprising given that female and minority
professionals have long faced underrepresentation in the realms of
software and technology in general. United States government statistics
for 2015 show that blacks account for only 5 percent of software



developers, compared to 11.7 percent of the total workforce. Women
comprise 46.8 percent of the workforce but only 17.9 percent within the
software industry.78 Yet the FOSS world is remarkable in that it “is even
whiter and more male than the world of proprietary software,” as one of
the few journalists to examine this phenomenon notes in a 2013 article.79

The FOSS community has long quietly acknowledged this trend. For
example, in response to a headline that proclaimed “Open Source Geeks
Considered Modern Heroes,” a Slashdotter in 2004 cautioned, “But be
sure to read the small print: Exception: women.”80 Very little research
has attempted to explore the reasons behind this reality. One factor may
be that minorities tend to have lower levels of education and less access
to the Internet than their white counterparts, making it harder for them to
enter the FOSS space, centered as it is on academia and the Internet.81 At
times, leading FOSS figures have been less than welcoming toward
women and minority groups. For example, in one of his more obscure
writings, Raymond compared female computer scientists to “amazons,”
“bimbos,” and “impossible anonymous synthetic blondes in an upscale
skin magazine,” imagery he apparently found “much less threatening” to
embrace than the reality that there could be highly competent,
professional women programmers.82 More recently, Torvalds stated
publicly that “the most important part of open source is that people are
allowed to do what they are good at” and “all that [diversity] stuff is just
details and not really important.”83

More significant than the negative messages that arise from statements
such as these, however, are the economic realities of the FOSS world.
Especially in the early days of the FOSS revolution, few FOSS
developers were paid. Instead, in the vision of leading FOSS theorists
like Raymond, they operated in a “gift culture” in which compensation
for the time and effort they put into writing FOSS code came in the form
of reputation.84 The scholarly analyses of FOSS communities by Weber
and Kelty generally support this interpretation.85

For developers economically privileged enough to be able to prioritize
the esteem of their peers over material rewards, working within the
FOSS gift economy is not an unreasonable proposition. For minority and
female developers who on average are less well paid and possess fewer
financial assets than white males, however, the suggestion by writers like
Raymond that FOSS contributors should be happy to work only in
exchange for reputation could be difficult to swallow. Lacking sufficient



financial resources or income from other means to be able to write FOSS
code for free, many minority and female programmers might have found
it difficult to enter the field or to sustain the level of coding contributions
necessary to establish a reputation among fellow FOSS hackers.

This argument, however—that female and minority programmers face
a harder time entering the FOSS world because it offers less financial
compensation—is increasingly difficult to accept. In recent years, the
demand for professionals with skills in technologies such as Linux has
surged, and the pay offered to them has risen at a rate nearly double that
for the technology sector as a whole.86 FOSS developers no longer have
to be willing to accept little or no monetary compensation for their work.
Moreover, even though a lack of payment for FOSS work has
historically discouraged women and minority programmers from
contributing, the low cost of FOSS software compared to most
proprietary alternatives should have persuaded less affluent users to
adopt it. For these reasons, economics alone does not explain the lack of
demographic diversity within the FOSS community today.

Understanding the issue fully requires paying close attention to certain
philosophical dimensions of FOSS development. Tara McPherson has
argued that Unix itself—although designed by programmers who
generally sympathized with the progressive political reforms that
accompanied Unix’s evolution in the 1960s and 1970s—embeds notions
of segregation within its core design principles. In McPherson’s view, the
modular design of Unix—the idea that an operating system should be
composed of independent parts, each one designed to do a specific job
and do it well—reflects “the way in which the emerging logics of the
lenticular and of the covert racism of color blindness [were] ported into
our computational systems.”87 McPherson feels that although the Unix
hackers and the FOSS revolutionaries who worked in their image were
consciously committed to racial equality, they unwittingly incorporated
modes of segregationist thinking into the operating system that parallel
the ones undergirding racial tension in the United States today, despite
American society’s having ostensibly entered a postracial age.

McPherson’s arguments constitute her subjective philosophical
analysis of Unix design rather than any objective evidence of conscious
exclusion by designers. In focusing on Unix, her work also does not
provide evidence of how segregationist thinking might later have
affected FOSS projects properly defined, such as GNU or Linux.
Programmers and computer users are unlikely to have chosen not to



embrace FOSS because they believed that Unix or other technologies
important to the FOSS community are subject to a nefarious
subconscious disparaging of racial or gender equality. Still, McPherson’s
interpretation is one of the few that have tried to think in the broadest
sense about why the FOSS community remains markedly white and
male. She provides an interesting answer. One hopes that future
researchers will expand on her intriguing work.

Continuing the FOSS Revolution

As this chapter has shown, the FOSS community has struggled to define
its center over the past decade. Android and Ubuntu are successful when
measured in terms of market penetration but have been perceived as
failures by hackers who do not see these initiatives as fulfillments of the
true promise and potential of the FOSS revolution. Meanwhile, even as
FOSS principles have exerted an ever-greater influence on society as a
whole, the FOSS community has grappled internally with issues of
inclusion and exclusion.

Against this backdrop, it is hard to argue that the FOSS revolution is
over. Instead, like the major political revolutions that preceded it, the
FOSS revolution has entered a phase in which the meanings and end
goals of the FOSS movement are subject to continual debate and
reinterpretation within different strands of the FOSS community.

Various FOSS factions have now learned to get along. The self-
described pragmatists associated with Linux and open source have
ceased to battle the Free Software Foundation’s supporters on a continual
basis. And FOSS no longer faces existential external threats from
companies like Microsoft, which is now running and distributing FOSS
software of its own. In these areas, the FOSS revolution has reached a
state of equilibrium. The wild upheavals of previous decades have
passed.



Yet that does not mean that all FOSS hackers have been fully satisfied
or feel prepared to meet the demands that the future will bring as the
software world keeps evolving. Until they do, the FOSS revolution will
continue. To declare it over now would be just as shortsighted as
Napoleon’s attempt to end the French Revolution by dictate two
centuries ago.



Notes

Foreword

1. https://cyber.harvard.edu/property00/respect/fisher.html.
2. a href="https://en.wikipedia.org/wiki/Clarke%27s_three_laws.

Introduction

1. Rousseau, Social Contract, 165.
2. Baker and Edelstein, Scripting Revolution.
3. Russell, Open Standards.
4. Cf. “IBM Considers Free Distribution of DB2,” LXer, Forum, November 21, 2005,
http://lxer.com/module/forums/t/20141.
5. These essays first appeared online and were later published in DiBona, Ockman, and Stone,
Open Sources. They also are available on Raymond’s website at
http://www.catb.org/esr/writings/homesteading. References below are to the essays on
Raymond’s site.
6. Williams, Free as in Freedom; Torvalds and Diamond, Just for Fun.
7. Salus, Quarter Century of UNIX. See also Michael S. Mahoney’s invaluable interviews with
Unix programmers at http://www.princeton.edu/~hos/Mahoney/unixhistory.
8. Bretthauer, “Open Source Software.” Bretthauer describes his interest in free software at the
time in an email dated March 23, 2016.
9. Ensmenger, “Open Source’s Lessons,” 104.
10. Ibid., 102.
11. Ibid.
12. Ensmenger, Computer Boys.
13. Weber, Success, 1.
14. Ibid., 2.
15. Kelty, Two Bits.
16. Ibid., 7.
17. Russell, Open Standards.
18. Yood, “History of Computing,” 88.
19. Chun, Programmed Visions; Manovich, Software Takes Command; Frabetti, Software Theory;
Fuller, Behind the Blip; Berry, Philosophy of Software; von Krogh and von Hippel, “Promise of
Research.”
20. Manovich, Software Takes Command.

https://cyber.harvard.edu/property00/respect/fisher.html.
https://en.wikipedia.org/wiki/Clarke%27s_three_laws.
http://lxer.com/module/forums/t/20141
http://www.catb.org/esr/writings/homesteading
http://www.princeton.edu/~hos/Mahoney/unixhistory


21. Chun, Programmed Visions, 24.
22. Rich Sands, “Open Source by the Numbers,” SlideShare, April 6, 2012,
http://www.slideshare.net/blackducksoftware/open-source-by-the-numbers.
23. Michele Chubirka, “Open-Source vs. Commercial Software: A False Dilemma,”
InformationWeek, May 14, 2014, http://www.informationweek.com/strategic-cio/it-strategy/open-
source-vs-commercial-software-a-false-dilemma/d/d-id/1252665.
24. Torvalds and Diamond, Just for Fun; Raymond, “Revenge.”
25. Ralph Waldo Emerson, “Concord Hymn,” Poetry Foundation, accessed April 27, 2016,
https://www.poetryfoundation.org/poems-and-poets/poems/detail/45870; Raymond, “Revenge.”
26. Revolution OS.
27. DiBona, Ockman, and Stone, Open Sources, 60–70.
28. See also Mark Fidelman, “The Fourteen Key Events That Led to a Free and Open Source
Software (FOSS) Revolution,” CloudAve, April 19, 2010, https://www.cloudave.com/503/the-14-
key-events-that-led-to-a-free-and-open-source-software-foss-revolution.
29. On the meaning of the “revolutionary script,” see Baker and Edelstein, Scripting Revolution.
30. Darnton, Literary Underground, 21.

Chapter 1: The Path to Revolution

1. Edelstein, The Terror of Natural Right, 12.
2. Raymond, “Cathedral.”
3. Salus, Quarter Century of UNIX, 7.
4. Ibid., 190.
5. Cf. Torvalds and Diamond, Just for Fun, 56. On the Spacewar game, which also originated in
the 1960s, see Levy, Hackers, 57–77.
6. Salus, Quarter Century of UNIX, 5.
7. Corbató, Saltzer, and Clingen, “Multics.”
8. Ritchie, “Evolution.” Ritchie’s history of Unix, which he published in an AT&T technical
journal in 1984, was adapted from a paper presented at the Language Design and Programming
Methodology conference in Sydney, Australia, in September 1979.
9. Ritchie, “Evolution.”
10. Salus, Quarter Century of UNIX, 9; Ritchie, “Evolution.”
11. Ritchie, “Evolution.”
12. McIlroy, “Research UNIX Reader.”
13. “History of Unix,” Byte.
14. Salus, Quarter Century of UNIX, 70–71.
15. Raymond, “Cathedral.”
16. Quoted in Salus, Quarter Century of UNIX, 138.
17. Ibid., 142.

http://www.slideshare.net/blackducksoftware/open-source-by-the-numbers
http://www.informationweek.com/strategic-cio/it-strategy/open-source-vs-commercial-software-a-false-dilemma/d/d-id/1252665
https://www.poetryfoundation.org/poems-and-poets/poems/detail/45870
https://www.cloudave.com/503/the-14-key-events-that-led-to-a-free-and-open-source-software-foss-revolution


18. Ibid., 68–69.
19. “Armando Stretter,” Unix Guru Universe, http://www.ugu.com/sui/ugu/show?
I=info.Armando_Stettner; Eric S. Raymond, “Live Free or Die!,” The Jargon File,
http://catb.org/~esr/jargon/html/L/Live-Free-Or-Die-.html.
20. Raymond, “Brief History”; Salus, Quarter Century of UNIX, 190.
21. Quoted in Salus, Quarter Century of UNIX, 135.
22. For an overview of the reverse-engineering process, see Ben Everard, “Drive It Yourself:
USB Car,” Linux Voice, March 20, 2015, https://www.linuxvoice.com/drive-it-yourself-usb-car-6.
23. Salus, Quarter Century of UNIX, 65.
24. Ibid., 56–57, 65.
25. Ibid., 189–90.
26. Ibid., 190, 222.
27. Levy, Hackers, 9–10.
28. Subsequent, revised editions of Hackers appeared in 1994 and 2010.
29. Levy, Hackers, 8–12.
30. Ibid., 95.
31. Ibid., 10.
32. Ibid., 27.
33. Ibid., 28–34.
34. Regarding Levy’s description of Stallman as the “last true hacker,” Stallman told me that
“There is a big misunderstanding about that phrase. Levy called a certain community of hackers
‘the true hackers.’ Other communities he called ‘the microcomputer hackers’ and ‘the game
hackers.’ We who were in the first of these communities never used those terms; we never
claimed that only we were truly hackers. When Levy called me ‘the last of the true hackers,’ he
did not mean ‘the last real hacker.’ Rather, he meant, the last person in the ‘true hackers’
community who hadn’t abandoned it.”
35. Raymond, “Brief History.”
36. Eric Raymond, “Hacker Ethic,” Jargon File, http://www.catb.org/jargon/html/H/hacker-
ethic.html.
37. Eric Raymond, “Hacker Howto,” http://www.catb.org/esr/faqs/hacker-howto.html.
38. “Just Use the GPL,” Slashdot, August 24, 2007,
https://linux.slashdot.org/story/07/08/24/2017257/foss-license-proliferation-adding-complexity.
39. Himanen, Hacker Ethic.
40. Ensmenger, Computer Boys.
41. Russell, Open Standards.
42. Raymond, “Homesteading.”
43. Bezroukov, “Open Source Software.”
44. Raymond, “Homesteading.”
45. Williams, Free as in Freedom, 102.
46. Quoted in Salus, Quarter Century of UNIX, 7.
47. DiBona, Ockman, and Stone, Open Sources, 32.
48. Quoted in Salus, Quarter Century of UNIX, 161.

http://www.ugu.com/sui/ugu/show?I=info.Armando_Stettner
http://catb.org/~esr/jargon/html/L/Live-Free-Or-Die-.html
https://www.linuxvoice.com/drive-it-yourself-usb-car-6
http://www.catb.org/jargon/html/H/hacker-ethic.html
http://www.catb.org/esr/faqs/hacker-howto.html
https://linux.slashdot.org/story/07/08/24/2017257/foss-license-proliferation-adding-complexity


49. Baker, Inventing the French Revolution, 204.

Chapter 2: Inventing the FOSS Revolution

1. Baker, Inventing the French Revolution, 203–204.
2. Salus, Quarter Century of UNIX, 151–152.
3. Ibid., 222.
4. Ibid.
5. Quoted in ibid., 193.
6. Ibid.
7. Quoted in ibid., 232.
8. “Validating the Source Code.”
9. Gillin, “IBM’s Object Code.”
10. Bradford, “History of Unix on the PC.”
11. Salus, Quarter Century of UNIX, 222.
12. Marshall Kirk McKusick, “Twenty Years of Berkeley Unix: From AT&T-Owned to Freely
Redistributable,” in Dibona, Ockman, and Stone, Open Sources, 41. Salus, Quarter Century of
UNIX, 165, identified November 1988 as the month of NET 1’s release. I have followed the
indications of McKusick because he was personally involved in BSD development.
13. Salus, Quarter Century of UNIX, 223.
14. GNU notes on NET 2, https://ftp.gnu.org/non-gnu/net2-bsd.README.
15. Salus, Quarter Century of UNIX, 190, 222–223.
16. Ibid., 165.
17. Ibid., 217–218.
18. GNU’s Bulletin, June 1988.
19. Ibid., June 1989.
20. Salus, Quarter Century of UNIX, 218.
21. Williams, Free as in Freedom, 29.
22. Steed, “Freedom’s Forgotten Prophet.
23. Williams, Free as in Freedom, 33.
24. Ibid., 45–47.
25. Weizenbaum, Computer Power, 116.
26. Williams, Free as in Freedom, 91–92.
27. Ibid., 4–5.
28. Ibid., 7–9.
29. McHugh, “For the Love of Hacking.”.
30. Quoted in Williams, Free as in Freedom, 11.
31. “New Unix Implementation.”

https://ftp.gnu.org/non-gnu/net2-bsd.README


32. “How to Pronounce GNU,” http://www.gnu.org/gnu/pronunciation.en.html.
33. Quoted in Williams, Free as in Freedom, 103.
34. “New Unix Implementation.”
35. Ibid.
36. Ibid.
37. Ibid.
38. Ibid.
39. Raymond, “Brief History.”
40. Email with the author, May 7, 2015.
41. Ibid.
42. Williams, Free as in Freedom, 103.
43. Quoted in ibid., 105.
44. Ibid., 104.
45. Ibid., 105.
46. Ibid., 106; United States Census Bureau, “Historical Income Tables—Households,” accessed
April 25, 2016, http://www.census.gov/hhes/www/income/data/historical/household.
47. Email to the author, May 7, 2015.
48. Ibid.
49. GNU’s Bulletin, February 1986.
50. Ibid.
51. Ibid.
52. Ibid.
53. Ibid., February 1988.
54. Ibid., June 1987.
55. Ibid., February 1988.
56. Ibid., January 1989.
57. Ibid., June 1995.
58. Ibid., February 1986.
59. Ibid., June 1987.
60. Michael Tiemann, “Future of Cygnus Solutions: An Entrepreneur’s Account,” in DiBona,
Ockman, and Stone, Open Sources, 71.
61. GNU’s Bulletin, June 1991; ibid., January 1992.
62. Ibid., June 1989.
63. Ibid., June 1991; ibid., January 1993.
64. Ibid., January 1995.
65. Ibid., February 1988.
66. Ibid.; ibid., June 1988.
67. Williams, Free as in Freedom, 106.
68. Email to author, April 27, 2015.
69. GNU’s Bulletin, June 1987.

http://www.gnu.org/gnu/pronunciation.en.html
http://www.census.gov/hhes/www/income/data/historical/household


70. Ibid., January 1990.
71. Ibid., June 1991; ibid., June 1995.
72. Hall, Digitize, 206.
73. “New Unix Implementation.”
74. GNU’s Bulletin, June 1987.
75. Lemley, Software and Internet Law, 34–35.
76. Williams, Free as in Freedom, 124.
77. Ibid., 125.
78. Ibid., 128.
79. Ibid., 126.
80. GNU’s Bulletin, June 1988.
81. Ibid., June 1989.
82. Ibid., January 1989.
83. “Various Licenses and Comments about Them,” https://www.gnu.org/licenses/license-
list.en.html; Black Duck Software, “Top Twenty Open Source Licenses,”
https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses.
84. GNU’s Bulletin, January 1987.
85. Ibid., June 1989; ibid., January 1990; ibid., January 1991.
86. Ibid., June 1988; ibid., January 1995.
87. Ibid., January 1992.
88. Ibid., June 1988.
89. Ibid., January 1990.
90. “New Unix Implementation.”
91. GNU’s Bulletin, February 1986.
92. Ibid., January 1987.
93. Ibid., June 1987.
94. Ibid., June 1988; ibid., January 1989.
95. Ibid., June 1989.
96. Ibid., January 1989.
97. Ibid., June 1991.
98. Richard Stallman, “The GNU Operating System and the Free Software Movement,” in
DiBona, Ockman, and Stone, Open Sources, 65.
99. Torvalds, “The Linux Edge,” in DiBona, Ockman, and Stone, Open Sources, 103. Torvalds
admitted in 1992 that “microkernels are nicer” in theory, but he did not think them practical for
real-world applications. “The Tanenbaum-Torvalds Debate,” in Dibona, Ockman, and Stone,
Open Sources, 224.
100. GNU’s Bulletin, June 1992.
101. Ibid., January 1994.
102. Ibid., June 1992.
103. Ibid., January 1993.
104. Ibid., January 1995.

https://www.gnu.org/licenses/license-list.en.html
https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses


105. Ibid., January 1996.
106. Ibid., July 1996.
107. “RMS AMA,” July 29, 2010, https://www.redditblog.com/2010/07/rms-ama.html.
108. Greenwood, “Why Is Linux Successful?”
109. GNU’s Bulletin, March 1998.
110. “Porting the Hurd to Another Microkernel,”
http://www.gnu.org/software/hurd/history/port_to_another_microkernel.html.
111. Email to author, May 8, 2015.
112. Ibid.
113. Ibid.
114. GNU’s Bulletin, June 1995.
115. Reuven M. Lerner, “Stallman Wins $240,000 in MacArthur Award,” The Tech, July 18,
1990, http://tech.mit.edu/V110/N30/rms.30n.html.
116. Van Rossum, “Origin of BDFL.”
117. Email to author, May 8, 2015.
118. Raymond, “Cathedral.”
119. Brooks, Mythical Man-Month, 13-14; Frabetti, Software Theory, 100.
120. GNU’s Bulletin, January 1997.
121. Ibid., February 1986.
122. Ibid., January 1992.
123. Ibid., January 1993.

Chapter 3: A Kernel of Hope

1. Garfinkel, “Is Stallman Stalled?”
2. Quoted in Williams, Free as in Freedom, 145.
3. Salus, Quarter Century of UNIX, 223.
4. GNU’s Bulletin, June 1992.
5. McKusick, “Twenty Years,” in DiBona, Ockman, and Stone, Open Sources, 44.
6. UNIX System Laboratories and Regents of the University of California, “Settlement
Agreement,” Bell Laboratories, https://www.bell-
labs.com/usr/dmr/www/bsdi/USLsettlement.pdf.
7. McKusick, “Twenty Years,” in DiBona, Ockman, and Stone, Open Sources, 46.
8. Ibid., 46.
9. Torvalds and Diamond, Just for Fun, 39.
10. Ibid., 41.
11. Ibid., 51.
12. Ibid., 53.

https://www.redditblog.com/2010/07/rms-ama.html
http://www.gnu.org/software/hurd/history/port_to_another_microkernel.html
http://tech.mit.edu/V110/N30/rms.30n.html
https://www.bell-labs.com/usr/dmr/www/bsdi/USLsettlement.pdf


13. Paju, “National Projects.”
14. Young, “Interview.”
15. Paju, “National Projects,” 84.
16. Torvalds and Diamond, Just for Fun, 94.
17. Tanenbaum, Operating Systems.
18. Torvalds and Diamond, Just for Fun, 51–52.
19. Ibid., 52.
20. Tanenbaum, “Some Notes.”
21. Ibid.
22. Torvalds and Diamond, Just for Fun, 60–61.
23. Ibid., 62.
24. Ibid.
25. Tanenbaum and Torvalds, et al., “LINUX Is Obsolete,” January 31, 1992.
26. Ibid.
27. Tanenbaum and Torvalds, et al., “LINUX Is Obsolete,” January 29, 1992.
28. Torvalds and Diamond, Just for Fun, 61.
29. Email to author, May 6, 2016.
30. Tanenbaum, “Some Notes.”
31. Ibid.
32. Torvalds and Diamond, Just for Fun, 58.
33. Torvalds, “LINUX: A Free Unix-386 Kernel.”
34. Torvalds and Diamond, Just for Fun, 58, 194.
35. Ibid., 73.
36. https://twitter.com/linus__torvalds/status/296333253571387392, January 29, 2013, accessed
August 18, 2016.
37. Torvalds, “What Would You Like to See Most in Minix?”
38. Torvalds and Diamond, Just for Fun, 94.
39. Ibid., 62–63.
40. Ibid., 77–78.
41. Ibid., 78.
42. Torvalds, “LINUX’s History.”
43. Torvalds and Diamond, Just for Fun, 77–78.
44. Torvalds, “LINUX’s History.”
45. Torvalds and Diamond, Just for Fun, 79–80.
46. Torvalds, “LINUX’s History.”
47. Ibid.
48. Ibid.
49. Ibid.
50. Ibid.

https://twitter.com/linus__torvalds/status/296333253571387392


51. Ibid.
52. Torvalds, “What Would You Like to See Most in Minix?”
53. Torvalds and Diamond, Just for Fun, 81.
54. Lovell, “And Then Came?”
55. Tanenbaum, “Some Notes.”
56. GNU’s Bulletin, March 1998.
57. Torvalds and Diamond, Just for Fun, 87.
58. Ibid., 84.
59. Ibid., 87.
60. Ibid., 90.
61. Torvalds, “Free Minix-like Kernel Sources.”
62. Quoted in Torvalds, “LINUX’s History.”
63. Torvalds, “Free Minix-like Kernel Sources.”
64. Torvalds and Diamond, Just for Fun, 90.
65. Ibid., 91.
66. Ibid., 93.
67. Ibid.
68. Ibid.
69. Torvalds and Diamond, Just for Fun, 94.
70. Tanenbaum and Torvalds, et al., “LINUX Is Obsolete.”
71. Ibid.
72. Torvalds and Diamond, Just for Fun, 111.
73. Tanenbaum and Torvalds, et al., “LINUX Is Obsolete.”
74. Torvalds and Diamond, Just for Fun, 112.
75. Torvalds, “LINUX: A Free Unix-386 Kernel.”
76. Torvalds, “LINUX’s History.”
77. Torvalds and Diamond, Just for Fun, 92.
78. Torvalds, “LINUX’s History.”
79. Torvalds and Diamond, Just for Fun, 117.
80. Ibid., 116–117.
81. Wirzenius, “Linux at Twenty.”
82. Young, “Interview with Linus.”
83. Torvalds and Diamond, Just for Fun, 115.
84. Ibid., 127.
85. Ibid.
86. GNU’s Bulletin, January 1994.
87. Young, “Interview with Linus.”
88. Hillesley, “Asterix, the Gall.”
89. Torvalds and Diamond, Just for Fun, 133.



90. Marjorie Richardson, “Ownership of Linux Trademark Resolved,” Linux Journal, November
1, 1997; Torvalds and Diamond, Just for Fun, 134.
91. Quoted in Hillesley, “Asterix, the Gall.”
92. Ibid.
93. Torvalds, “Notes for Linux Release 0.01.”
94. Email to author, May 6, 2016.
95. Ibid.
96. Torvalds and Diamond, Just for Fun, 95.
97. Ibid., 95–96; Torvalds, “Release Notes for Linux v0.12.”
98. Torvalds, “LINUX’s History.”
99. Torvalds and Diamond, Just for Fun, 96.
100. Ibid., 97.
101. Young, “Interview with Linus.”
102. Torvalds and Diamond, Just for Fun, 96–97.
103. Quoted in Williams, Free as in Freedom, 144.
104. Quoted in ibid., 145.
105. Quoted in ibid.
106. GNU’s Bulletin, June 1992.
107. Ibid., June 1994.
108. Ibid, June 1994.
109. Ibid., January 1995; Torvalds and Diamond, Just for Fun, 132.
110. GNU’s Bulletin, January 1996.
111. “Brief History of Debian.”
112. Quoted in Williams, Free as in Freedom, 150.
113. GNU’s Bulletin, July 1996.
114. Williams, Free as in Freedom, 148.
115. Ibid.
116. GNU’s Bulletin, July 1996.
117. Ibid., July 1997.
118. Ibid., March 1998.
119. Kahney, “Linux’s Forgotten Man.”
120. Salus, Quarter Century of UNIX, 210, 223.
121. Wirzenius, “Linux Anecdotes.”
122. Tanenbaum, “Some Notes.”
123. McKusick, “Twenty Years,” in DiBona, Ockman, and Stone, Open Sources, 42.
124. Ibid., 45.
125. Torvalds, “LINUX: A Free Unix-386 Kernel.”
126. Quoted in Torvalds, “LINUX’s History.”
127. McKusick, “Twenty Years,” in DiBona, Ockman, and Stone, Open Sources, 42.



128. Tanenbaum, “Some Notes.”
129. Email to author, May 6, 2016.
130. Ibid.
131. Young, “Interview with Linus.”

Chapter 4: The Moderate FOSS Revolution

1. Berlich, “Early History.”
2. Ibid.
3. Salus, “Daemon.”
4. Slackware 2.1 README, accessed April 26, 2016,
https://web.archive.org/web/20111009004917/http://ftp.df.lth.se/pub/slackware/slackware-
2.1/README.210.
5. Hameleers, “History of Slackware.”
6. Salus, “Daemon.”
7. Young, “Giving It Away: How Red Hat Software Stumbled across a New Economic Model and
Helped Improve an Industry,” in DiBona, Ockman, and Stone, Open Sources, 113.
8. “Brief History of Debian.”
9. Ibid.
10. Ibid.
11. Perens, “Debian Linux.”
12. Ibid.
13. Chris Williams, “Debian Founder Ian Murdock Killed Himself,” The Register, July 7, 2016,
accessed December 20, 2016, http://www.theregister.co.uk/2016/07/07/ian_murdock_autopsy.
14. Ingo, Open Life.
15. Ibid.
16. John Dvorak, “The Lindows Conundrum,” PC Magazine, October 26, 2001.
17. Bloomberg News, “Technology Briefing. Software: Lindows and Microsoft Settle Suit,” New
York Times, July 20, 2004.
18. Bmasnick, “Review: Mandrake Linux 9.0,” ExtremeTech, October 21, 2002, accessed July
21, 2015, http://www.extremetech.com/computing/52240-review-mandrake-linux-90.
19. Michael, “Mandrake Appealing to Community, Again,” Slashdot, December 20, 2002,
accessed April 26, 2016, https://linux.slashdot.org/story/02/12/20/1815214/mandrake-appealing-
to-community-again.
20. Julie Bort, “A Linux Company That Spent Seventeen Years Competing with Windows Is
Officially Over,” Business Insider, May 26, 2015, accessed April 26, 2016,
http://finance.yahoo.com/news/linux-company-spent-17-years-171430998.html.
21. “How Not to Fork Gentoo Linux,” DistroWatch Weekly, June 30, 2003, accessed April 26,
2016, https://distrowatch.com/weekly.php?issue=20030630.
22. Berlich, “Early History.”

https://web.archive.org/web/20111009004917/http://ftp.df.lth.se/pub/slackware/slackware-2.1/README.210
http://www.theregister.co.uk/2016/07/07/ian_murdock_autopsy
http://www.extremetech.com/computing/52240-review-mandrake-linux-90
https://linux.slashdot.org/story/02/12/20/1815214/mandrake-appealing-to-community-again
http://finance.yahoo.com/news/linux-company-spent-17-years-171430998.html
https://distrowatch.com/weekly.php?issue=20030630


23. “How to Build Your Own Linux Distro,” http://www.wikihow.com/Build-Your-Own-Linux-
Distribution.
24. McKusick, “Twenty Years,” in DiBona, Ockman, and Stone, Open Sources, 43.
25. Ibid.
26. Ibid.
27. GNU’s Bulletin, January 1987; Raymond, Art of Unix.
28. Robert W. Scheifler, “Debut of X,” Talisman General Information, June 19, 1984, accessed
April 26, 2016, http://www.talisman.org/x-debut.shtml.
29. Jon Brodkin, “Intel Rejection of Ubuntu’s Mir Patch Forces Canonical to Go Own Way,” Ars
Technica, September 9, 2013, accessed April 26, 2016, http://arstechnica.com/information-
technology/2013/09/intel-rejection-of-ubuntus-mir-patch-forces-canonical-to-go-own-way.
30. “RMS on the GPLing of Qt.”
31. Ettrich, “New Project.”
32. Richard Stallman, “GNU Operating System and the Free Software Movement,” in DiBona,
Ockman, and Stone, Open Sources, 66–69.
33. Bruce Perens, “The Open Source Definition,” in DiBona, Ockman, and Stone, Open Sources,
175.
34. Stallman, “The GNU Project.”
35. “The GNOME Desktop Project (fwd),” August 28, 1997, accessed April 26, 2016,
https://lists.debian.org/debian-user/1997/08/msg02286.html.
36. DiBona, Ockman, and Stone, Open Sources, 66–69, 175.
37. “The Q Public License Version 1.0,” 1999–2000, accessed April 26, 2016,
http://web.archive.org/web/20010911005542/http://doc.trolltech.com/3.0/license.html.
38. Stallman, “Stallman on Qt.”
39. Ibid.
40. “RMS on the GPLing of Qt.”
41. Matt Heck, “Re: [freeqt] Hello All … ,” Harmony mailing list archive, August 4, 1999,
accessed April 26, 2016, http://marc.info/?l=kde-freeqt&m=93380255719107&w=2.
42. “GNOME 2.0 Release Notes,” accessed April 26, 2016, https://help.gnome.org/misc/release-
notes/2.0.
43. These included winGTK (http://wingtk.sourceforge.net) and CyGNOME
(http://cygnome.sourceforge.net).
44. Eugenia Loli, “GNOME-Office 1.0 Released; Nautilus Becomes Object-Oriented,” OSnews,
September 15, 2003, accessed April 26, 2016, http://www.osnews.com/comments/4548.
45. “OpenOffice.org History and Milestones 1999–2005,” OpenOffice, accessed April 26, 2016,
https://www.openoffice.org/about_us/milestones.html; “A Short History of OpenOffice.org,”
OooAuthors User Manual, OpenOffice, accessed April 26, 2016,
https://web.archive.org/web/20130918165733/http://wiki.openoffice.org/wiki/Documentation/OO
oAuthors_User_Manual/Getting_Started/A_short_history_of_OpenOffice.org; Jack Loftus,
“Desktop Apps Ripe Turf for Open Source,” Search Enterprise Linux, October 4, 2004, accessed
April 26, 2016, http://searchenterpriselinux.techtarget.com/news/1011227/Desktop-apps-ripe-
turf-for-open-source.
46. Joe Barr, “Ximian Evolution 1.0 Links Linux to Exchange,” The Register, December 3, 2001,
accessed April 26, 2016, http://www.theregister.co.uk/2001/12/03/ximian_evolution_1_0_links.

http://www.wikihow.com/Build-Your-Own-Linux-Distribution.
http://www.talisman.org/x-debut.shtml
http://arstechnica.com/information-technology/2013/09/intel-rejection-of-ubuntus-mir-patch-forces-canonical-to-go-own-way
https://lists.debian.org/debian-user/1997/08/msg02286.html
http://web.archive.org/web/20010911005542/http://doc.trolltech.com/3.0/license.html
http://marc.info/?l=kde-freeqt&m=93380255719107&w=2
https://help.gnome.org/misc/release-notes/2.0
http://wingtk.sourceforge.net/
http://cygnome.sourceforge.net/
http://www.osnews.com/comments/4548
https://www.openoffice.org/about_us/milestones.html
https://web.archive.org/web/20130918165733/http://wiki.openoffice.org/wiki/Documentation/OOoAuthors_User_Manual/Getting_Started/A_short_history_of_OpenOffice.org
http://searchenterpriselinux.techtarget.com/news/1011227/Desktop-apps-ripe-turf-for-open-source
http://www.theregister.co.uk/2001/12/03/ximian_evolution_1_0_links


47. “Project: Evolution,” accessed April 26, 2016,
http://web.archive.org/web/20070528161309/http://forge.novell.com/modules/xfcontent/downloa
ds.php/evolution/builds/Evolution%202.6%20for%20Mac%20OS%20X%20/; Nat Friedman,
“Evolution for Windows,” Blog, January 17, 2005, accessed April 26, 2016,
http://archive.is/qHUOl.
48. Mitchell Baker, “Thunderbird: Stability and Community Innovation,” Blog, July 6, 2012,
accessed April 26, 2016, http://blog.lizardwrangler.com/2012/07/06/thunderbird-stability-and-
community-innovation.
49. “Wine History.”
50. Young, “Interview with Linus.”
51. “Wine History.”
52. Raymond, Halloween Documents, “Halloween Document II.”
53. “Wine History.”
54. DiBona, Ockman, and Stone, Open Sources, 15.
55. Tim Smith and François Flückiger, “Licensing the Web,” CERN, accessed April 26, 2016,
http://home.cern/topics/birth-web/licensing-web.
56. GNU’s Bulletin, June 1991.
57. “Apache Server Frequently Asked Questions,” accessed April 26, 2016,
https://www.bigbiz.com/docs/1.1/1.0/FAQ.html.
58. “About the Apache HTTP Server.”
59. “Re: Informing NCSA, Archive of the List,” February 28, 1995, accessed April 26, 2016,
http://mail-archives.apache.org/mod_mbox/httpd-
dev/199503.mbox/%3C9502281620.AA24455@volterra%3E.
60. Some noncontemporary sources claim that “the name ‘Apache’ was chosen from respect for
the Native American Apache Nation” and that the play on “a patchy server” was not the name’s
origin. Cf. http://www.apache.org/foundation/how-it-works.html#history. But an email from early
in the project’s history indicates instead that “If you’re wondering about the name, say ‘Apache
server’ ten time [sic] fast.” Robert Thau, “Re: Informing NCSA, Archive of the List,” February
28, 1995, accessed April 26, 2016, http://mail-archives.apache.org/mod_mbox/httpd-
dev/199503.mbox/%3C9502281620.AA24455@volterra%3E.
61. Robert Thau, “The Political Correctness Question,” April 1995, accessed April 26, 2016,
http://mail-archives.apache.org/mod_mbox/httpd-
dev/199504.mbox/%3C9504230106.AA04957%40volterra%3E.
62. Randy Terbush, “Mission Statement,” March 12, 1995, accessed April 26, 2016, http://mail-
archives.apache.org/mod_mbox/httpd-
dev/199503.mbox/%3C199503121853.MAA07180%40sierra.zyzzyva.com%3E.
63. “About the Apache HTTP Server.”
64. “Apache License 1.0,” accessed April 27, 2016, https://www.apache.org/licenses/LICENSE-
1.0.
65. Rob Hartill, “Apache LICENSE (fwd),” July 5, 1995, accessed April 27, 2016, https://mail-
archives.apache.org/mod_mbox/httpd-
dev/199507.mbox/%3C199507052206.PAA11787%40taz.hyperreal.com%3E.
66. Brian Tao, “Re: Apache LICENSE (fwd),” July 7, 1995, accessed April 27, 2016,
https://mail-archives.apache.org/mod_mbox/httpd-
dev/199507.mbox/%3CPine.BSI.3.91.950708001729.14082E-100000%40aries%3E.

http://web.archive.org/web/20070528161309/http://forge.novell.com/modules/xfcontent/downloads.php/evolution/builds/Evolution%202.6%20for%20Mac%20OS%20X%20/
http://archive.is/qHUOl
http://blog.lizardwrangler.com/2012/07/06/thunderbird-stability-and-community-innovation
http://home.cern/topics/birth-web/licensing-web
https://www.bigbiz.com/docs/1.1/1.0/FAQ.html
http://mail-archives.apache.org/mod_mbox/httpd-dev/199503.mbox/%3C9502281620.AA24455@volterra%3E
http://www.apache.org/foundation/how-it-works.html#history
http://mail-archives.apache.org/mod_mbox/httpd-dev/199503.mbox/%3C9502281620.AA24455@volterra%3E
http://mail-archives.apache.org/mod_mbox/httpd-dev/199504.mbox/%3C9504230106.AA04957%40volterra%3E
http://mail-archives.apache.org/mod_mbox/httpd-dev/199503.mbox/%3C199503121853.MAA07180%40sierra.zyzzyva.com%3E
https://www.apache.org/licenses/LICENSE-1.0
https://mail-archives.apache.org/mod_mbox/httpd-dev/199507.mbox/%3C199507052206.PAA11787%40taz.hyperreal.com%3E
https://mail-archives.apache.org/mod_mbox/httpd-dev/199507.mbox/%3CPine.BSI.3.91.950708001729.14082E-100000%40aries%3E


67. Randy Terbush, “Re: Apache LICENSE (fwd),” July 6, 1995, accessed April 27, 2016,
https://mail-archives.apache.org/mod_mbox/httpd-
dev/199507.mbox/raw/%3CPine.BSI.3.91.950706221100.4165r-
110000%40taz.hyperreal.com%3E.
68. “Apache License 1.1,” accessed April 27, 2016, https://www.apache.org/licenses/LICENSE-
1.1.
69. “Various Licenses and Comments about Them,” accessed April 27, 2016,
https://www.gnu.org/licenses/license-list.html#apache2.
70. “How the ASF Works,” accessed April 27, 2016, http://www.apache.org/foundation/how-it-
works.html#meritocracy.
71. James Davidson, “NEWS: Jakarta Goes LIVE,” October 16, 1999, accessed April 26, 2016,
http://mail-archives.apache.org/mod_mbox/jakarta-
announcements/199910.mbox/%3C025301bf1824%24dd9e6da0%24a447fea9%40paris%3E.
72. “Report from ApacheCon.”
73. “Certificate of Incorporation of the Apache Software Foundation,” accessed April 27, 2016,
https://web.archive.org/web/20090531160220/http://apache.org/foundation/records/certificate.ht
ml; “The Apache Group Incorporates as the Apache Software Foundation,” June 30, 1999,
accessed April 27, 2016, http://apache.org/foundation/press/pr_1999_06_30.html.
74. “ASF History Goals,” accessed April 27, 2016, http://www.apache.org/history/goals.html.
This page has not been significantly changed since at least December 2002, when it was first
archived by archive.org. See
https://web.archive.org/web/20021210113807/http://www.apache.org/history/goals.html.
75. “Projects Directory,” accessed April 27, 2016, https://projects.apache.org.
76. “Samba Team Announces Samba 1.9.17,” Press release, August 26, 1997, accessed April 27,
2016, https://www.samba.org/samba/history/samba1.9.17.html.
77. “History of PHP,” accessed April 27, 2016, http://php.net/manual/en/history.php.php.
78. Lauren Orsini, “PHP, Once the Web’s Favorite Programming Language, Is on the Wane,”
ReadWrite, August 11, 2014, accessed April 27, 2016, http://readwrite.com/2014/08/11/why-
learn-php.
79. Lutz, Programming Python; “perlhist,” accessed April 27, 2016,
http://perldoc.perl.org/perlhist.html.
80. Harrison and Feuerstein, MySQL, 5–6, 1; Pachev, Understanding, 1.
81. Morrison and Snodgrass, “Computer Science.”
82. Young, “Giving It Away: How Red Hat Software Stumbled across a New Economic Model
and Helped Improve an Industry,” in DiBona, Ockman, and Stone, Open Sources, 113–114.
83. Young, “Giving It Away,” 115.
84. Ibid., 116.
85. Ibid.
86. Om Malik, “Dell Plus Sun Equals VA Research,” Forbes, May 3, 1999, accessed April 27,
2016,
https://web.archive.org/web/20160303180813/http://www.forbes.com/1999/05/03/feat.html.
87. John Mark Walker, “Ten Years Gone: The VA Linux Systems IPO,” CNET, December 10,
2009, accessed April 27, 2016, https://www.cnet.com/news/10-years-gone-the-va-linux-systems-
ipo.
88. “SourceForge, Inc. Changes Its Name to Geeknet, Inc.,” November 4, 2009, accessed April
27, 2016,

https://mail-archives.apache.org/mod_mbox/httpd-dev/199507.mbox/raw/%3CPine.BSI.3.91.950706221100.4165r-110000%40taz.hyperreal.com%3E
https://www.apache.org/licenses/LICENSE-1.1
https://www.gnu.org/licenses/license-list.html#apache2
http://www.apache.org/foundation/how-it-works.html#meritocracy
http://mail-archives.apache.org/mod_mbox/jakarta-announcements/199910.mbox/%3C025301bf1824%24dd9e6da0%24a447fea9%40paris%3E
https://web.archive.org/web/20090531160220/http://apache.org/foundation/records/certificate.html
http://apache.org/foundation/press/pr_1999_06_30.html
http://www.apache.org/history/goals.html
https://web.archive.org/web/20021210113807/http://www.apache.org/history/goals.html
https://projects.apache.org/
https://www.samba.org/samba/history/samba1.9.17.html
http://php.net/manual/en/history.php.php
http://readwrite.com/2014/08/11/why-learn-php
http://perldoc.perl.org/perlhist.html
https://web.archive.org/web/20160303180813/http://www.forbes.com/1999/05/03/feat.html
https://www.cnet.com/news/10-years-gone-the-va-linux-systems-ipo
https://web.archive.org/web/20130204051709/http://investors.geek.net/releasedetail.cfm?ReleaseID=521395


https://web.archive.org/web/20130204051709/http://investors.geek.net/releasedetail.cfm?
ReleaseID=521395.
89. Malik, “Dell Plus Sun.”
90. Torvalds and Diamond, Just for Fun, 157.
91. “Linux: The Era of Open Innovation,” IBM, accessed April 27, 2016, http://www-
03.ibm.com/ibm/history/ibm100/us/en/icons/linux; Mike Miller, “Source Release,” November
29, 1996, accessed May 31, 2016, https://marc.info/?l=mysql&m=87602429318864&w=1.
92. Joe Wilcox, “IBM to Spend $1 Billion on Linux in 2001,” CNET, December 12, 2000,
accessed April 27, 2016, http://www.cnet.com/2100-1001-249750.html.
93. Torvalds and Diamond, Just for Fun, 158.
94. IBM announced another billion-dollar investment in Linux in 2013. Steven Vaughan-Nichols,
“IBM and Linux: The Next Billion Dollars,” ZDNet, September 17, 2013, accessed April 27,
2016, http://www.zdnet.com/article/ibm-and-linux-the-next-billion-dollars.
95. GNU’s Bulletin, June 1988, January 1995.
96. Torvalds and Diamond, Just for Fun, 149.
97. Ibid., 150.
98. Ibid., 151.
99. Ibid.
100. Richard Stallman, “Political Notes from 2011: July–October,” October 6, 2011, accessed
April 27, 2016, https://stallman.org/archives/2011-jul-
oct.html#06_October_2011_%28Steve_Jobs%29.
101. Ibid.
102. Ted Samson, “Richard Stallman, Unrepentant: ‘Apple Is Your Enemy,’” InfoWorld, January
8, 2013, accessed April 27, 2016, http://www.infoworld.com/article/2616420/techology-
business/richard-stallman-unrepentant-apple-is-your-enemy.html.

Chapter 5: The FOSS Revolutionary Wars

1. Raymond, “Homesteading.”
2. Mizrach, “Is there a Hacker Ethic.”
3. “New Unix Implementation.”
4. “The GNU Manifesto,” accessed April 27, 2016, http://www.gnu.org/gnu/manifesto.en.html.
5. GNU’s Bulletin, July 1996.
6. Kahney, “Forgotten Man.”
7. Williams, Free as in Freedom, 148–149.
8. Rick Moen, “Fear of Forking,” November 1999, accessed April 27, 2016,
http://linuxmafia.com/faq/Licensing_and_Law/forking.html.
9. Raymond, “Open Source Summit.”
10. Williams, Free as in Freedom, 162–163.
11. Ibid.

https://web.archive.org/web/20130204051709/http://investors.geek.net/releasedetail.cfm?ReleaseID=521395
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/linux
https://marc.info/?l=mysql&m=87602429318864&w=1
http://www.cnet.com/2100-1001-249750.html
http://www.zdnet.com/article/ibm-and-linux-the-next-billion-dollars
https://stallman.org/archives/2011-jul-oct.html#06_October_2011_%28Steve_Jobs%29
http://www.infoworld.com/article/2616420/techology-business/richard-stallman-unrepentant-apple-is-your-enemy.html
http://www.gnu.org/gnu/manifesto.en.html
http://linuxmafia.com/faq/Licensing_and_Law/forking.html


12. Eric Raymond, “Goodbye, ‘Free Software’; Hello, ‘Open Source,’”
http://www.catb.org/~esr/open-source.html; Williams, Free as in Freedom, 164.
13. Raymond, “Revenge.”
14. Williams, Free as in Freedom, 165.
15. Kahney, “Forgotten Man.”
16. Williams, Free as in Freedom, 166.
17. Ibid., 115.
18. Torvalds and Diamond, Just for Fun, 194–195.
19. Raymond, “Homesteading.”
20. Williams, Free as in Freedom, 117.
21. Kahney, “Forgotten Man.”
22. Email to author, April 27, 2015.
23. “Reader’s Digest European of the Year: Linus,” Linux.com, January 20, 2001, accessed April
27, 2016, https://www.linux.com/articles/7109.
24. “Netscape Announces Plans to Make Next-Generation Communicator Source Code Available
Free on the Net,” January 22, 1998, accessed April 27, 2016,
http://web.archive.org/web/20021001071727/wp.netscape.com/newsref/pr/newsrelease558.html.
25. Raymond, “Cathedral.”
26. Raymond, “Revenge.”
27. Jim Hamerly and Tom Paquin, “Freeing the Source: The Story of Mozilla,” in DiBona,
Ockman, and Stone, Open Sources, 197.
28. Ibid., 198–200.
29. Ibid., 200–201.
30. Ibid., 198–202.
31. Torvalds and Diamond, Just for Fun, 156.
32. Ibid.
33. Raymond, “Revenge.”
34. Raymond, “Cathedral,” 62.
35. Raymond, “Revenge.”
36. “Linux Sucks!! Long Live Windows,” February 5, 1999, alt.comp.linux.xxx.
37. Raymond, “Revenge.”
38. Justice.gov, accessed April 27, 2016, https://www.justice.gov/atr/cases/f2600/v-a.pdf.
39. Raymond, Halloween Documents, “Halloween Document I.”
40. Ibid.
41. Ibid., “Halloween Document II.”
42. Ibid., “Halloween Document III.”
43. “Microsoft Responds to the Open Source Memo Regarding the Open Source Model and
Linux,” November 5, 1998, accessed April 27, 2016,
http://web.archive.org/web/19991013112307/http://microsoft.com/ntserver/nts/news/mwarv/linux
resp.asp.
44. Stallman, “The GNU Operating System,” in DiBona, Ockman, and Stone, Open Sources, 70.

http://www.catb.org/~esr/open-source.html
https://www.linux.com/articles/7109
http://web.archive.org/web/20021001071727/wp.netscape.com/newsref/pr/newsrelease558.html
https://www.justice.gov/atr/cases/f2600/v-a.pdf
http://web.archive.org/web/19991013112307/http://microsoft.com/ntserver/nts/news/mwarv/linuxresp.asp


45. Perens, “Open Source Definition,” 186.
46. Raymond, “Response to Nikolai Bezroukov,” accessed April 27, 2016,
http://www.catb.org/esr/writings/response-to-bezroukov.html; Williams, Free as in Freedom, 15.
47. “Speech Transcript—Craig Mundie, The New York University Stern School of Business,”
Microsoft.com, May 3, 2001, accessed April 27, 2016,
http://news.microsoft.com/speeches/speech-transcript-craig-mundie-the-new-york-university-
stern-school-of-business.
48. Dave Newbart, “Microsoft CEO Takes Launch Break with the Sun-Times,” Chicago Sun-
Times, June 1, 2001, accessed April 26, 2016,
https://web.archive.org/web/20011115003306/http://www.suntimes.com/output/tech/cst-fin-
micro01.html.
49. Ibid.
50. Raymond, Halloween Documents, “Halloween VII.”
51. John Markoff, “Judge Says Unix Copyrights Rightfully Belong to Novell,” New York Times,
August 11, 2007, accessed April 27, 2016,
http://www.nytimes.com/2007/08/11/technology/11novell.html.
52. Raymond, Halloween Documents, “Halloween X.”
53. Markoff, “Judge Says.”
54. Kenneth Brown, “Samizdat: And Other Issues Regarding the ‘Source’ of Open-Source
Code,” May 20, 2004, accessed April 27, 2016,
http://www.angelfire.com/linux/toussaint/samizdat/samizdat.pdf.
55. Tanenbaum, “Some Notes.”
56. Ibid.
57. Robert Lemos, “Linux Makes a Run for Government,” CNET, August 16, 2002, accessed
April 27, 2016, http://www.cnet.com/Linux+makes+a+run+for+government/2100-1001_3-
950083.html.
58. “Dennis Ritchie’s Interview for Samizdat,” Groklaw, June 1, 2004, accessed April 27, 2016,
http://www.groklaw.net/article.php?story=20040601212559558; “Stallman and Salus Also
Contradict Ken Brown’s Discredited ‘Samizdat,’” Groklaw, May 29, 2004, accessed April 27,
2016, http://www.groklaw.net/articlebasic.php?story=20040529153027629.
59. “Microsoft Calls AdTI ‘Study’ an ‘Unhelpful Distraction,’” Groklaw, June 14, 2004,
accessed April 27, 2016, http://www.groklaw.net/articlebasic.php?story=20040614232501302.

Chapter 6: Ending the FOSS Revolution?

1. “Linus Torvalds Talks Future of Linux,” APC, August 22, 2007, accessed April 27, 2016,
http://apcmag.com/linus_torvalds_talks_future_of_linux_page_3.htm/; “‘Tux’ the Aussie
Penguin,” Linux Australia, accessed May 9, 2016,
http://web.archive.org/web/20060507115127/http://www.linux.org.au/linux/tux.
2. Dave Newbart, “Microsoft CEO Takes Launch Break with the Sun-Times,” Chicago Sun-
Times, June 1, 2001, accessed April 26, 2016,
https://web.archive.org/web/20011115003306/http://www.suntimes.com/output/tech/cst-fin-
micro01.html.

http://www.catb.org/esr/writings/response-to-bezroukov.html
http://news.microsoft.com/speeches/speech-transcript-craig-mundie-the-new-york-university-stern-school-of-business
https://web.archive.org/web/20011115003306/http://www.suntimes.com/output/tech/cst-fin-micro01.html
http://www.nytimes.com/2007/08/11/technology/11novell.html
http://www.angelfire.com/linux/toussaint/samizdat/samizdat.pdf
http://www.cnet.com/Linux+makes+a+run+for+government/2100-1001_3-950083.html
http://www.groklaw.net/article.php?story=20040601212559558
http://www.groklaw.net/articlebasic.php?story=20040529153027629
http://www.groklaw.net/articlebasic.php?story=20040614232501302
http://apcmag.com/linus_torvalds_talks_future_of_linux_page_3.htm/
http://web.archive.org/web/20060507115127/http://www.linux.org.au/linux/tux
https://web.archive.org/web/20011115003306/http://www.suntimes.com/output/tech/cst-fin-micro01.html


3. “Who Has Faster Pipes? Linux, Win2000, WinXP Compared,” Slashdot, October 3, 2001,
accessed April 27, 2016, https://developers.slashdot.org/story/01/10/03/176257/who-has-faster-
pipes-linux-win2000-winxp-compared.
4. Weber, Success.
5. Black Duck and North Bridge, “The Ninth Annual Future of Open Source Survey,” 2015,
accessed April 27, 2016,
https://web.archive.org/web/20150817010126/https://www.blackducksoftware.com/future-of-
open-source.
6. “Dell to Use Ubuntu on Linux PCs,” BBC News, May 1, 2007, accessed April 27, 2016,
http://news.bbc.co.uk/2/hi/business/6610901.stm.
7. “Announcing the Chromium OS Open Source Project,” Google Chrome Blog, November 19,
2009, accessed April 27, 2016, https://chrome.blogspot.com/2009/11/announcing-chromium-os-
open-source.html.
8. Neil McAllister, “Open Source? HP Enterprise Will Be All-in, Post Split, Says CTO,” The
Register, June 4, 2015, accessed April 26, 2017,
http://www.theregister.co.uk/2015/06/04/hp_enterprise_loves_open_source.
9. Humayun Shahid, “The Odd Couple: Microsoft and Ubuntu Work It Out in the Cloud,” June
14, 2012, accessed April 27, 2016, http://cloudtweaks.com/2012/06/the-odd-couple-microsoft-
and-ubuntu-work-it-out-in-the-cloud; “IoT World: Canonical and Industry Leaders Drive IoT
Commercialization,” Ubuntu, May 11, 2015, https://insights.ubuntu.com/2015/05/11/iot-world-
canonical-industry-leaders-drive-iot-commercialization/; Mark Shuttleworth, “Comment 1834 for
Bug 1,” May 30, 2013, accessed April 27, 2016,
https://bugs.launchpad.net/ubuntu/+bug/1/comments/1834.
10. Neil McAllister, “Redmond Top Man Satya Nadella: ‘Microsoft LOVES Linux,’” The
Register, October 20, 2014, accessed April 27, 2016,
http://www.theregister.co.uk/2014/10/20/microsoft_cloud_event.
11. Cade Metz, “Microsoft Built Its Own Linux Because Everyone Else Did,” Wired, September
29, 2015, https://www.wired.com/2015/09/microsoft-built-linux-everyone-else.
12. Steven Vaughan-Nichols, “Microsoft’s Love Affair with Linux Deepens,” ZDNet, September
21, 2015, Comment, accessed April 27, 2016, http://www.zdnet.com/article/microsoft-the-linux-
company.
13. Roy Schestowitz, “The ‘Microsoft Loves Linux’ Baloney Is Still Being Floated in the
Media,” Techrights, October 1, 2015, accessed April 27, 2016,
http://techrights.org/2015/10/01/microsoft-loves-linux-brainwash.
14. Steven Vaughan-Nichols, “Ubuntu (Not Linux) on Windows: How It Works,” ZDNet, March
30, 2016, accessed April 27, 2016, http://www.zdnet.com/article/ubuntu-not-linux-on-windows-
how-it-works.
15. Hall, Digitize, 120.
16. Steve Kovach, “How Android Grew to Be More Popular Than the iPhone,” Business Insider,
August 13, 2013, accessed April 27, 2016, http://www.businessinsider.com/history-of-android-
2013-8.
17. Ben Elgin, “Google Buys Android for Its Mobile Arsenal,” Bloomberg Businessweek, August
17, 2005, accessed April 27, 2016,
https://web.archive.org/web/20060203184218/http://www.businessweek.com/technology/content/
aug2005/tc20050817_0949_tc024.htm.
18. “Industry Leaders Announce Open Platform for Mobile Devices,” Open Handset Alliance,
November 5, 2007, accessed April 27, 2016,
http://www.openhandsetalliance.com/press_110507.html.

https://developers.slashdot.org/story/01/10/03/176257/who-has-faster-pipes-linux-win2000-winxp-compared
https://web.archive.org/web/20150817010126/https://www.blackducksoftware.com/future-of-open-source
http://news.bbc.co.uk/2/hi/business/6610901.stm
https://chrome.blogspot.com/2009/11/announcing-chromium-os-open-source.html
http://www.theregister.co.uk/2015/06/04/hp_enterprise_loves_open_source
http://cloudtweaks.com/2012/06/the-odd-couple-microsoft-and-ubuntu-work-it-out-in-the-cloud
https://insights.ubuntu.com/2015/05/11/iot-world-canonical-industry-leaders-drive-iot-commercialization/
https://bugs.launchpad.net/ubuntu/+bug/1/comments/1834
http://www.theregister.co.uk/2014/10/20/microsoft_cloud_event
https://www.wired.com/2015/09/microsoft-built-linux-everyone-else
http://www.zdnet.com/article/microsoft-the-linux-company
http://techrights.org/2015/10/01/microsoft-loves-linux-brainwash
http://www.zdnet.com/article/ubuntu-not-linux-on-windows-how-it-works
http://www.businessinsider.com/history-of-android-2013-8
https://web.archive.org/web/20060203184218/http://www.businessweek.com/technology/content/aug2005/tc20050817_0949_tc024.htm
http://www.openhandsetalliance.com/press_110507.html


19. Kovach, “How Android Grew.”
20. Arjun Kharpal, “Google Android Hits Market Share Record with Nearly 9 in Every 10
Smartphones Using It,” CNBC, November 3, 2016, accessed December 21, 2016,
http://www.cnbc.com/2016/11/03/google-android-hits-market-share-record-with-nearly-9-in-
every-10-smartphones-using-it.html.
21. “January 2015 Web Server Survey,” Netcraft, January 15, 2015, accessed April 27, 2016,
https://news.netcraft.com/archives/2015/01/15/january-2015-web-server-survey.html.
22. Katherine Noyes, “If Desktop Linux Is Dead, Someone Had Better Tell All Those Users,”
PCWorld, March 26, 2012, accessed April 27, 2016,
http://www.pcworld.com/article/252552/if_desktop_linux_is_dead_someone_had_better_tell_all
_those_users.html.
23. “An Introduction to Android,” SlideShare, February 19, 2009, accessed April 27, 2016,
http://www.slideshare.net/natdefreitas/an-introduction-to-android.
24. Mathieu Devos, “Bionic vs. glibc Report,” Master’s thesis, Massachusetts Institute of
Technology, 2014, http://irati.eu/wp-content/uploads/2012/07/bionic_report.pdf.
25. “Industry Leaders Announce Open Platform for Mobile Devices.”
26. Ryan Paul, “Why Google Chose the Apache Software License over GPLv2 for Android,” Ars
Technica, November 6, 2007, accessed April 27, 2016,
http://arstechnica.com/uncategorized/2007/11/why-google-chose-the-apache-software-license-
over-gplv2.
27. Ibid.
28. Superglaze, “Android’s ‘Non-Fragmentation Agreement,’” Slashdot, November 13, 2007,
accessed April 27, 2016, https://slashdot.org/story/07/11/13/1348233/androids-non-
fragmentation-agreement.
29. Ibid.
30. Ibid.
31. Ibid.
32. Gavin Clarke, “Stallman: Android Evil, Apple and Microsoft Worse,” The Register,
September 20, 2011, accessed April 27, 2016,
http://www.theregister.co.uk/2011/09/20/stallman_on_android.
33. “Staging: Android: Delete Android Drivers,” accessed April 27, 2016,
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?
id=b0a0ccfad85b3657fe999805df65f5cfe634ab8a.
34. Steven Vaughan-Nichols, “Linus Torvalds on Android, the Linux Fork,” ZDNet, August 18,
2011, accessed April 27, 2016, http://www.zdnet.com/article/linus-torvalds-on-android-the-linux-
fork.
35. Ibid.
36. Steven Vaughan-Nichols, “Android Linux FUD Debunked,” ZDNet, March 22, 2011,
accessed April 27, 2016, http://www.zdnet.com/article/android-linux-fud-debunked.
37. Mark Shuttleworth, “Funding Free Software Projects,” November 21, 2003, accessed April
27, 2016, http://www.markshuttleworth.com/archives/date/2003/11.
38. “About Kubuntu,” Ubuntu, accessed April 27, 2016,
https://help.ubuntu.com/kubuntu/desktopguide/C/about-kubuntu.html.
39. Mark Shuttleworth in discussion with the author, June 1, 2015.
40. “What Is Ubuntu?,” Ubuntu Installation Guide, Ubuntu, accessed April 27, 2016, http://old-
releases.ubuntu.com/ubuntu/dists/warty/main/installer-i386/current/doc/manual/en.

http://www.cnbc.com/2016/11/03/google-android-hits-market-share-record-with-nearly-9-in-every-10-smartphones-using-it.html
https://news.netcraft.com/archives/2015/01/15/january-2015-web-server-survey.html
http://www.pcworld.com/article/252552/if_desktop_linux_is_dead_someone_had_better_tell_all_those_users.html
http://www.slideshare.net/natdefreitas/an-introduction-to-android
http://irati.eu/wp-content/uploads/2012/07/bionic_report.pdf
http://arstechnica.com/uncategorized/2007/11/why-google-chose-the-apache-software-license-over-gplv2
https://slashdot.org/story/07/11/13/1348233/androids-non-fragmentation-agreement
http://www.theregister.co.uk/2011/09/20/stallman_on_android
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b0a0ccfad85b3657fe999805df65f5cfe634ab8a
http://www.zdnet.com/article/linus-torvalds-on-android-the-linux-fork
http://www.zdnet.com/article/android-linux-fud-debunked
http://www.markshuttleworth.com/archives/date/2003/11
https://help.ubuntu.com/kubuntu/desktopguide/C/about-kubuntu.html
http://old-releases.ubuntu.com/ubuntu/dists/warty/main/installer-i386/current/doc/manual/en


41. Mark Shuttleworth in discussion with the author, June 1, 2015.
42. Ibid.
43. Steven Vaughan-Nichols, “Ubuntu Moves Some Linux Development Inside,” ZDNet, October
19, 2012, accessed April 27, 2016, http://www.zdnet.com/article/ubuntu-moves-some-linux-
development-inside.
44. “About,” Ubuntu Insights, Ubuntu, accessed July 14, 2015, https://insights.ubuntu.com/about.
45. Ashlee Vance, “A Software Populist Who Doesn’t Do Windows,” New York Times, January
10, 2009, accessed April 27, 2016, http://www.nytimes.com/2009/01/11/business/11ubuntu.html;
Ryan Paul, “French Police: We Saved Millions of Euros by Adopting Ubuntu,” Ars Technica,
March 11, 2009, accessed April 27, 2016, http://arstechnica.com/information-
technology/2009/03/french-police-saves-millions-of-euros-by-adopting-ubuntu.
46. “EC2 Statistics,” The Cloud Market, accessed April 27, 2016,
http://thecloudmarket.com/stats; “Usage Statistics and Market Share of Linux for Websites,”
W3Techs, accessed July 14, 2015, https://w3techs.com/technologies/details/os-linux/all/all.
47. Benjamin Mako Hill, “Announcing Launch of ($10m) Ubuntu Foundation,” Ubuntu, July 8,
2005, accessed April 27, 2016, https://lists.ubuntu.com/archives/ubuntu-announce/2005-
July/000025.html.
48. Gerry Carr, “ShipIt Comes to an End,” Canonical, blog, April 5, 2011, accessed April 27,
2016, http://blog.canonical.com/2011/04/05/shipit-comes-to-an-end.
49. Mark Shuttleworth in discussion with the author, June 1, 2015.
50. Ibid.
51. Ibid.
52. Climenole, “Shuttleworth Answers Ubuntu Linux’s Critics,” Slashdot, September 14, 2010,
accessed April 27, 2016, https://linux.slashdot.org/story/10/09/14/219252/shuttleworth-answers-
ubuntu-linuxs-critics.
53. AlexGr, “Is Ubuntu Selling Out or Growing Up?,” Slashdot, April 30, 2008, accessed April
27, 2016, https://linux.slashdot.org/story/08/04/30/199204/is-ubuntu-selling-out-or-growing-up.
54. Merrill, “Interview with Linus Torvalds.”
55. Richard Stallman, “Ubuntu Spyware: What to Do?,” GNU Operating System, accessed April
27, 2016, http://www.gnu.org/philosophy/ubuntu-spyware.en.html; Jon Brodkin, “Richard
Stallman Calls Ubuntu ‘Spyware’ Because It Tracks Searches,” Ars Technica, December 7, 2012,
accessed April 27, 2016, http://arstechnica.com/information-technology/2012/12/richard-
stallman-calls-ubuntu-spyware-because-it-tracks-searches/; Timothy, “Ubuntu 14.10 Released
with Ambitious Name, But Small Changes,” Slashdot, October 23, 2014, accessed April 27,
2016, https://linux.slashdot.org/story/14/10/23/1946243/ubuntu-1410-released-with-ambitious-
name-but-small-changes.
56. AlexGr, “Is Ubuntu Selling Out or Growing Up?”
57. Robbie Williamson, “Ubuntu Software Store: What It Does, and How You Can Help,”
Ubuntu, September 1, 2009, accessed April 27, 2016, https://lists.ubuntu.com/archives/ubuntu-
devel/2009-September/028901.html.
58. Matthew East, “Ubuntu Software Store: What It Does, and How You Can Help,” Ubuntu,
August 27, 2009, accessed April 27, 2016, https://lists.ubuntu.com/archives/ubuntu-devel/2009-
August/028814.html.
59. Richard Collins, “Ubuntu’s Path to Convergence,” Ubuntu, October 20, 2015, accessed April
27, 2016, https://insights.ubuntu.com/2015/10/20/ubuntus-path-to-convergence.
60. “Rackspace Open Sources Cloud Platform,” Rackspace, press release, July 19, 2010,
accessed April 27, 2016, http://ir.rackspace.com/phoenix.zhtml?c=221673&p=irol-

http://www.zdnet.com/article/ubuntu-moves-some-linux-development-inside
https://insights.ubuntu.com/about
http://www.nytimes.com/2009/01/11/business/11ubuntu.html
http://arstechnica.com/information-technology/2009/03/french-police-saves-millions-of-euros-by-adopting-ubuntu
http://thecloudmarket.com/stats
https://w3techs.com/technologies/details/os-linux/all/all
https://lists.ubuntu.com/archives/ubuntu-announce/2005-July/000025.html
http://blog.canonical.com/2011/04/05/shipit-comes-to-an-end
https://linux.slashdot.org/story/10/09/14/219252/shuttleworth-answers-ubuntu-linuxs-critics
https://linux.slashdot.org/story/08/04/30/199204/is-ubuntu-selling-out-or-growing-up
http://www.gnu.org/philosophy/ubuntu-spyware.en.html
http://arstechnica.com/information-technology/2012/12/richard-stallman-calls-ubuntu-spyware-because-it-tracks-searches/
https://linux.slashdot.org/story/14/10/23/1946243/ubuntu-1410-released-with-ambitious-name-but-small-changes
https://lists.ubuntu.com/archives/ubuntu-devel/2009-September/028901.html
https://lists.ubuntu.com/archives/ubuntu-devel/2009-August/028814.html
https://insights.ubuntu.com/2015/10/20/ubuntus-path-to-convergence
http://ir.rackspace.com/phoenix.zhtml?c=221673&p=irol-newsArticle&ID=1448761


newsArticle&ID=1448761.
61. Angela Bartels, “First OpenStack Release Now Available,” Rackspace, blog, October 21,
2010, accessed April 27, 2016, http://blog.rackspace.com/first-openstack-release-now-available.
62. “Openstack Community Contribution in Newton Release,” Stackalytics, accessed April 7,
2016, http://stackalytics.com.
63. Cliff Saran, “Is OpenStack Ready for Mass Adoption?,” Computer Weekly, October 27, 2015,
accessed April 27, 2016, http://www.computerweekly.com/news/4500256197/Is-OpenStack-
ready-for-mass-adoption; Steven Vaughan-Nichols, “OpenStack Isn’t Just Ready for Enterprise
Adoptions, It’s Already There,” ZDNet, May 21, 2015, accessed April 27, 2016,
http://www.zdnet.com/article/openstack-isnt-just-ready-for-enterprise-adoption-its-already-there.
64. Bobbie Johnson, “Cloud Computing Is a Trap, Warns GNU Founder Richard Stallman,” The
Guardian, September 29, 2008, accessed April 27, 2016,
https://www.theguardian.com/technology/2008/sep/29/cloud.computing.richard.stallman.
65. Richard Stallman, “Who Does That Server Really Serve?,” GNU Operating System, accessed
April 27, 2016, http://www.gnu.org/philosophy/who-does-that-server-really-serve.en.html.
66. Ibid.
67. “Why the Affero GPL?,” GNU Operating System, accessed April 27, 2016,
http://www.gnu.org/licenses/why-affero-gpl.html.
68. See the projects Dronecode and Automotive Grade Linux.
69. Bruce Schneir, “The Internet of Things Is Wildly Insecure—and Often Unpatchable,” Wired,
January 6, 2014, accessed April 27, 2016, https://www.wired.com/2014/01/theres-no-good-way-
to-patch-the-internet-of-things-and-thats-a-huge-problem.
70. For example, the b43 FOSS project created its own firmware for use with wireless card
components manufactured by Broadcom. See Franceso Gringoli, “Open Source Firmware for
Broadcom Wireless Adapters,” LWN, blog, January 9, 2009, accessed April 28, 2016,
http://lwn.net/Articles/314313. On legal issues and reverse engineering, see “Coders’ Rights
Project Reverse Engineering FAQ,” Electronic Frontier Foundation, accessed April 28, 2016,
https://www.eff.org/issues/coders/reverse-engineering-faq.
71. Lessig, Free Culture, 25.
72. Ibid., xv.
73. Hal Plotkin, “All Hail Creative Commons,” SFGate, February 11, 2002, accessed April 28,
2016, http://www.sfgate.com/news/article/All-Hail-Creative-Commons-Stanford-professor-
2874018.php; “History,” Creative Commons, accessed April 28, 2016,
https://creativecommons.org/about/history.
74. Richard Stallman, “The Free Universal Encyclopedia and Learning Resource,” GNU
Operating System, December 18, 2000, accessed April 28, 2016,
https://www.gnu.org/encyclopedia/anencyc.txt.
75. Rosenzweig, “Can History Be Open Source?” See also Yochai Benkler, “The New Open-
Source Economics,” TEDGlobal 2005, transcript, July 2005, accessed April 28, 2016,
http://www.ted.com/talks/yochai_benkler_on_the_new_open_source_economics.
76. Ibid.; Benkler, Wealth of Networks.
77. Levy, Hackers, 31.
78. “Employed Persons by Detailed Occupation,” U.S. Bureau of Labor Statistics, accessed April
28, 2016, http://www.bls.gov/cps/cpsaat11.pdf. See also Mahoney, “Boys’ Toys and Women’s
Work.”
79. Demby, “Why Isn’t Open Source a Gateway for Coders of Color?

http://ir.rackspace.com/phoenix.zhtml?c=221673&p=irol-newsArticle&ID=1448761
http://blog.rackspace.com/first-openstack-release-now-available
http://stackalytics.com/
http://www.computerweekly.com/news/4500256197/Is-OpenStack-ready-for-mass-adoption
http://www.zdnet.com/article/openstack-isnt-just-ready-for-enterprise-adoption-its-already-there
https://www.theguardian.com/technology/2008/sep/29/cloud.computing.richard.stallman
http://www.gnu.org/philosophy/who-does-that-server-really-serve.en.html
http://www.gnu.org/licenses/why-affero-gpl.html
https://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem
http://lwn.net/Articles/314313
https://www.eff.org/issues/coders/reverse-engineering-faq
http://www.sfgate.com/news/article/All-Hail-Creative-Commons-Stanford-professor-2874018.php
https://creativecommons.org/about/history
https://www.gnu.org/encyclopedia/anencyc.txt
http://www.ted.com/talks/yochai_benkler_on_the_new_open_source_economics
http://www.bls.gov/cps/cpsaat11.pdf


80. Loconet, “Open Source Geeks Considered Modern Heroes,” Slashdot, November 30, 2004,
accessed April 28, 2016, https://developers.slashdot.org/story/04/11/30/176204/open-source-
geeks-considered-modern-heroes.
81. Kathryn Zickuhr, “Who’s Not Online and Why,” Pew Research Center, September 25, 2013,
accessed April 28, 2016, http://www.pewinternet.org/2013/09/25/whos-not-online-and-why.
82. Eric Raymond, “War Games II,” blog, April 1, 1992, accessed April 28, 2016,
http://www.catb.org/esr/writings/wargames.txt.
83. Sam Machkevoch, “Linus Torvalds on Why He Isn’t Nice: ‘I Don’t Care about You,’” Ars
Technica, January 15, 2015, accessed April 28, 2016,
http://arstechnica.com/business/2015/01/linus-torvalds-on-why-he-isnt-nice-i-dont-care-about-
you.
84. Raymond, “Cathedral.”
85. Weber, Success; Kelty, Two Bits.
86. “2015 Linux Jobs Report: Linux Professionals in High Demand,” Linux Foundation, press
release, March 4, 2015, accessed April 28, 2016, https://www.linuxfoundation.org/news-
media/announcements/2015/03/2015-linux-jobs-report-linux-professionals-high-demand; Don
Willmott, “High Demand Pushes Linux Salaries Higher,” Dice, February 28, 2013, accessed
April 28, 2016, http://insights.dice.com/2013/02/28/demand-for-linux-talent.
87. McPherson, “Why Are the Digital Humanities So White?”

https://developers.slashdot.org/story/04/11/30/176204/open-source-geeks-considered-modern-heroes
http://www.pewinternet.org/2013/09/25/whos-not-online-and-why
http://www.catb.org/esr/writings/wargames.txt
http://arstechnica.com/business/2015/01/linus-torvalds-on-why-he-isnt-nice-i-dont-care-about-you
https://www.linuxfoundation.org/news-media/announcements/2015/03/2015-linux-jobs-report-linux-professionals-high-demand
http://insights.dice.com/2013/02/28/demand-for-linux-talent


Glossary

assembly language A type of programming language that gives
programmers extensive control over how a computer performs tasks.
Because assembly language is specific to a particular type of computer
processor, assembly language programs are generally not portable.

Bell Laboratories An AT&T research facility in Murray Hill, New
Jersey, where Ken Thompson and Dennis Ritchie developed the first
version of Unix in 1969.

Berkeley Software Distribution (BSD) A Unix-like operating
system that was developed at the University of California at Berkeley
from 1977 until 1995. Begun as an extension of Unix that shared Unix
code, it grew into a standalone operating system that was virtually free of
Unix code with the 1991 release of Net/2 BSD.

BSD See Berkeley Software Distribution.

C A programming language that was developed by Dennis Ritchie
beginning in 1972 to help write Unix.

closed source software Software whose source code is not
publicly available.

cloud computing A computing paradigm in which some or all of the
data or computing resources of one device are shared over the network
with other devices.

compiler A program that translates source code into binary software,
or machine code. The GNU Compiler Collection (GCC) compilers are
popular among FOSS programmers.

cross-platform software Software that is designed to run on
multiple types of operating systems or hardware platforms.

firmware Software that is embedded permanently as part of a
hardware device, making it difficult to modify.

free software In the context of the free and open source software
movement, free software is defined by two characteristics: first, its
source code is publicly available; second, the source code of any
derivative works is also publicly available. Free software is often, but not
necessarily, free of cost.



freeware Software that can be legally obtained and used free of
charge, but whose source code is not publicly available.

GNU 1. The project that Richard Stallman announced in 1983 and
launched in 1984 for building a Unix-like operating system, including a
kernel and user space applications, from original code. 2. The suite of
programs that the GNU project produced.

GNU/Linux A generic term for operating systems that use the Linux
kernel with programs written by the GNU project. Other programs are
included in such systems.

kernel The part of an operating system that performs the basic core
functions that are necessary for software to communicate with hardware
and for programs to interact with one another.

library A software package that is designed to be shared by multiple
programs on the same computer.

Linux An operating system kernel developed under the leadership of
Linus Torvalds starting in 1991. Linux provides the kernel for
GNU/Linux operating systems.

live CD A compact disk (CD) that can boot a computer and run a
standalone system without installing any data to a hard disk. Live CDs
(and their more modern cousins, live USBs) allow users to test
GNU/Linux distributions easily.

machine code Software that a compiler has prepared for execution
by a computer. Machine code can run immediately on the type of system
it was compiled for, but because it does not contain source code, it is
difficult to study or modify.

microkernel A type of kernel architecture in which the kernel’s
operations are divided into separate programs to increase modularity. It
is the opposite of monolithic kernel design.

monolithic kernel A type of kernel architecture in which all of the
basic system functions run as a single kernel program. It is the opposite
of microkernel design. Linux is a monolithic kernel.

Multics An operating system collaboratively developed beginning in
1964 by the Massachusetts Institute of Technology, Bell Laboratories,



and General Electric. Some of its design principles influenced Unix.

open source software Software whose source code is publicly
available. Although this term is sometimes used interchangeably with
“free software,” some programmers prefer “open source software”
because they believe “free software” wrongly implies that software
should not cost money. Open source software is also different from free
software because some programs that are open source software, but not
free software, can be modified without making the source code of the
derivative works publicly available.

patch Software that modifies source code in order to update or change
a program.

porting The act of adapting software that was written for one type of
computer or operating system so that it can run on a different platform.

POSIX A series of standards that define how the components of a
Unix-like operating should behave. POSIX compliance ensures
compatibility between different types of Unix-like platforms.

protocol A set of regulations that define how software programs
should interact with one another or exchange data.

shell The interface between a computer and its user. It may be text-
based or graphical. The Bourne Again Shell (Bash) is a popular text-
based shell for Unix-like systems.

source code The instructions that a computer uses to perform an
action. Source code can be easily read and modified by programmers. A
compiler must usually translate source code into a binary before it can be
executed.

Space Travel A game that helped inspire Ken Thompson to write the
first version of Unix in 1969.

Unix An operating system that was developed beginning in 1969. The
first version was written in assembly language at Bell Laboratories, but
programmers at many sites around the world contributed code to later
versions. It was commercialized by AT&T in 1983. Although the word
Unix is sometimes used to refer to other operating systems that are
designed in the same way as Unix, the latter systems are more properly
called Unix-like.



Unix-like systems Operating systems that are designed to function
like Unix but do not use Unix code. BSD and GNU/Linux systems are
examples of Unix-like operating systems.

user space The part of an operating system in which ordinary
programs and applications run. User space is distinct from kernel space,
which is controlled by the kernel. Also known as Userland.

virtual server A server that runs as a virtual machine, often as part of
a cloud rather than directly on a physical computer.



Bibliography

Electronic Archives

alt.comp.linux.xxx Usenet Archive. https://archive.org/download/usenet-
alt/alt.comp.linux.xxx.mbox.zip.
Apache Mailing List Archives. http://mail-archives.apache.org/mod_mbox.
comp.os.linux Usenet Archives. https://groups.google.com/forum/#!forum/comp.os.linux.
comp.os.minix Usenet Archives. https://groups.google.com/forum/#!forum/comp.os.minix.
GNU’s Bulletin Online Archive. http://www.gnu.org/bulletins/bulletins.en.html.
MySQL Mailing List Archives. https://marc.info/?l=mysql.
Ubuntu Mailing List Archives. https://lists.ubuntu.com.

Published Sources

“About the Apache HTTP Server Project.” Apache. Accessed April 26,
2016. http://httpd.apache.org/ABOUTAPACHE.html.
Baker, Keith. Inventing the French Revolution: Essays on French Political Culture in the
Eighteenth Century. Cambridge: Cambridge University Press, 1990.
Baker, Keith, and Dan Edelstein, eds. Scripting Revolution: A Historical Approach to the
Comparative Study of Revolutions. Stanford: Stanford University Press, 2015.
Benkler, Yochai. The Wealth of Networks. New Haven: Yale University Press, 2006.
Berlich, Ruediger. “The Early History of Linux, Part 2: Re:distribution.” LinuxUser. April 2001.
Berry, David. The Philosophy of Software: Code and Mediation in the Digital Age. New York:
Palgrave Macmillan, 2011.
Bezroukov, Nikolai. “Open Source Software Development as a Special Type of Academic
Research.” First Monday (October 1999): 4.
Bradford, Bill. “The History of Unix on the PC: Exploring Lesser-Known Variants.” Search Data
Center. Accessed June 16, 2016, http://searchdatacenter.techtarget.com/tip/The-history-of-Unix-
on-the-PC-Exploring-lesser-known-variants.
Bretthauer, David. “Open Source Software: A History.” UConn Libraries Published Works. Paper
7. http://digitalcommons.uconn.edu/libr_pubs/7.
“A Brief History of Debian.” Debian. Accessed April 26, 2016.
https://www.debian.org/doc/manuals/project-history/ch-leaders.en.html.
Brooks, Frederick P. The Mythical Man-Month and Other Essays on Software Engineering.
Chapel Hill: University of North Carolina at Chapel Hill, 1974.

https://archive.org/download/usenet-alt/alt.comp.linux.xxx.mbox.zip
http://mail-archives.apache.org/mod_mbox
https://groups.google.com/forum/#!forum/comp.os.linux
https://groups.google.com/forum/#!forum/comp.os.minix
http://www.gnu.org/bulletins/bulletins.en.html
https://marc.info/?l=mysql
https://lists.ubuntu.com/
http://httpd.apache.org/ABOUTAPACHE.html
http://searchdatacenter.techtarget.com/tip/The-history-of-Unix-on-the-PC-Exploring-lesser-known-variants
http://digitalcommons.uconn.edu/libr_pubs/7
https://www.debian.org/doc/manuals/project-history/ch-leaders.en.html


Campbell-Kelly, Martin. From Airline Reservations to Sonic the Hedgehog: A History of the
Software Industry. Cambridge, MA: MIT Press, 2003.
Chun, Wendy Hui Kyong. Programmed Visions: Software and Memory. Cambridge, MA: MIT
Press, 2011.
Corbató, F. J., J. H. Saltzer, and C. T. Clingen. “Multics: The First Seven Years.” Paper presented
at AFIPS ’72: The 1972 Spring Joint Computer Conference. http://www.multicians.org/f7y.html
Darnton, Robert. The Literary Underground of the Old Regime. Cambridge, MA: Harvard
University Press, 1982.
Demby, Gene. “Why Isn’t Open Source a Gateway for coders of Color?,” NPR, December 5,
2013. Accessed April 28, 2016.
http://www.npr.org/sections/codeswitch/2013/12/05/248791579/why-isnt-open-source-a-
gateway-for-coders-of-color.
DiBona, Chris, Sam Ockman, and Mark Stone, eds. Open Sources: Voices from the Open Source
Revolution. Sebastopol, CA: O’Reilly, 1999.
Edelstein, Dan. The Terror of Natural Right: Republicanism, the Cult of Nature, and the French
Revolution. Chicago: University of Chicago Press, 2009.
Ensmenger, Nathan. The Computer Boys Take Over: Computers, Programmers and the Politics
of Technical Expertise. Cambridge, MA: MIT Press, 2010.
Ensmenger, Nathan. “Open Source’s Lessons for Historians.” IEEE Annals of the History of
Computing 26 (2004): 102–104.
Ettrich, Matthias. “New Project: Kool Desktop Environment. Programmers Wanted!” October 14,
1996. Accessed April 26, 2016.
https://groups.google.com/forum/#!msg/de.comp.os.linux.misc/SDbiV3Iat_s/zv_D_2ctS8sJ.
Frabetti, Federica. Software Theory: A Cultural History. London: Rowman and Little, 2015.
Fuller, Matthew. Behind the Blip: Essays on the Culture of Software. New York: Autonomedia,
2003.
Garfinkel, Simson. “Is Stallman Stalled?” Wired, January 1, 1993.
Gillin, Paul. “IBM’s Object Code Policy Still Irking Users.” Computerworld 18 (20) (May 14,
1984).
GNU’s Bulletin. Various issues. Accessed April 25, 2016.
https://www.gnu.org/bulletins/bulletins.html.
Greenwood, Liam. “Why Is Linux Successful? An Opinion.” The Free BSD Diary, March 20,
1999. Accessed January 20, 2017. http:://www.freebsddiary.org/linux.php.
Hall, Gary. Digitize This Book! The Politics of New Media, or Why We Need Open Access Now.
Minneapolis: University of Minnesota Press, 2008.
Hameleers, Eric. “A History of Slackware Development.” October 2009. Accessed April 26,
2016. http://www.slackware.com/~alien/tdose2009/t-dose-slackware.pdf.
Harrison, Guy, and Steven Feuerstein. MySQL Stored Procedure Programming. Sebastopol, CA:
O’Reilly, 1996.
Hillesley, Richard. “Asterix, the Gall: The Strange History of Linux and Trademarks.” Accessed
April 26, 2016. http://tuxdeluxe.org/node/107.
Himanen, Pekka. The Hacker Ethic: A Radical Approach to the Philosophy of Business. New
York: Random House, 2002.
“The History of Unix.” Byte: The Small Systems Journal (August 1983): 188.
Ingo, Henrik. Open Life: The Philosophy of Open Source. Lulu.com, 2006.

http://www.multicians.org/f7y.html
http://www.npr.org/sections/codeswitch/2013/12/05/248791579/why-isnt-open-source-a-gateway-for-coders-of-color
https://groups.google.com/forum/#!msg/de.comp.os.linux.misc/SDbiV3Iat_s/zv_D_2ctS8sJ
https://www.gnu.org/bulletins/bulletins.html
http://www.slackware.com/~alien/tdose2009/t-dose-slackware.pdf
http://tuxdeluxe.org/node/107


Kahney, Leander. “Linux’s Forgotten Man.” Wired, March 5, 1999.
Kelty, Christopher. Two Bits: The Cultural Significance of Free Software. Durham, NC: Duke
University Press, 2008.
Lemley, Mark. Software and Internet Law. Gaithersburg, MD: Aspen Law and Business, 2000.
Lessig, Lawrence. Free Culture: How Media Uses Technology and the Law to Lock Down
Culture and Control Creativity. New York: Penguin, 2004.
Levy, Steven. Hackers: Heroes of the Computer Revolution. Garden City, NY: Anchor Press,
1984.
Lovell, Anthony. “And Then Came?” Google Groups. Accessed April 26, 2016.
https://groups.google.com/forum/#!topic/comp.os.linux/ykCjbjI_Efs.
Lutz, Mark. Programming Python. Sebastopol, CA: O’Reilly, 1996.
Lynn, John. Bayonets of the Republic: Motivation and Tactics in the Army of Revolutionary
France, 1791–94. Urbana: University of Chicago Press, 1984.
Mahoney, Michael S. “Boys’ Toys and Women’s Work: Feminism Engages Software.” In
Feminism in Twentieth-Century Science, Technology and Medicine, ed. Angela N. H. Creager,
Elizabeth Lunbeck, and Londa Schiebinger, 169–185. Chicago: University of Chicago Press,
2001.
Manovich, Lev. Software Takes Command: Extending the Language of New Media. London:
Bloomsbury, 2013.
McHugh, Josh. “For the Love of Hacking.” Forbes, August 10, 1998.
McIlroy, Douglas M. “A Research UNIX Reader: Annotated Excerpts from the Programmer’s
Manual, 1971–1986.” http://www.cs.dartmouth.edu/~doug/reader.pdf.
McPherson, Tara. “Why Are the Digital Humanities So White? Or Thinking the Histories of Race
and Computation.” In Debates in the Digital Humanities, ed. Matthew K. Gold, 139–160.
Minneapolis: University of Minnesota Press, 2012.
Merrill, Scott. “An Interview with Linus Torvalds.” TechCrunch, April 19, 2012. Accessed April
27, 2016. https://techcrunch.com/2012/04/19/an-interview-with-millenium-technology-prize-
finalist-linus-torvalds.
Mizrach, Steven. “Is There a Hacker Ethic for 90s Hackers?” Accessed April 27, 2016.
http://www2.fiu.edu/~mizrachs/hackethic.html.
Moody, Glyn. Rebel Code: Linux and the Open Source Revolution. London: Penguin, 2002.
Morrison, Clayton T., and Richard T. Snodgrass. “Computer Science Can Use More Science.”
Communications of the ACM 54 (2011): 36–38.
“New Unix Implementation.” GNU Operating System. Accessed April 25, 2016.
https://www.gnu.org/gnu/initial-announcement.html.
Pachev, Alexander. Understanding MySQL Internals. Sebastopol, CA: O’Reilly, 1997.
Paju, Petri. “National Projects and International Users: Finland and Early European
Computerization.” Annals of the History of Computing, IEEE 30 (2008): 77–91.
Perens, Bruce. “Debian Linux Distribution Release 1.1 Now Available.” Debian. June 17, 1996.
Accessed April 26, 2016. https://lists.debian.org/debian-announce/1996/msg00021.html.
Priestley, Mark. A Science of Operations: Machines, Logic, and the Invention of Programming.
New York: Springer, 2010.
Raymond, Eric. The Art of Unix Usability. April 18, 2004. Accessed April 26, 2016.
http://www.catb.org/esr/writings/taouu/html.

https://groups.google.com/forum/#!topic/comp.os.linux/ykCjbjI_Efs
http://www.cs.dartmouth.edu/~doug/reader.pdf
https://techcrunch.com/2012/04/19/an-interview-with-millenium-technology-prize-finalist-linus-torvalds
http://www2.fiu.edu/~mizrachs/hackethic.html
https://www.gnu.org/gnu/initial-announcement.html
https://lists.debian.org/debian-announce/1996/msg00021.html
http://www.catb.org/esr/writings/taouu/html


Raymond, Eric Steven. “A Brief History of Hackerdom.” 1998–2000. Accessed April 25, 2016.
http://www.catb.org/esr/writings/homesteading/hacker-history.
Raymond, Eric Steven. “The Cathedral and the Bazaar.” Accessed April 25, 2016.
http://www.catb.org/esr/writings/homesteading/cathedral-bazaar.
Raymond, Eric. The Halloween Documents. Accessed April 26, 2016.
http://www.catb.org/esr/halloween/index.html.
Raymond, Eric Steven. “Homesteading the Noosphere.” Accessed April 25, 2016.
http://www.catb.org/esr/writings/homesteading/homesteading.
Raymond, Eric. “Open Source Summit.” Linux Journal, June 1, 1998. Accessed April 27, 2016.
http://www.linuxjournal.com/article/2918.
Raymond, Eric Steven. “The Revenge of the Hackers.” Accessed April 25, 2016.
http://www.catb.org/esr/writings/homesteading/hacker-revenge.
“Report from ApacheCon ’98.” ApacheWeek, October 16, 1998. Accessed April 27, 2016.
http://www.apacheweek.com/features/apachecon98.
Revolution OS. Directed by J.T.S. Moore. Wonderview Productions, 2001.
Ritchie, Dennis. “The Evolution of the Unix Time-sharing System.” AT&T Bell Laboratories
Technical Journal 63 (October 1984): 1577–1593.
“RMS on the GPLing of Qt and More.” Slashdot. September 5, 2000. Accessed April 26, 2016.
https://slashdot.org/story/00/09/05/1326250/rms-on-the-gpling-of-qt-and-more.
Rosenzweig, Roy. “Can History Be Open Source? Wikipedia and the Future of the Past.” Journal
of American History 98 (June 2006): 117–146.
Rousseau, Jean-Jacques. The Social Contract and Discourses. Trans. G. D. H. Cole. New York:
Dutton, 1973.
Russell, Andrew. Open Standards and the Digital Age: History, Ideology, and Networks. New
York: Cambridge University Press, 2014.
Salus, Peter. A Quarter Century of UNIX. Reading, MA: Addison-Wesley, 1994.
Salus, Peter. “The Daemon, the GNU and the Penguin.” Groklaw. November 1, 2005. Accessed
April 26, 2016. http://www.groklaw.net/articlebasic.php?story=20051031235811490.
Stallman, Richard. “The GNU Project.” Accessed December 20, 2016.
https://www.gnu.org/gnu/thegnuproject.html.
Stallman, Richard. “Stallman on Qt, the GPL, KDE, and GNOME.” Linux Today. September 5,
2000. Accessed April 26, 2016. http://www.linuxtoday.com/developer/2000090500121OPLFKE.
Steed, Judy. “Freedom’s Forgotten Prophet.” Toronto Star, October 9, 2000.
Tanenbaum, Andrew. Operating Systems: Design and Implementation. Englewood Cliffs, NJ:
Prentice-Hall, 1987.
Tanenbaum, Andrew. “Some Notes on the ‘Who Wrote Linux’ Kerfuffle, Release 1.5.” Accessed
April 25, 2016. http://www.cs.vu.nl/~ast/brown.
Tanenbaum, Andrew, Linus Torvalds, et al. “LINUX Is Obsolete.” Google Groups. Accessed
April 25, 2016. https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QWltI.
Torvalds, Linus. “Free Minix-like Kernel Sources for 386-AT.” Google Groups. October 5, 1991.
Accessed April 26, 2016. https://groups.google.com/forum/#!topic/comp.os.minix/4995SivOl9o.
Torvalds, Linus. “LINUX: A Free Unix-386 kernel.” October 10, 1991. Accessed April 26, 2016.
http://oldlinux.org/Linus/index.html.
Torvalds, Linus. “LINUX’s History.” July 31, 1992. Accessed April 26, 2016.
https://www.cs.cmu.edu/~awb/linux.history.html.

http://www.catb.org/esr/writings/homesteading/hacker-history
http://www.catb.org/esr/writings/homesteading/cathedral-bazaar
http://www.catb.org/esr/halloween/index.html
http://www.catb.org/esr/writings/homesteading/homesteading
http://www.linuxjournal.com/article/2918
http://www.catb.org/esr/writings/homesteading/hacker-revenge
http://www.apacheweek.com/features/apachecon98
https://slashdot.org/story/00/09/05/1326250/rms-on-the-gpling-of-qt-and-more
http://www.groklaw.net/articlebasic.php?story=20051031235811490
https://www.gnu.org/gnu/thegnuproject.html
http://www.linuxtoday.com/developer/2000090500121OPLFKE
http://www.cs.vu.nl/~ast/brown
https://groups.google.com/forum/#!topic/comp.os.minix/wlhw16QWltI
https://groups.google.com/forum/#!topic/comp.os.minix/4995SivOl9o
http://oldlinux.org/Linus/index.html
https://www.cs.cmu.edu/~awb/linux.history.html


Torvalds, Linus. “Notes for Linux Release 0.01.” Accessed May 26, 2016.
https://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.01.
Torvalds, Linus. “Release Notes for Linux v0.12.” Accessed May 26, 2016.
https://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12.
Torvalds, Linus. “What Would You Like to See Most in Minix?” Google Groups. Accessed April
26, 2016. https://groups.google.com/forum/#!topic/comp.os.minix/dlNtH7RRrGA.
Torvalds, Linus, and David Diamond. Just for Fun: The Story of an Accidental Revolutionary.
New York: HarperBusiness, 2001.
“Validating the Source Code: How One Vendor Does It.” Computer Law and Tax Report,
February 1980.
Van Rossum, Guido. “Origin of BDFL,” July 31, 2008.
http://www.artima.com/weblogs/viewpost.jsp?thread=235725.
Von Krogh, Georg, and Eric von Hippel. “The Promise of Research on Open Source Software.”
Management Science 52 (2006): 975–983.
Weber, Steven. The Success of Open Source. Cambridge, MA: Harvard University Press, 2004.
Weizenbaum, Joseph. Computer Power and Human Reason: From Judgment to Calculation. San
Francisco: Freeman, 1976.
Williams, Sam. Free as in Freedom: Richard Stallman’s Crusade for Free Software. Sebastopol,
CA: O’Reilly, 2002.
“Wine History.” WineHQ. Accessed April 26, 2016. https://wiki.winehq.org/Wine_History.
Wirzenius, Lars. “Linux Anecdotes.” April 27, 1998. Accessed April 26, 2016. http://liw.fi/linux-
anecdotes.
Wirzenius, Lars. “Linux at 20.” Accessed April 26, 2016. http://liw.fi/linux20.
Yood, Charles. “The History of Computing at the Consumption Junction.” IEEE Annals of the
History of Computing 27 (2005): 88.
Young, Robert. “Interview with Linus, the Author of Linux.” Linux Journal, March 1, 1994.

https://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.01
https://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12
https://groups.google.com/forum/#!topic/comp.os.minix/dlNtH7RRrGA
http://www.artima.com/weblogs/viewpost.jsp?thread=235725
https://wiki.winehq.org/Wine_History
http://liw.fi/linux-anecdotes
http://liw.fi/linux20


Index

AbiWord, 183
ACC Corporation, 167, 200
Affero General Public License, 263
Alexis de Tocqueville Institution, 235, 237
Allman, Eric, 48
Amiga, 152
Andover.net, 203
Android, 244–251, 263, 273
Android, Inc., 247
Apache Group, 164, 192–195, 282
Apache HTTP server. See Apache Web server
Apache license, 192–194, 250
Apache Web server, 190, 194, 204
Apple, 48, 86, 92, 104, 152, 206–209, 212, 247
ARPANET, 40
Atari, 152
AutoZone, 234
Awk, 77, 142
Axmark, David, 199

Baker, Mitchell, 269
Ballmer, Steve, 233
Bash, 76, 82, 133, 142, 181
Benkler, Yochai, 268
Berkeley Software Distribution. See BSD
Berry, David, 12
Bezroukov, Nicolai, 46
Binary blobs, 255, 265
Bionic (programming library), 248
Bonaparte, Napoleon, 241
Bourne Again Shell. See Bash
Brady, Patrick, 248
Bretthauer, David, 31
“Brief History of Hackerdom, A,” 7, 40
Brooks, Fred, 105–106, 116, 224
Brown, Kenneth, 235–237
BSD, 14, 20, 26, 31, 52, 113. See also FreeBSD; NET 2; NetBSD; OpenBSD



C (programming language), 30, 70, 93, 144
Campbell-Kelly, Martin, 12
Canonical, 170, 177, 223, 244–245, 252–259
Carnegie Mellon University, 67
Cassandra (database), 196
“Cathedral and the Bazaar, The,” 30, 223
CERN, 189–190
Chun, Wendy, 12
Church of Emacs, 221
Cloud computing, 161, 196, 243–244, 256, 259–263
Coherent (operating system), 59, 121
Common Desktop Environment, 177, 180
Corel Corporation, 169
Corel Linux, 169–170, 186–187, 203
Creative Commons, 104, 266–268
Creative Commons Attribution-ShareAlike License, 268
Cygnus Solutions, 80, 200, 202

DaimlerChrysler, 234
Darwine, 188
Debian, 150–153, 167–169, 171, 179, 214, 218, 252, 257
DEC, 28, 31, 33, 108, 117, 196
Dell, 144–145, 158, 202, 244–245
Desktop environment, 177–180, 183, 185, 252
DistroWatch.com, 172, 174

Emacs, 73–75, 80, 87–88, 129, 142, 144, 221
Embedded computing, 263–265
Enoch, 172
Ensmenger, Nathan, 9–10, 44
Evolution (email program), 185–186
Ewing, Marc, 166, 200

Facebook, 198
Frabetti, Federica, 12
Firmware, 255
FreeBSD, 174–175
Free culture, 265–268
Free Software Foundation, 15, 18–19, 39, 50–51, 56, 69, 84–85, 91, 103–104, 113, 124, 127,
144, 150–155, 165, 168, 180, 192, 194–195, 200, 202, 213, 216, 219–221, 224, 246, 253, 263,
265, 273



Fuller, Matthew, 12

Gates, Bill, 47
Geeknet, Inc., 204
General Electric, 27
Gentoo, 172
Gerstner, Louis, 204–205
Gilmore, John, 80
GIMP, 180
Git, 32, 161, 196, 208, 212, 242, 247, 252, 259
Glibc, 216–217, 248
GNOME, 178–183, 185, 228
GNOME Office, 183
GNU, 14, 17, 19–21, 24, 25, 32, 39, 46, 52, 56, 60, 64–109, 179–180, 182

announcement of, 68–70
and BSD software, 113, 173
in early 1990s, 111–112
evaluation of, 100–109
and Free Software Foundation, 84–85
launch of, 68–71
and Linux, 142, 144, 149–156
and Open Software Foundation, 63

GNU Free Documentation License, 268
GNU General Public License. See GPL
GNU/Linux distributions, 165–173, 257. See also Debian, Gentoo, Red Hat, Slackware, SUSE,
Ubuntu, Yggdrasil

naming of, 153–155, 215–216
“GNU Manifesto,” 215
Google, 244

and Android, 247–251
GPL, 84–85, 88, 89–90, 100, 103–104, 127, 146–151, 154, 158, 174, 179–183, 188, 190, 193,
194, 196, 197, 213, 220, 225–227, 233, 249–251, 262–263, 267
Gsh, 75–76, 82, 106, 185, 202
GTK+, 180

Hacker culture, 6, 37–50, 68, 73, 80, 101, 149, 213–214, 218
crisis of, 52–57

Hadoop, 196
Halloween Documents, 228–232, 233
Harmony (programming library), 180
Hecker, Frank, 245



Henkell-Wallace, David, 80
Hippel, Eric von, 12
“Homesteading the Noosphere,” 220
HP-UX, 183
HTML, 189, 225
HTTP, 189–191, 195
Hurd, 92, 96–100, 137, 150, 152, 154, 157, 227
Hybrid code, 236

IBM, 38, 56, 58, 65, 118, 187, 195, 204–206, 222, 234, 238, 244
Icaza, Miguel de, 179
Internet, 10, 22, 40, 42, 57, 59–60, 64, 78, 85, 103, 106, 109, 116–118, 123, 126, 142, 143, 147,
160–161, 165, 168, 174–175, 188–189, 196–197, 199, 200, 203–205, 208, 222, 225, 227, 230,
243, 245, 257, 259–261, 263–267, 270

open standards on, 188–189
role in FOSS development, 106, 159–161

Internet Explorer, 222, 227
Internet of Things, 243, 245, 264–265

Jakarta (programming project), 195
Java (programming language), 195, 231
Jobs, Steve, 47, 206–208

KDE, 178–185, 228
Kelty, Christopher, 10
King Features Syndicate, 171
Kool Desktop Environment. See KDE
Krogh, Georg von, 12

Le Blanc, Owen, 165
Lessig, Lawrence, 266
Levy, Steven, 38–46, 48, 269
LibreOffice, 184–185
Lindows, 169–171, 187
Linspire, 170
Linux (operating system kernel), 24, 32, 111–161, 183, 186, 194, 199, 207, 214, 227, 236, 246–
249, 251, 264, 268, 271, 272, 273. See also GNU/Linux distributions

commercialization of, 144–145, 200–206
early development of, 127–135
and GNU, 149–156
licensing of, 146–149
reasons for success of, 156–161



Linux distributions. See GNU/Linux distributions
Linux User, 172
Ls (command-line tool), 76

Mach, 77, 80, 95, 99–100, 107, 206–207
Mac OS X, 185, 188, 207
Make (programming utility), 76, 77
Mandrake, 170–171
Mandriva, 171
Manovich, Lev, 12
Massachusetts Institute of Technology, 27, 39, 46, 65–66, 71, 73, 93, 176
McCool, Rob, 190
McPherson, Tara, 272–273
Mena, Frederico, 179
Microcomputers, 58–61, 107–108, 121, 150
Microsoft, 22, 59, 92, 104, 109, 135, 164, 169–171, 181–189, 197, 201, 205, 207, 208–212, 222–
223, 228–238, 242–245, 254, 273
Microsoft Exchange, 185
Microsoft Windows, 36, 161, 169–170, 183, 185–187, 197–198, 228, 245, 253
Minix, 120–129, 132–142, 149, 157, 159–160, 165, 236
Mir (display server), 177
MIT. See Massachusetts Institute of Technology
MIT License, 176
Moody, Glynn, 7
Mozilla, 185, 217, 219, 222–227, 228, 231, 269
Mozilla Public License, 226
Mozilla Thunderbird, 185–186
Multics, 25, 27–29
Mundie, Craig, 232
Murdock, Ian, 149–150, 152, 168
MySQL, 198–199

Nadella, Satya, 245
NASA, 261
NCSA HTTPd (Web server), 190–191
NET 2, 61, 113–115, 159–160, 173, 237
NetBSD, 174–175
Netcraft.com, 192
Netscape, 190, 217, 219, 222–227, 228, 231
Netscape Public License, 225–226



NeXT, 206
NGINX, 248
Novell, 114, 185, 234–235

OpenBSD, 174–175
Open Handset Alliance, 247–250
OpenOffice.org, 184–186
“Open Source Definition,” 219
Open source economics, 168
Open Source Initiative, 219
OpenStack, 161, 244, 261–263
OPENSTEP, 206
Oracle, 184
O’Reilly, Tim, 217
OS/2, 187

Perens, Bruce, 152, 179, 218–219, 232
Perl, 9, 14, 194, 198, 217, 242
PHP, 198–199
POSIX, 95, 122, 129–130, 132, 138, 141
Priestley, Mark, 12
Python, 194, 198, 217

Qt (programming library), 178–183

Raadt, Theo de, 174
Race (and FOSS communities), 269–273
Rackspace, 261
Rasmus, Lerdorf, 220
Raymond, Eric, 7, 16, 23–25, 30, 32, 48, 71, 105, 161, 213, 217, 218–220, 223–233, 235, 244,
270–271

study of hacker culture by, 40–46
Red Hat, 80, 167, 195, 200–202, 204, 238, 252
Revolution, concept of, 16–19
Ritchie, Dennis, 28–30, 47, 55, 237
Robbins, Arnold, 151
Rosenzweig, Roy, 268
Russell, Andrew, 4, 11, 44

Saint Ignucius, 221
Salus, Peter, 7, 156
Samba, 196–197, 199



Samizdat, 235–237
Sanger, Larry, 267
Schneir, Bruce, 265
SCO Group, 234–235, 238
Shared Source, 232–233
Shuttleworth, Mark, 245, 252–259
Slackware, 166–167
Slashdot, 41, 171, 177, 181, 204, 270
Softlanding Linux System, 165
Software in the Public Interest, 168
Solaris, 183, 187, 199
Space Travel (computer game), 26, 28, 47
Sprite (operating system), 94–95
Stallman, Richard, 7, 17, 19, 20, 23, 36, 38–40, 46, 48, 51, 60, 61–62, 64–81, 84–88, 91, 93, 96,
98–109, 112–113, 116–117, 124, 129, 150, 152–155, 168, 179, 181–182, 190, 202, 208, 212–
221, 227, 232, 237, 246, 250, 254–255, 258–259, 262–263, 266–267
Star Division, 184
StarOffice, 184
Sun Microsystems, 31, 42, 62, 63, 130, 184, 187, 195, 205
SUSE, 166–167, 252
Switzerland, 189
System V (Unix), 35, 114, 234

Tanenbaum, Andrew, 119–123, 126, 128, 130, 133–134, 139–142, 156, 160, 236–237
TcX, 199
Texas Instruments, 249
Thau, Robert, 191
Thawte, 252–253
Thompson, Ken, 26–30, 47
Tiemann, Michael, 80
Torvalds, Linus, 7–8, 16, 21, 25, 36, 42, 106, 115–161, 187, 194, 205, 207–208, 212, 214, 217,
219–221, 224–226, 236, 242, 251, 258, 270
Tridgell, Andrew, 196–197
TRIX, 93–95, 107
Troll Technology, 178–182

Ubuntu, 127, 168, 170, 177, 244–245, 251–259, 263, 273
Ubuntu Foundation, 256
Ubuntu Store, 258–259
Unireg, 199



University of California at Berkeley, 19, 20, 31, 47, 60–62, 75, 76, 94, 113–116, 118, 120, 135,
159, 175
University of Cape Town, 253
University of Connecticut, 9
University of Helsinki, 117, 143, 157, 165
University of Illinois, 190
Unix, 7, 11, 14, 20, 21, 91, 234. See also BSD, NET 2, System V

commercialization of, 53–56
difference from Unix-like operating systems, 26
and hacker culture, 36–37, 44, 53–56, 58, 61–62
origins and early history of, 24–36

Usenet, 8, 59, 68, 189

VA Linux, 202–204
Valloppilli, Vinod, 229, 232
VeriSign, 252

Wabi, 187
Wales, Jimmy, 267
Wall, Larry, 87
Wayland, 177
Weber, Steven, 10–11, 243–244
Widenius, Michael “Monty,” 199
Wikipedia, 22, 267–268
Wind River, 249
Wine (software), 14, 169, 186–188, 245
Women, FOSS and, 22, 269–273
WordPerfect, 169, 184
World Wide Web, 59, 188–192, 260

Xandros, 169–170
Xenix, 59, 121
XFree86, 176
Xhosa, 253
Ximian, 185
X Windows, 142, 165, 176

Yggdrasil, 166, 192–193
Yood, Charles, 12
Young, Bob, 200–201

Zawinski, Jamie, 226



Zemlin, Jim, 235



Table of Contents

CoverImage
Half Title
Series Page
Title
Copyright
Table of Contents
Foreword
Acknowledgments
Introduction
Chapter 1: The Path to Revolution: Unix and the Origins of Hacker

Culture
Chapter 2: Inventing the Foss Revolution: Hacker Crisis, GNU, and the

Free Software Foundation
Chapter 3: A Kernel of Hope: The Story of Linux
Chapter 4: The Moderate Foss Revolution
Chapter 5: The Foss Revolutionary Wars: Free Software, Open Source,

and Microsoft
Chapter 6: Ending the Foss Revolution?
Notes
Glossary
Bibliography
Index

file:///tmp/calibre_5.12.0_tmp_96pi2zeg/bgwuwghm_pdf_out/OEBPS/CoverImage.xhtml

	CoverImage
	Half Title
	Series Page
	Title
	Copyright
	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	Chapter 1: The Path to Revolution: Unix and the Origins of Hacker Culture
	Chapter 2: Inventing the Foss Revolution: Hacker Crisis, GNU, and the Free Software Foundation
	Chapter 3: A Kernel of Hope: The Story of Linux
	Chapter 4: The Moderate Foss Revolution
	Chapter 5: The Foss Revolutionary Wars: Free Software, Open Source, and Microsoft
	Chapter 6: Ending the Foss Revolution?
	Notes
	Glossary
	Bibliography
	Index

