subject: A UNIX™ Operating System for the DEC VAX-11/780 date: July 7, 1978
Computer
from: Thomas B. London
HO 1353

John F. Reiser HO
1353

78-1353-4

MEMORANDUM FOR FILE

1. Introduction

The VAX-11/7801 is a new, general-purpose, stored-program electronic digital computer manufac-
tured by Digital Equipment Corporation. At minicomputer prices it provides addresses and data which are
32 bits wide; the traditional minicomputer address space bound of 64K is gone. This memorandum
describes the VAX-11/780 and the implementation of a UNIX operating system and complete user environ-
ment for it. Section 2 contains an overview suitable for general consumption; details normally of interest
only to devotees of computer system architecture appear in Section 3. The authors comment on software
portability in Section 4.

2. Overview

Environment. A user of UNIX and C software on the PDP-11 will find that the VAX-11/780 pro-
vides a very similar environment. There are no apparent differences in the command language or the vast
majority of programs which are customarily invoked directly from the shell. A casual user probably will
not be able to distinguish the hardware, except by issuing the command "who am i" (which identifies the
hardware and the current user) or by noting that one of the columns printed by the process status command
ps is in hexadecimal rather than octal. The C language programmer will find that int, long, pointer data
types all occupy 4 bytes (a short still occupies 2 bytes), and that a long has its two halves stored in a differ-
ent order on the PDP-11 than on the VAX-11. Characters still suffer sign extension when converted to
longer integer types, but one may use the declaration unsigned char.

Hardware. The VAX-11 is a follow-on computer to the PDP-11. The architecture seen by the user-
mode assembly-language programmer of a VAX-11 is "culturally compatible” with the PDP-11. Specific
details differ, but a programmer familiar with the PDP-11 can quickly understand the differences. The
VAX-11 provides UNIBUS and MASSBUS interfaces and uses the same input/output peripheral devices as
a PDP-11.

Significant new features of the VAX-11 include an extended virtual address space, intelligent con-
sole, and dramatically improved physical packaging. The address space of a process is divided into a few
gigantic segments. Each segment is further divided into a large number of small pages. Sufficient hard-
ware exists to make demand paging a viable memory management strategy. All console functions are han-
dled by an LSI-11 microcomputer through a standard ASCII terminal. The terminal may be remotely
located from the processor and can still halt, boot, or diagnose the VAX-11. The mechanical and physical
design of the VAX-11/780 is well done. The processor contains no sliding drawers or moving cables. All
parts are easily accessible for servicing. Adequate airflow is maintained even under maintenance condi-
tions.

Configuration. The actual configuration purchased by Department 1353 is:
VAX-11/780 cpu
0.5 megabytes memory with battery backup
floating-point accelerator
12Kbyte uses-writeable control store
UNIBUS adaptor with DZ11 (8 RS-232C lines)
MASSBUS adaptor with TE16 tape drive (800/1600 bpi)
MASSBUS adaptor with two RP06 disk spindles (176Mbytes per spindle)
additional BA1IKE UNIBUS box
The list price of the above configuration in February 1978 was $241,255; the price including a DEC dis-
count to a Bell Labs purchaser was $200,242.

Software. We have implemented a UNIX operating system!?! and complete user software environ-
ment on the VAX-11/780. The operating system is Research version 7 as of April 15, 1978. The environ-
ment includes the Bourne shell, C compiler, code improver c2, assembler, loader, debugger, standard I/O
subroutine library 1ibS, C subroutine library libe, source code control system SCCS, nroff/troff, and more
than 130 commands. Maintenance programs for file system checking, bootstrapping, and physical disk
pack handling have also been implemented.

We began with the C language code of Research version 7 of the UNIX operating system, and a
PDP-11/45 running UNIX as a bootstrap machine. Creating a C compiler which produced VAX-11 native-
mode assembly code was the first task. The code generator portion of the portable C compiler was rewrit-
ten to do this. An assembler and loader, based on similar code for the Interdata 8/32, completed the basic
support software. Existing PDP-11/70 device drivers for disk, tape, and terminal communication lines were
adapted to the VAX-11/780. Assembly language interfaces (trap handlers, hardware initialization, etc.)
were completely rewritten. We then created magnetic tapes in the proper format for an initial file system
and for deadstart load, and physically carried these tapes from the PDP-11/45 to the VAX-11/780.

Work on the C compiler began in mid-December 1977. The hardware arrived on March 3. We held a
party on May 19 to celebrate successful multiuser operation of the system.

Performance. Identical documents were formatted by nroff on our VAX-11/780 and on a PDP-11/70
running Research version 7 UNIX; both systems used RP06 disks. Identical C programs were compiled
and assembled on the VAX-11/780 and on the PDP-11/70. As reported by the time command, the results
(converted to seconds) were:

nroff —ms —e —T450-12 ios.r > /dev/null

real user Sys
VAX-11/780 47.0 28.6 8.7
PDP-11/70 54.0 36.9 7.9

cc —c —O pftn.c

real user sys
PDP-11/70 (Ritchie compiler) 86.0 435 118
VAX-11/780 (portable compiler) 82.0 64.0 105
PDP-11/70 (portable compiler) 153.0 1146 16.6
for Interdata 8/32

From the statistics on nroff one should conclude that, based on user-mode CPU time, the
VAX-11/780 can execute the code produced by the VAX-11 C compiler approximately 22% faster than the
PDP-11/70 can execute the code produced by the PDP-11 C compiler. This is a measure of the combined
power of the hardware and efficiency of the code generated by the compiler. Except as an upper limit, the
figures give no indication as to the throughput, response time, or efficiency of the operating system. The
differences in real time and system time between the VAX-11/780 and the PDP-11/70 are not significant.

The times given for compilation of the file pfin.c are an attempt at a "black box" comprison of appies
and oranges. The black box is any program (compiler) which takes C language input and produces exe-
cutable instructions. The black-box comparison is that the current VAX-11 C compiler running on the
VAX-11/780 and compiling code for the VAX-11 requires 49% more user-mode CPU time than the current
PDP-11 C compiler running on the PDP-11/70 and compiling code for the PDP-11. The apples and
oranges aspect arises because the two compilers, while equivalent from the black box viewpoint, are (on the
inside) totally different pieces of software. The PDP-11 compiler is a production compiler written by D. M.
Ritchie; the VAX-11 compiler is a portable compiler ased on work by S. C. Johnson. The figures for the
portable compiler running on the PDP-11/70 and compiling for the Interdata 8/32 are included for those
who wish to compare two portable compilers. We have no VAX-11 equivalent to the Ritchie compiler, and
thus cannot run the tests which would enable comparison of two production compilers.

The loaded size in bytes of the operating system and seven other programs appears in Table 1. One
should note the general similarity between the text (instructions) sizes on the PDP-11 and on the VAX-11,
and between the bss (uninitialized data) sizes on the VAX-11 and on the Interdata 8/32. The particular
PDP-11 UNIX system chosen has several more input/output device drivers and experimental multiplexing
software not in the VAX-11 system, which accounts for its larger text size. If many global integer variables
(or large arrays) are used, there is a tendency for the data and bss portions to double in size when going
from a PDP-11 to a VAX-11 or an Interdata 8/32 because an int occupies two bytes on the PDP-11 and four
bytes on the other machines. However, character arrays occupy the same amount of space on all machines.
An unusually large number of references to global variables in the nroff program accounts for its increase in
text size on the VAX-11 compared with the PDP-11. A program can be written to automatically change the
addressing modes used in the VAX-11 code so that most references to global data become shorter than at
present, but this has not been done.

Evaluation. We believe that the VAX-11/780 provides an excellent hardware environment for run-
ning UNIX and C software. With the software in its current state, we view the system as operationally
equivalent to a PDP-11/70 running UNIX software, except that the 64K limit on process address space is
gone and programs run faster. We believe that the advanced memory management and user/system com-
munication capabilities of the VAX-11/780 offer an opportunity to construct future UNIX-like systems with
substantially higher throughput than provided by today’s UNIX on a PDP-11/70.

3. Details

Hardware

Four main subsystems — the central processor, console, main memory, and input/output — consti-
tute the VAX-11/780 computer system. The central processor, memory, and input/output subsystems are
connected by the Synchronous Backplane Interconnect (SBI), an internal synchronous bus with a maximum
data throughput of 13.3 megabytes per second. The SBI deals in physical addresses which are 30 bits wide.
Half of the SBI address space is reserved for memory addresses, and half for input/output device registers.
Arbitration for bus cycles on the SBI is distributed; each subsystem decides if it will use the next bus cycle.

The central processor is a microprogrammed 32-bit general-register computer. The architecture seen
by the user-mode assembly-language programmer is "culturally compatible” with the PDP-11; an expert
programmer familiar with the PDP-11 can learn and understand the differences in one day or less. The
processor handles binary integers of 8, 16, and 32 bits; single precision (32 bit) and double precision (64
bit) floating-point numbers, character strings up to 65535 bytes long, bit fields up to 32 bits wide; and IBM-
style packed decimal strings up to 31 digits long. Bit fields have no alignment restrictions whatsoever; all
other data types require alignment only to a byte (8 bit) boundary. The central processor provides sixteen
32-bit general registers. Register 15 is the program counter pc. Software operating in one of privileged
access modes (see below) must use register 14 as a stack pointer sp. The instructions which implement
high-level procedure call and return (pushl, calls, callg, ret) assume a convention about the use of sp, reg-
ister 13 (fp, the frame pointer) and register 12 (ap, argument pointer). The instructions which handle char-
acter and packed decimal strings use registers O through 5 to hold pointers and counters, so as to be inter-
ruptible. Floating-point operations may use the general registers; there are no separate floating-point

registers. Instructions take from zero to six operands. The operation code occupies one byte and is fol-
lowed by the operands, which require from one to nine bytes each. Nine addressing modes (including all
the PDP-11 modes except *—(r)) are allowed, and the addressing modes are independent of the operation
code. When the central processor is executing in the context of a process, there are four access privilege
modes (user, supervisor, executive, kernel), each with its own stack pointer; software which desires a per-
process kernel stack is easy to implement. A fifth stack pointer is used when executing in a special system-
wide interrupt context. The VAX-11/780 processor includes an eight kilobyte, two-way set associative,
write-through, memory data cache; an eight-byte instruction stream buffer, and a 128-address virtual
address translation buffer. Most of the processor is implemented in Schottky TTL MSI logic. A program-
mable realtime clock and a time-of-year clock (battery operated during loss of line voltage) are standard
equipment. Options include a hardwired floating-point accelerator and user-writeable control store.

The console subsystem consists of an LSI-11 computer, local memory, floppy disk, DECwriter termi-
nal, and remote-access communications port. The console is connected directly to the central processor and
performs all the functions of a conventional "lights and switches" front panel. The floppy disk serves as the
initial bootstrap device for normal operation and holds special microcode for diagnostic operation. When
activated by a key switch on the central processor, the remote-access port becomes the console. A terminal
connected through the remote-access port can halt the central processor, boot it, diagnose it, etc.

The virtual address space of a process running on the VAX-11/780 consists of 2**32 8-bit bytes. The
two high-order bits of a 32-bit address determine one of four segments. Two of these segments are system
segments common to the address space of all processes. One of the system segments is reserved for future
use. The other two segments are separately defined for each process and are automatically managed by the
context switching instructions. One of the per-process segments is designed for a stack which grows
towards lower-numbered memory addresses. Segments are divided into pages of 512 bytes. Memory map-
ping hardware translates virtual addresses into physical addresses using page tables. A page table contains
one four-byte entry for each page mapped; the entry contains a valid bit, a four-bit field which encodes
access privileges, a modify bit, and the physical page-frame number where the page is mapped. (There is
no reference bit which is maintained by hardware!) A base register and a limit register describe the page
table of each segment. The base register of a per-process segment contains a virtual address within the sys-
tem segment; the base register for the system segment contains a physical memory address. The
VAX-11/780 central processor contains a virtual address translation buffer holding 128 virtual address-page
frame number pairs which eliminates the need for extra memory references during address translation for
(typically) 98% of all memory references. The memory is implemented using MOS semiconductor RAMs
with an error correcting code which corrects all single-bit errors and detects all double-bit errors and 70%
of all greater-than-double bit errors. A memory controller can handle 8 memory boards; using 4K chips
each board can hold 128K bytes. There can be two memory controllers, thus the maximum amount of
physical memory is currently 2 megabytes. When 16K chips are used [forecasted for late 1978], each
board will hold 512K, and physical memory can be 8 megabytes. There is a battery backup option for
maintaining data in the event of a power failure. Each optional battery will maintain 1 megabyte for 10
minutes.

The input/output subsystem consists of UNIBUS adaptors and MASSBUS adaptors. A UNIBUS
adaptor (UBA) is an interface between a standard UNIBUS and the SBI. The UBA does the bus arbitration
and everything else necessary to administer the UNIBUS. It also contains a set of registers for mapping
UNIBUS addresses to and from SBI addresses. The maximum throughput on a UBA is 1.5 megabytes per
second. A MASSBUS adaptor (MBA) is an interface between the SBI and MASSBUS devices (RPC6
disk, TE16 tape, etc.). An MBA would be more properly called an RH-780 controller, analogous to the
RH-11 controller on a PDP-11/70 MASSBUS; only one unit may transfer data at a time, although several
similar units connected to the same MBA can execute control functions simultaneously. The MBA contains
the device control registers normally found in an RH controller. The registers lie in the I/O section of SBI
addresses. An MBA also contains a set of mapping registers which translate device byte addresses to and
from SBI addresses. The maximum throughput on a MBA is 2.0 megabytes per second. The published
limits are 1 UBA and 4 MBAs per system. Theoretically one could have any number of either kind as long
as the sum of the number of central processors, memory controllers, MBAs, and twice the number of UBAs
were 15 or less, since the SBI has 15 "ports".

The physical packaging of the system has been dramatically improved compared with the PDP-11.
The VAX-11/780 processor cabinet contains no drawers or moving cables. The SBI fixed and rigid. Three
one-third horsepower squirrel-cage blowers provide sufficient air flow — even while servicing the CPU.
Any logic card, power supply, or blower can be replaced within twenty minutes by one person using only a
screwdriver. The CPU stands 1.53m x 1.17m x 0.77m (HWD); cabinets housing the CPU, UNIBUS
devices, and tape drive are usually bolted together to form a single unit 1.53m x 2.5Im x 0.77m. Our con-
figuration (see section 2) weighs 3452 pounds and requires 42050 BTU/hr cooling.

C Compiler

A VAX-11 "native mode" C compiler was constructed using S. C. Johnson’s portable compiler as a
base. After one month, a reasonable version began to evolve: it produced code which was good enough to
exercise the assembler, loader, and debugger (on the bootstrap PDP-11/45). This initial version did not
make use of VAX-11 indexed addressing (which does single-level array subscripting including appropriate
index shifts), bit field instructions, or autoincrement/decrement addressing. It contained its share of bugs,
particularly since the hardware had not arrived and could not be used to actually run the generated code.

Substantial effort has been subsequently directed towards improving all aspects of the compiler: bugs
have been corrected, routines have been made to execute more efficiently, and the quality of the generated
code has been improved. All addressing modes are supported, bit-field instructions are used for pro-
grammer-defined bit fields, and autoincrement and autodecrement addressing as well as three-address
instructions are used.

Overall, our experience with the compiler has been very favorable. When the VAX 11/780 was deliv-
ered, the compiler worked well enough to compile itself, the UNIX kernel, and many user-level commands.
In fact, since the delivery of the machine, only about a half-dozen serious bugs have been detected. Addi-
tionally, the framework of the compiler has proven itself to be flexible: a compiler for the Interdata 8/32
was transformed into a compiler for the VAX-11/780, some improvements and extensions were easily
added, and, in general, a quickly evolving compiler has remained stable and productive. The authors feel
that, with a few extensions to the model of the compiler and a certain amount of tuning, the current VAX-11
compiler could easily remain as the production VAX-11 compiler.

There are still some deficiencies in the current version of the compiler, as well as in the basic "prod-
uct" itself. The compiler is slow and quite large; see the statistics in section 2 and Table 1. Some of the
blame for the size and lethargy of the first pass can be attributed to the use of lex for the scanner and yacc
for the parser, and to the use of ASCII to communicate information between passes. Both lex and yacc pro-
duce large routines: the scanner is 17K bytes in length (over 4.5K bytes of instructions), and the parser is
16K bytes long (over 5.5K bytes of instructions). On the average, the first pass spends 20% of its time in
the lexical scanner, yylook, and 9% of its time in the parser yyparse.

Using ASCII to communicate between the two passes causes an additional speed penalty for charac-
ter conversion. On typical programs, the first pass (parser) spends roughly 30% of its time performing out-
put services (i.e., calls to _doprnt (18%), _strout (8%), and printf (4%)), while the second pass (code gener-
ator) spends roughly 21% of its time reading it back in (i.e., calls to read (18%) and rdin (3%)). (Addition-
ally, the routine used to convert from ASCII to binary contained a bug which caused "-2147483648"
(which is —(2*¥*31)) to be read as zero on our PDP-11/45.)

The above problems are not inherent to the compiler model. To speedup compilation, the scanner
can be hand-coded (as in the standard PDP-11 compiler), and the interpass data can be formatted in binary
(or the two passes can be combined). With these simple modifications (some are already in progress), it
should be possible to produce a compiler almost twice as fast as the current one.

Two features of the VAX-11 architecture — three-address instructions and indexed addressing mode
— were difficult to model within the basic structure of the compiler. The full implementation of three-
address instructions proved to be so difficult that it was not really attempted. Instead, c2, the assembly lan-
guage code improver, tries to merge several instructions into an appropriate three-address instruction. For
example, the statement a = b + ¢ compiles

addl3 b,c,r0
movl 10,a

which the improver can change to:
addl3 b,c,a

for a savings of three bytes and over 400 nanoseconds. However, c2 will not always succeed in this short-
ening. It cannot tell the difference between

a=b+c;
return

and
return(a=b +c);

since register r) must be considered "live" (i.e., contains a value which may be required later) across the
return statement.

The VAX-11 has six indexed addressing modes which yield the address of an element of a one-
dimensional array of a base type (char, short, int, long, pointer, float, or double). The statement

afi] = b[j] * c[k];

where i, j, and k are declared register int and a, b, and c are double arrays (either external or local) can be
compiled into the single instruction:

muld3 b[jl,c[k],a[i]

Although the index specifier (e.g. i in the above example) must be a register, the base address specifier can
be any addressing mode except register, literal, or another indexed mode. For example, the C-language
constructs afi], (*p)[i], (——p)[i], (p++)[i], and (*p++)[i] (or their equivalents *(a+i), *(*p+i), *(--p+i),
*p++ +i), and *(*p++ +i), respectively) all can be done with a single VAX-11 address (where a is an
array of base type, p is a pointer to the same type, and i is of type register int). It is usually difficult to rec-
ognize or conveniently represent such constructs (e.g., (¥p++)[i] is fun), or generate the possible cases
(e.g., afi] where a is not readily addressable).

The fact that the code generator can easily recognize only expression trees of height one (two if
OREG and UNARY MUL nodes are taken into account) causes substantial difficulty in making use of
indexed mode, three address instructions, and indirect addressing. Expression trees of non-trivial height
occur not infrequently (e.g. as a worst case, the statement

a=b+ Cp+lil;
has an expression tree of height six, but can be compiled into the single instruction
addl3 b, *(p)+[il.a

if p and i are register variables). The complexity of the code generator is raised by forcing the compres-
sion of subtrees into single nodes which are then treated with special checks, special code, etc.

The size and alignment attributes of data objects are logically independent, even though previous
hardware architectures (IBM 360, PDP-11, Interdata 8/32, ...) have imposed alignment restrictions based
on size. The VAX 11/780 has no such restrictions, although programs run faster with data aligned on nat-
ural boundaries. The C language has little notion of alignment; because of run-time penalties, the VAX-11
C compiler aligns all the basic data types on address boundaries which are a multiple of sizeof the basic
type. Due to questions about alignment, both the language and the compiler have difficulty with the decla-
ration char c:10;.

The decision to naturally align most data items has undesirable side effects which cannot be ignored.
Consider the structure declaration

struct foo {
char c;
float f;
} bar;

On the PDP-11, sizeof(foo) is 6 bytes while on the VAX-11, sizeof(foo) is currently 8 bytes (the offset of f
within bar is 2 and 4 respectively). sizeof(foo) could be 5 bytes in each case. Although both machines use
the same data formats for chars and floats, the differing alignment imposed by the the VAX-11 C compiler
means that the two machines cannot speak directly to one another using media which record structures con-
taining binary information. Since alignment is important, we feel that it ought to be specifiable in the C
language.

Operating system conversion

A UNIX system running on a PDP-11/45 was used as the base for transporting software to the
VAX-11/780. The software itself originated with the code produced by members of Center 127, Comput-
ing Science Research, for the Interdata 8/32. Programs were cross-compiled, assembled, loaded, and put
on magnetic tape in fp format; absolute bit-string files were put on tape in dd format. Tapes were then car-
ried across the room to the VAX-11/780. An absolute tape boot (in machine language), fp boot and primary
disk boot (in assembly language), secondary disk boot (in C), and stand-alone utilities (disk formatter, disk
verifier, tape-to-disk, disk-to-tape, disk-to-disk, and disk-to-console, all in C) were then used to bring up the
system.

Establishing an initial file system on the disk took longer than expected. The PDP-11/45 was running
USG issue 3 of the UNIX operating system with a "16-bit" file system and the VAX-11/780 was to have a
Research version 7 "32-bit" file system. Also, C-language code on the VAX-11 expects the bytes of a
32-bit integer to be stored in a different order than C-language code on the PDP-11. We swallowed these
two red herrings hard, and suffered. We now know that the proper way to create an initial file system is to
modify the program mkfs so that its output (on the bootstrap machine) is a file containing the proper bits,
put that file on tape, and use the tape-to-disk utility on the target machine.

Mapping the software architecture of the UNIX operating system onto the hardware architecture of
the VAX-11 required a number of decisions. Commentary on these decisions follows. The SCB (system
context base) processor register contains a page-aligned physical memory address which is the base of the
hardware interrupt vector. The UNIX system puts this vector at physical memory address zero.

Operating system code, data, kernel stacks, and interrupt stack occupy the VAX-11/780 system seg-
ment (virtual addresses 80000000 to bfffffff). User code and data are loaded into segment zero (0 to
3fffffff) and the user stack is initialized in segment one (7ffffff to 40000000). User processes pass argu-
ments to system service code using the ordinary calls subroutine calling sequence. The chmk instruction is
then used to gain kernel privileges. The chmk instruction switches the stack pointer sp from the user stack
to the kernel stack, but does not change the argument pointer ap or the frame pointer fp. The kernel uses
the value in ap to copy the arguments into u.u_arg. The VAX-11 hardware allows the values to be directly
addressed, but the kernel software requires the copy.

The u area is a per-process data structure in which the operating system keeps swappable information
about a process. The kernel virtual address of the u area must be a constant across all processes. The
PDP-11 implementation puts the u area at kernel address 0160000; when process switching occurs the u
area is switched by changing a kernel data space segmentation register. Since the operating system can
address user memory on a VAX-11, the u area could be placed in (protected) user memory, say at address 0
or at 7fffe000. However, it was desirable for the first implementation to make the page tables for user seg-
ments part of the u area, which creates timing problems unless the u area lies in system space. The base of
the u area was assigned kernel virtual address 80020000. When process switching occurs, the u area is
changed by changing the system-space page table and invalidating the page-table translation cache for the
appropriate pages.

Since the operating system can directly address the memory of the current user process, the proce-
dures fubyte, subyte, fuword, etc., are unnecessary and could be made into macros which would merely do

the appropriate load or store. However, these procedures (along with copyin and copyout) were kept to
ensure that each access to user space is valid.

A VAX-11/780 internal processor register called the PCB (process context base) points to an area in
which the VAX-11/780 saves the hardware state of the machine (96 bytes) when switching context. This
save area was put in the u area as u_rsav.

The implementation of context switching required major effort. The VAX-11 has two very nice
instructions (svpetx, save process context, and ldpctx, load process context) which facilitate context
switching. Unfortunately, they do not implement the mechanism which the UNIX system expects. (The
mechanism used by UNIX is so dispersed and intricately detailed that it is hard to imagine any hardware
which implements it directly.) The temptation to drastically change the UNIX code has been resisted so far.
The savu/retu/aretu tar pit was VAX-inated, but it took more than a week. The newer save/restore primi-
tive does make the C-language code prettier, but the assembly-language side (at least for the VAX-11) is
just as dirty as ever. The UNIX context switching mechanism requires three state save areas, w.u_rsav,
u.u_ssav, u.u_gsav, because the same mechanism is also used for abnormal returns. The VAX-11 context
switching instructions use only a single state save area. To make use of the VAX-11 instructions, the soft-
ware simulates a great deal of microcode and bastardizes call frames in a most ugly manner. Context
switching is certainly high on the list of things to rewrite in the second implementation (even for the
PDP-11!).

The procedures sureg and estabur were also tricky to implement. They were designed with the
assumption that only a small number (16 or fewer) of registers would be needed to map the address space
of a user process, while on the VAX-11 a 32K process requires 64 page table entries. Furthermore, the
memory of a process is diddled in tricky ways, particularly in expand and getxfile.

Handling DMA I/O hardware was the other major implementation bottleneck. The UBA and MBA
mapping registers contain physical memory page numbers, and physical addresses are hard to handle. It is
not pleasant to deal with the hardware which implements the mapping registers. If an I/O transfer is in
progress then the mapping registers may be neither read nor written; this applies even to registers which
would not be used by the transfer. As a result, the map for the next I/O operation cannot be setup during
the current I/O operation. Furthermore, a single transfer is limited to 64K bytes because the byte counter is
only 16 bits wide. Thus swapping a process to the disk can require multiple I/O operations. The solution
to these problems involved permanently reserving the last 129 registers in each map to service both swap
and physical I/0 operations. The remaining map registers are available to map the system buffers, and are
loaded at system initialization time. Disk ECC error correction is currently done only for I/O involving the
system buffers. Disk errors on raw I/O cause process termination; the swap area on disk had better be
error-free.

Like the UNIX system for the PDP-11, the current implementation for the VAX-11/780 maintains
each process in contiguous physical memory and swaps processes to disk when there is not enough physical
memory to contain them all. Reducing external memory fragmentation to zero by utilizing the
VAX-11/780 memory mapping hardware for scatter loading is high on the list of things to do in the second
implementation pass. To simplify kernel memory allocation, the size of the user-segment memory map is
an assembly parameter which currently allows three pages of page table or 192K bytes total for text, data,
and stack. This also deserves to be rewritten, both to allow varying process size, and to allow processes
larger than physical memory through demand paging. Dynamic page table size would mean dynamic u
area size if the page table remained part of the u area.

The code in sendsig for sending a signal to a process involves a tedious simulation of the calls
instruction due to the problem of "inward return" across privilege modes upon termination of the routine
which handles the signal. Making a portion of the kernel code readable by a user-mode process would sim-
plify sendsig. Motivated by a problem with the Bourne shell, the signal number is passed as a parameter to
the signalled routine.

Interprocess communication via signals (signal and kill) uses the low-order bit of a machine address
for something other than addressing. This implies that a procedure which handles signals must start on an
even byte boundary, which means that every procedure must start on an even byte boundary. The C

compiler thus issues a pseudo-op to the assembler to align the beginning of each procedure. This can waste
on a VAX-11. It also imposes a nontrivial requirement on the assembler, since if the resolution of condi-
tional jump instructions can change the parity of the length of a procedure then the alignment directive
must also be handled like a conditional jump. In hindsight, it would have been better if a distinct value (say
+1 or -1) were used for ignore, rather than multiplexing the bottom bit.

The VAX-11/780 provides a (non-maskable) trap for integer division by zero. The system would like
to turn this into a signal to the process. A similar situation exists for subscript range trap. Integer overflow,
floating overflow, floating underflow, and reserved operand also need signal numbers. Perhaps only one
"error” signal is needed with some other means for determining the true fault. The whole business of inter-
rupts, signals, asynchronous I/O, and the use of the hardware AST mechanism deserves more attention.

A bug was discovered in the UNIX code for process termination involving the proc and xproc struc-
tures. (The problem also existed on the PDP-11, but it would only be noticed if a process had accumulated
more than 65535 ticks of system time, which is highly unlikely.) When a process dies its resource utiliza-
tion statistics (currently only exit status, system, and process CPU time) are temporarily saved so that they
can be added to the totals for the descendents of the parent process. The actual accumulation is done by the
kernel when the parent process issues a wait system call; the child process is then completely erased. The
kernel was overlaying the statistics in a part of the proc structure normally used by the scheduler to contain
the pointer p_textp. Ordinarily the exit was processed immediately, causing no harm. But if the system
was loaded so that swapping was necessary, then the scheduler could sneak in after child exited and before
the parent read the statistics, and would interpret the timing data in the zombie xproc structure as a pointer.
This invariably caused an illegal memory reference from kernel mode on the VAX-11/780.

One of the greatest disappointments with the current system stems from a design quirk in the FP-11
floating-point processor for the PDP-11. When converting between floating-point and 32-bit integer, the
FP-11 expects the high-order 16 bits of the integer to be stored at the lower memory address; this is not in
line with the general "right to left" design of the PDP-11, which would place the low-order 16 bits in the
lower memory address. C code for the PDP-11 uses the FP-11 convention for storing long integers. The
VAX-11 hardware stores the least significant bit of any integer data type in the lowest addressed byte. C
code for the VAX-11 uses the hardware convention. This means that files containing long integers repre-
sented in the local convention are not binary compatible between a UNIX system on the VAX-11 and a
UNIX system on the PDP-11. This is the only exception for data types common to both machines: char,
short, float, and double all have a common representation. Except for this (and the structure alignment
problem noted earlier), disk packs containing 32-bit file systems, tapes, etc., would have been interchange-
able. The fact that DEC’s Fortran-IV Plus for the PDP-11 avoided the FP-11 convention, and that RSX-11
files are binary compatible between the VAX-11 and the PDP-11, is only salt on an open wound!

Subroutine libraries

libe. Conversion of the system-call interface routines was straightforward but tedious. Most routines
are merely

.word 0x0000

chmk $nn

bce L1

jmp cerror
L1: ret

The routines printf, ecvt, and fcvt were left to libS and were not implemented in libc.

libS. Conversion of the standard input/output library libS posed no problems except for __doprnt,
the routine which constructs character representations of other datatypes for the printing routines printf,
Jprintf, and sprintf. Since many programs spend 15% to 20% of their execution time within __doprnt, it
pays to code the routine for speed in assembly language. Packed-decimal instructions handle decimal,
unsigned, and floating-point conversions. The algorithm chosen for converting from floating-point to char-
acter string revealed a microcode bug in the VAX-11/780’s ashp (arithmetic shift and round packed)
instruction. Under certain conditions a carry from the rounded digit propagated both to the adjacent digit

-10-

and to the digit eight places further left. This usually caused an overflow, since the destination packed-deci-
mal string was typically not long enough to represent the spurious carry. DEC claims to have a fix for the
bug, but the FCO has not arrived. In the meantime a five-instruction patch detects and corrects the spurious
overflow.

Commands

as, Id. Code developed by Center 127 for the Interdata 8/32 was the model for an interpretation by a
VAX-11/780 artist. The assembler uses an algorithm described in'®! with heuristic improvement of!*! to
resolve conditional jump pseudoinstructions. Variable-length, unaligned instructions and address constants
forced the relocation information in object files to include the explicit segment-relative address for each
relocatable datum, rather than deducing the address from a one-to-one correspondence between the position
in the segment and the corresponding position in the relocation table. This caused a slight change in the
header information within object files.

c2. The code improver for the assembly language generated by the VAX-11 C compiler is based on a
similar program for the PDP-11. A "backwards" register usage pass, performed once and before anything
else, was a major addition. Knowing that no temporary register is live across a backwards jump, the regis-
ter usage pass introduces three-address instructions where ever possible. It also recognizes situations where
jump on bit (jbe, jbs, jlbe, jlbs), extract field (extzv, movzbl), and move address (moval, movab, pushal,
pushab) instructions can be used. The code for insertion of fancy loop control instructions sob, aob, acb
was also extended.

adb. The most significant change to the symbolic debugging routine was the writing of a disassem-
bler for VAX-11 native-mode instructions. Additionally, the character input and output routines were modi-
fied to use a default radix for all numeric values. The radix is initialized to sixteen.

sh. The (Bourne) shell is the standard user command interpreter. It required by far the largest con-
version effort of any supposedly portable program, for the simple reason that it is not portable. Critical por-
tions are coded in assembly language and had to be painstakingly rewritten. The shell uses its own sbrk
which is functionally different from the standard routine in libc. The shell wants the routine which fields a
signal to be passed a parameter giving the number of the signal being caught; signal was also a private rou-
tine. This was handled by having the operating system provide the parameter in the first place, doing away
with the private code for signal. The code in fixargs (for constructing the argument list to an exec system
call) had to be diddled.

ps, iostat. The process and input/output status commands consistently referenced /dev/mem (physi-
cal memory) when they should have referred to /dev/kmem (kernel virtual memory). iostat also assumed
that certain variables maintained by the kernel were allocated contiguously, even though they were not
declared as part of a structure.

pr. The command which formats and prints files had a bug that caused a division by zero when it
was asked to print several files and the first file in the list did not exist. On a PDP-11 division by zero
returns the dividend, but on a VAX-11 it gives an unmaskable trap.

cat, dc. These two commands did not count their arguments using the first parameter argc, but rather
assumed that an additional argument (argv/[argc], initialized as -1) could be used as a pointer. On the
PDP-11 the resulting address references the fixed end of the stack; on the VAX-11, -1 is an illegal address.

nroff/troff. The source code for the document preparation and phototypesetter commands is not
portable; several weeks were required to produce properly running version of these commands. Use of the
explicit (or worse, implicit) constant "2" instead of sizeof(int) was quite common. The code assumes that
variables which are adjacent in external declarations occupy contiguous memory at execution time. Several
tables are initialized by assembly-language programs. Converting the tables was merely tedious; changing
the code which thought it knew the format of an a.out file required some effort. This memorandum was
created using the converted nroff/troff programs on the VAX-11/780.

SCCS. Version 4 of the Source Code Control System!™ is used to provide version backup for soft-
ware in case disastrous bugs are introduced. The source for SCCS itself had not quite been converted to

-11 -

version 7 UNIX, and the header files required some massaging. The PWB routines logname and pexec had
to be simulated. The utility procedures for dynamic storage allocation required some work to integrate
them with libS and to remove PDP-11 dialect. The exit status of the diff command changed in version 7,
causing delta to bomb. The code implicitly assumed that all checksums were computed modulo 65536.
The documentation is incorrect: everywhere "99999" appears it should really say "65535". The procedure
satoi returns two values, storing one of them indirectly through a pointer parameter. Naturally, satoi and its
callers did not agree on sizeof the stored value; this took a day to track down.

Software portability

We thank the members of Center 127, Computing Science Research, for their efforts in producing the
basic software and for their recent efforts towards making the software portable. The fact that people other
than the original developers can quickly create a running system for a new machine is a tribute to how well
the original work was done.

Yet in our effort to transport a complete UNIX system to the VAX-11/780 we stumbled across a large
number of nonportable constructions and were dismayed by the seeming lack of appropriate facilities to
detect and prevent them. Based on our experience, we strongly recommend that the C language and its
compilers be enhanced so that

1. The actual arguments in a procedure call are type checked against the procedure declaration, and a
"dummy" declaration which specifies types is permitted even if the called procedure is not actually
declared in the same compilation.

2. The *—>’ operator is checked to insure that the structure element on the right is a member of a struc-
ture to which the pointer on the left may point.

3. A structure element may be declared with any name as long as the name is unique within the imme-
diately surrounding structure. (The current requirement that a structure element name must uniquely
correspond to an offset from the beginning of the structure, across all structures in a compilation, cre-
ates naming problems and frequently leads to errors of the type noted in item 2 above.)

4. The issue of alignment to an even-byte (or other) boundary is brought into the open, so that arbitrary
data structures can be accurately described.

There is a program called lint'® which, if conscientiously used throughout the life of a piece of soft-
ware, provides type checking which partially addresses the first two points in the above list. The problem is
that lint is big, noisy, relatively recent and unknown, and (partially as a result) infrequently used. There is
little incentive for the average programmer to use lint as a matter of course. The authors believe that type
checking belongs in the everyday compiler as the default, where it is very inexpensive to implement. Those
who wish to do "dirty" work may request that type checking be disabled; those who wish to bless their dirty
work may use type casts.

We believe that these four enhancements would go a long way towards making C language software
portable as a rule rather than as an exception, thus preserving Bell Laboratories’ investment in present and
future C software.

-12 -

Acknowledgments. Thank you, D. M. Ritchie and S. C. Johnson, for answering questions at key
moments; G. K. Swanson, for assistance with boot procedures and stand-alone utilities; J. F. Jarvis, for the
mathematical function library; D. K. Sharma, for help in bringing up user-level commands. Additional
thanks go to many other members of Centers 127 and 135, and Department 8234, for helpful comments and
suggestions.

Thomas B. London

HO-1353-tbl/jfr John F. Reiser
Att:
References
Table 1
REFERENCES

1. Digital Equipment Corporation, VAX-11/780 Architecture Handbook. Maynard, Massachusetts,
1977.

2. D. M. Ritchie and K. Thompson, The UNIX Time-Sharing System, CACM 17, (July 1974), 365-375.
See also BTSJ 57, 6 (July-August 1978), 1905-1929.

3. W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Gescke, The Design of an Opti-
mizing Compiler. American Elsevier, New York, 1975.

4. J. F. Reiser, Common Instances of Pathological Span-dependent Instructions, TM 78-1353-3.
5. SCCS/PWB User’s Manual, The Source Code Control System.

6. S. C. Johnson, lint, a C Program Checker. Computing Science Technical Report #65, Bell Laborato-
ries, December 1977.

- 13-

Program

/unix

C, pass 1

C, pass 2

ed

grep

Is

nroff

sort

System

PDP-11
VAX-11
Interdata 8/32

PDP-11
VAX-11
Interdata 8/32

PDP-11
VAX-11
Interdata 8/32

PDP-11
VAX-11
Interdata 8/32

PDP-11
VAX-11
Interdata 8/32

PDP-11
VAX-11
Interdata 8/32

PDP-11
VAX-11
Interdata 8/32

PDP-11
VAX-11
Interdata 8/32

Text

480064
34476
79976

36736
37520
60606

21248
23408
35652

10752
11552
21886

4736
4864
11950

7104
6884
15660

29312
36360

6656
6580
13886

Data

2470
4292
11904

19826
29492
32192

6254
9092
9032

302
212
480

408
476
1160

768
1140
1920

6684
9408

1578
1764
2208

Bss

44040
39448
39208

17656
23512
24920

5246
7552
7560

4390
4556
4576

1906
1936
1936

3856
5764
5768

7842
10636

2104
2788
2792

Total

94574
78216
131088

74218
90524
117718

32748
40052
52244

15444
16320
26942

7050
7276
15046

11728
13788
23348

43838
58836

10338
11132
18886

TABLE 1. Loaded Program Sizes (in bytes).

