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PREFACE

This book teaches how to write good programs that make good tools, by
presenting a comprehensive set, each one of which provides lessons in design and
implementation. The programs are not artificial, nor are they toys. lnslepd, they
are tools which have proved valuable in the production of other programs. We use
most of them every working day, and they account for most of our computer usage.
The programs are complete, not just algorithms and outlines, and they work: all
have been tested directly from the text, which is in machine-readable form. They
are readable: all are presented in a structured language called Ratfor (for ‘‘Rational
Fortran™), which can be easily understood by anyone familiar with Fortran, PL/I,
Cobol, Algol, Pascal or a similar language. (Ratfor translates readily into Fortran or
PL/1: one of the tools presented is a preprocessor to translate Ratfor into Fortran
automatically.) Most important, the programs are designed to work well with people
and with each other, and are thus more readily perceived as tools.

The book is pragmatic. We teach top-down design by walking. through
designs. We demonstrate structuted programming with structured programs. We
discuss efficiency and reliability in terms of actual tests carried out. We treat porta-
bility by writing in a language that is widely available, and by isolating unavoidable
sysiem dependencies in a handful of small, carefully specified routines that can be
readily built for a particular operating environment. All of the programs presented
here have been run without change on at least two different machines; the larger
ones have run on an IBM 370, a Honeywell 6070 and a PDP-11. The code is avail-
able in machine-readable form as a supplement to the text.

~ The principles of good programming are presented not as abstract sermons bul
as concrete lessons in the context of actual working programs. For example, there
is no chapter on “efficiency.” Instead, throughout the book there are observations
on efficiency as it relates to the particular program being developed. Similarly there
is no chapter on “top-down design,” nor on “structured programming,” nor on
“testing and debugging.” Instead, all of these disciplines are employed as appropri-
ate in every program shown.

The book is suitable for a “software engineering” course or for a second
course in programming — more so, we feel, than the traditional dose of “‘assem-
blers, compilers and loaders,” for the programs presented here are more of the size
and nature that will be encountered by most programmers. It is also suitable as a
supplementary text in any programming course. The only prerequisite is



programming experience in a high-level language. Professional programmers will
find it a guide to good programming techniques and a source of proven, useful pro-
grams. Numerous exercises are provided to test comprehension and (o extend the
concepis and the programs presen}ed in the text.

Building on the work of others is the only way 1o make substantial progress in
any field. Yet computer programming continues as a cottage industry because pro-
grammers insist on reinventing programs for each new application, instead of using
what already exists. What we hope to instill is a feeling for how to design and write
good programs that can be widely used, how to use existing tools, and how to
improve a given environment with maximum effect for minimum effort.

Any book on programming owes a debt to pioneers who ,have worked to
improve the programuming process. We freely acknowiledge the influence of E. W.
Dijkstra, C. A. R. Hoare, D. E. Knuth, D. L. Parnas, and N. Wirth. .

We are grateful to our friends and colleagues for careful reading, perceplive
criticism, and comtinuous cheerful support far beyond any expectation. In particu-
lar, Dennis Ritchie read several drafts with great care; his suggestions have materi-
ally improved our code and exposition. The language C which he designed for
UNIX provided the model for Ratfor, and our text editor is patierned after his. He
also designed and implemented a prototype of the macro processor of Chapter 8.
Finally, he exercised our programs with a remarkable eye for potential errors, and

ferreted out a number offembarrassing weaknesses.® We deeply appreciate his con-
tributions. '

Ourghanks also to Stu Feldman and Doug Mcliroy, who diligenily read multi-
ple drafts, to Al Aho, Brenda Baker, Rick Becker, Phyllis Fox, Dan Franklin, Tom
Gibson, Paul Jensen, Steve Johnson, Lee McMahon, Ken Thompson, Tony Wasser-
man and Ed Yourdon for comments on the manuscript at various stages, and 10
Mike Lesk and Joe Ossanma for assistance with text formatting.

Finally it is a pleasure to acknowledge our debt to the UNIX operating system,
developed at Bell Labs by Ken Thompson and Dennis Ritchie. We wrate the text,
tested the programs, and typeset the manuscript, all within UNIX. Many of the
tools we describe are based on UNIX models. Mdst important, the ideas and philo-
sophy are based on our experience as UNIX users. Of all the operating systems we
have used, UNIX is the enly one which, has been a positive help in getting a _job
done instead of an obstacle 1o be overcome. The widespread and rapidly growing
acceptance of UNIX indicates that we are not theonly ones who feel this way.

~ Brian W. Kernijhan

P. 1. Plauger
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INTRODUCTION

We are going to discuss two things in this book — how to write programs that
make good tools, and how to program well in the process.

What do we mean by a r00/? Suppose you have to convert a 5000-line Fortran
program from one computer to another, and you need to find all the format state-
ments, to make sure they are suitable for the new machine. How would you do it?

One possibility is to get a listing and mark it up with a red pencil. But it
doesn’t take much imagination to see what’s wrong with red-penciling a hundred
pages of computer paper. It’s mindless and boring busy-work, with lots of oppor-
tunities for error. And even after you've found all the format statements, you still
can’t do much, because the red marks aren’t machine readable.

Another approach is to write a simple program to find format statements. This
is an improvement, for such a program is faster and more accurate than doing the
job by hand. The trouble is that the program is so specialized that it will be used
once by its author, then tucked away and forgotten. No one else will benefit from
the effort that went into writing it, and something very much like it will have to be
reinvented for each new application.

Finding format statements in Fortran programs is a special case of a general
problem, finding patterns in text. Whoever wanted format statements today will
want read and write statements tomorrow, and next week an entirely different pat-
tern in some unrelated text. Red penciling never ends. The way to cope with the
general problem is to provide a general purpose pattern finder which will look for a
specified pattern and print ali the lines where it occurs. Then anyone can say

find patiern

and the job is done. find is a r00/: it uses the machine; it solves a general problem,
not a special case; and it’s so easy to use that people will use it instead of building
their own.

Far too many programmers are red pencillers. Some are literal red pencillers
who do things by hand that should be done by machine. Others are figurative red
pencillers whose use of the machine is so clumsy and awkward that it might as well
be manual. One of the purposes of this book is to show how to build rools — pro-
grams to help people to do things by machine instead of by red percil, and how 1o
do them well instead of badly. We're going to do this, not by talking in generalities
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but by writing real, working programs, programs that we know from experien_ce are
useful tools. Every program in this book has been run and carefully tested, directly
from the text itself, which is in machine-readable form. All of them have been run
without change on at least two different machines; the larger programs have been
run on three: a PDP-11, a Honeywell 6070, and an IBM 370.

The second concern of this book is how to write good programs. As we
proceed, we hope to convey to you principles of: good design, so you wrile pro-
grams that work and are easy 1o maintain and modify; human engineering, so you
can use them conveniently; reliability, so you get the right answers; and efficiency,
so you can afford 10 run them.

There are a lot of terms being bandied about these days describing ways 10
improve the programming process: structured programming, top-down design, struc-
tured design, egoless programming — the list is long. For example, structured pro-
gramming in a very marrow sense implies programming with a limited set of control
flow statements, ahd avoiding goto’s. A broader interpretation encompasses the
general process of programming so as to carefully control the structure of one's
code — its control flow, data organization, and connection (0 the external world.
Top-down design and successive refinement attack a programming task by specify-
Ing it in the most general terms, then expanding these into more and more specific
and detailed actions, until the whole program is complete. Structured design is the
process of controlling the overall design of a system or program so the pieces fjt
logether neatly, yet remain sufficiently decoupled that they may be- independently
modified. Egoless programming means letting other people read your programs,
without feeling wounded when they improve thetn. Each of these disciplines can
materially improve programmer productivity and the quality of code produced.

But it is dangerous to believe that blind application of any particular technique
will lead automatically 1o good programs. We don’t think that it is possible to learn
to program well by reading platitudes about good programming. Nor is it sufficient
to study small and artificial examples. Rather than present ideas like structured pro-
gramming and top-down design as absliract principles, we have tried to distill the
important contributions of each and put them into practice in ail our code. That
way you can see what they mean, how 1o use them on real problems, and what
benefits they are likely to produce. This is not a text on structured programming or
on any of the other terms, but a presentation that happens 10 usé them.

Thus we avoid writing goto’s, not out of reverence, nor in the hope of
automatically producing good programs thereby, but because we have learned
through experience that goto's are often bad. We tend 10 design top-down because
that leads to programs that are easier to get right, easier 10 change, and easier to
keep right as they are changed. And as for egoless programming, this book contains
more than 5000 lines of our programs for you to read.

We also try to show how we went about building the programs, rather than
just presenting the finished product, or worse, pretending that we arrived at the
final result by some mechanical process. Moreover, for each program we discuss its
purpose, how it should be designed to be easy to use, what considerations affect its
structure and implementation, and some of the alternatives that exist. We don't
claim that these are the best possible programs, or that our way is the only way to
design: and write them. But even if you would do them differently, studying the
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development of a coherent set of well-written and useful programs should help you
better appreciate the significance of some of these ideas, and ultimately 1o become a
better programmer.

We have quite a few tools to show you. Most of these are programs of
manageable size, programs that one person can reasonably write in an hour or a day
or a week. Clearly we can’t present giant programs like operating systems or major
compilers; few of us have the time, training or need to delve inside such creatures
anyway. Instead we have concentrated on the kinds of programs you are likely to
become involved with, programs which help you to make most effective use of
whatever operating system and language you already have. There is an important
lesson in this: well chosen and well designed programs of modest size can be used
to create a comfortable and effective interface to those that are bigger and less well
done.

Whenever possible we will build more complicated programs up from the
simpler; whenever possible we will avoid building at all, by finding new uses for
existing tools, singly or in combinations. OQur programs work rogether: their cumula-
'tve effect is much greater than vou could get from a similar collection of programs
that you couldn’t easily connect. By the end of the book you will have been intro-
duced to a set of software tools that solve many problems you encounter as a pro-
grammer. A few will be just skeletons, the basic minimum that is useful; the
accompanying exercises will indicate how you can extend them in wortAwhile direc-

Hons. i

What sorts of tools? Compuling is a broad field, and we can't begin to cover
every kind of application. Instead we have concentrated on an activity.which is
central to programming — programs that help develop other programs. They are pro-
grams which we use regularly, most of them every day: we used essentially all of
them while we were writing this book. In fact we chose them because they account
for much of the computer usage on the system where we work. Although we can
hardly claim that our choices will satisfy all your needs, some should be directly
useful to you whatever your interest. Studying those that are not should provide
you with ideas and insights about how to design and build quality tools for your par-
ticular problems. Comparing our designs with related programs on your system may
lead you to improvements in both. And learning to think in terms of tools will
encourage you to write programs that solve only the unique parts of your problem,
then interface 10 existing programs to do the rest.

Whatever your application, your most important tool is a good programming
language. Without this, programs are just too hard to write and understand; you
spend more time fighting your language than being productive. If you are lucky,
your system already has a good language available and well supported. If not, you
may have to build your own. That does nor mean that you should go off and write a
compiler, however; that is a job for experts. Instead, you should learn how tp
enhance whatever existing language you have with one OF MOre preprocessors.

One of the prablems with writing about programming is choosing a language
for the programs. No single language is known to all readers, compilable on ali
machines, and easy to read. We must compromise: since Fortran is widely available
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and well supported, we will use it as our base in this book. Most programmers have
at leasl a reading knowledge of Fortran, and it runs on almost all computers. The
language is sufficiently well standardized that programs can be written to run
without change on a wide variety of systems. In a real sense, Fortran is the lingua
Jfranca of computing, the closest thing there is to a universal language.

But bare Fortran is a poor language indeed for programming or for describing
' programs. So we have written all of our programs in a simple extension of Fortran
called “Ratfor” (short for Rational Fortran). Ratfor provides modern control flow
statements like those in PL/I, Cobol, Algol or Pascal, so we can do structured pro-
gramming properly. It is easy to read, write, and understand, and readily translates
into Fortran, PL/I or similar high-level languages. Except for a handful of new
statements like if-else, while, and repeat-until, Ratfor is Fortran. If you have even
a distant acquaintance with Fortran, you will adapt readily.

If you are used to other languages, you will still have no difficulty following
our programs, for properly structured programs seem to read the same in most
languages. We avoid the major idiosyncrasies of Fortran, and hide the unavoidable
ones in well-defined modules.

Chapter 1 introduces most of the Ratfor language with examples and a cancise
summary. In Chapter 9 we build a Ratfor-to-Fortran translator. We also present
tools which can enhance this translator, such as a macro processor in Chapter 8 and
a file inclusion program in Chapter 3.

Preprocessing into Fortran is a convenient way to do business. We retain the
advantages of Fortran — a language that is universal, portable, and relatively
efficient — while at the same time concealing its worst drawbacks. You might say
we treat Fortran as an assembly language that will run on any machine. If you
work in a predominantly Fortran environment, you will find this approach reward-
ing. Even if you have a better language than Ratfor at hand, however, you can
adapt the programs with the assurance that the code has been checked and does
what it is supposed to.

A surprising number of programs have one input, one output, and perform a
useful transformation on data as it passes through. Such programs are called filrers.
Some filters are so simple that you might hardly think of them as tools, yet a careful
selection of filters that work together can be a tool-kit for quite complicated process-
ing. Several smaller filters are collected in Chapter 2, including a powerful character
translileration program. !

Not all programs are filters. Chapter 3 discusses programs which interact with
their environment in more complicated ways, such as the file inclusion program
mentioned above, a file comparator, a multi-file printer, and an archive system for
managing sets of files. The major problem in moving programs from one environ-
ment 1o another is precisely this question of how a program communicates with its
local eperating system. We deal with this problem by specifying a small set of
primitive operations for accessing the environment. All of our programs are written
in terms of these primitives, so operating system dependencies are confined 1o a
handful of subroutines. Programs that use them can move to any system where the
primitives can be implemented.
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Some filters are large enough to warrant separatg chapters. The sorting pro-
gram of Chapter 4, the pattern finding and replacement programs of Chapter 5, and
the Ratfor-to-Fortran translator of Chapter 9 all fall into this category. The pattern
finder uses most of the code of the transliteration program in Chapter 2 to recognize
character classes, which are now just one of a larger set of patterns that can be
specified. (The pattern finder is capable of a lot more than finding format state-
ments, by the way.) Although these filters are biased toward program development,
the filter concept is valuable in any application. [t encourages the view that a pro-
gram is just a stage in a larger process, and that stages should be simple and easy Lo
connecl. It also encourages the view that all files and 1/0 devices should be essen-
tially interchangeable, so that any program can work with any file or device.

Chapter 6 contains a lext editor which is rather more comprehensive than
those normally found in time-sharing systems. The editor incorporates most of the
code of the pattern finder of Chapter 5, so it recognizes the same class of patterns.
When used with some of the other programs presented, it can do jobs that would
otherwise require you to write a special program. Even if you are not working in an
interaclive environment, the editor will prove to be useful.

Chapter 7 contains a text formatter which is a (much smaller) version of the
program used to set the type for this book. As we have already mentioned, Chapter
8 contains a modest but useful macro processor, which you can use to extend any
programming language. Finally, Chapter 9 presents the Ratfor preprocessor.

It might appear from this outline that we stress text manipulation too heavily.
Yel computing is not all number-crunching, nor is it the “compilers, assemblers and
loaders™ so hastily treated in many second courses in programming. A large part of
what programmers do every day is text processing — editing program source,
preparing input data, scanning output, writing documentation. These activities are
at the heart of programming; as much as possible, they should be mechanized. Pro-
gram development is the place where 1ools can have the most impact. And since
text processing programs come in all sizes, they display at least as broad a spectrum
of programming techniques as language processors or numerical programs.

As you can see, the book is organized in terms of applications rather than
different aspects of the programming process. This is not a reference work on algo-
rithms or data structures or any particular programming language. Nor will you find
separate chapters on design, coding, testing, debugging, efficiency, human engineer-
ing, documentation, or any of the other popular themes. We are engaged in the
business of building 1o00ls, and of building them properly. All of these aspects of
programming arise, in varying degrees, with every program, and can only be kept in
perspective by discussing them as we wrile the programs. In the process, we will
(ry t0 communicate 10 you our approach to tool building, so you can go on to
design, build, and use tools of your own. :
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GETTING STARTED *
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This chapter is-an informal intgoduction to ?ﬁe programming language Ratfor
and 1o some of the ideas and convéntions, used throughout the book. It also
presents a handful of small but useful programs, to make the’discussion concrete.
We cannot present complete programs without ogcasionally using concepts before
they are expigined, so you will have to take sorse things on faith as we get started
or we’ll get bogged down explaining aur explanations. Bear with us.

o . ¥ - .
1.1 File Copying. ,

The first préblem we want to tackle is how a program communicates with its
environment.” Since many of our programs are concerned with text manipulation,
one basic opersation is rpadirg charagters from some source of input. To do this we
invent a function getec, which reads the next input character, and returfis that char-
acter as fts function value; each tife it is calléd, it returns a new character. For
now we'll ignore whete the characters come frgm, although you can imagine them
originating at a card reader or an interactive ‘terminal or some secondary storage
device like a disk. We won'{ discuss what character set we have in mind. We’ll
also ignore all questions of efficiengy, although we’re fully aware that reading one
character at a time at‘least sounds expensive. Temporarily we want to sweep as
many details as we possibly can under the rug.

Next we invent pute, the complement of getc. putc puts a single character
somewhere, such as a line printer, a ferminal, or a disk. Again, we won’t concern
ourselves with the precise details, nor with thesgfficiency” of the operation. *The
main point is that getc and putc work together — the characters that getc gets can
be put somewhere else by putc. ; °

If someone has provided these two basic operations, you can do a surprising
amount of useful computing without ever knowing anything more about how
they're implemented. As the simplest example, if you put the getc/putc pair inside
a loop:

while (getc(c) is not at end of input) .
call putc(c)
. stop '

you have a program that copies its input to its output and quits. A simple task, per-
formed by an equally simple program. Certainly, someone uitimately has to worry

7
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about the choice of character set, detecting the end of the input, efficiency and the
like, but most people need not be concerned, because getc and putc conceal the
details. (If you want to know how, there are simple versions of getc and putc at
the end of this chapter.) :

Functions like getc and putc are called primitives — functions that interface to
the “outside world.” They call in turn whatever input and output routines must be
used with a particular operaling system. To the program that uses them, getc and
putc define a standard internal representation for characters and provide a general
input and output mechanism that can be made uniform across many different com-
puters. If we use primitives, we can design and write programs that will not be
overly dependent on the idiosyncrasies of any one operating system. The primitives
insulate a program from its operating system environment and ensure that the high
level task to be performed is clearly expressed in a small well-defined set of basic
operations.

The program shown above is written in a pseudo-code that resembles a com-
puter language but avoids excessive detail by lapsing from time to time into ordi-
nary English. This lets us specify quite a bit of the program before we have worked
out all aspects of it. On larger programs, it is valuable to begin with pseudo-code
and refine it in stages until it is all executable. This way you can revise and
improve the design at a high level without writing any executable code, yet remain
close 10 a form which can be made executable.

The next step is to write copy in precise Ratfor, ready to compile and run.

# Copy — copy input characters to output
integer getc
integer ¢

while (getc(c) ~= EOF)
call putc(c)

stop

end

Some explanations: The first line is a comment that names the program and
briefly synopsizes what it does; this kind of comment will occur on every runnable
program in the book. In Ratfor, a sharp sign # anywhere on a line signals the begin-
ning of a comment; the rest of the line is the comment. This comment convention
is more flexible than Fortran's “C in column one” because comments and code can
co-exist on the same line, and it's easier 10 type than PL/I's /* ... */ though not
quite as general. (There is a concise synopsis of all Ratfor statements and conven-
tions near the end of this chapter.)

The two lines

integer getc
integer ¢

are ordinary Fortran statements that declare ¢ and getc to be of type integer. We
will declare al/ variables and functions in all of our programs, because we think it's
a good programming practice — it enforces some discipline by making it_harder to
-invent new variables at will, and it allows mechanical checking of declarations. (We
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will also be careful to separate function declarations from declarations for ordinary
variables, to help you tell them apart.) We said earlier that getc is a function that
returns a character, and ¢ also contains a character, but since few implementations
of Fortran provide an explicit character data type, integers will have to serve for
now. PL/I does support characters, but for reasons we’ll get to soon, they are not
entirely adequate either. '

The lines

while (getc(c) ~= EOF)
call putc(c)

are where all the work of copy gets done. The while is a Ratfor statement that
specifies a loop; so long as the condition inside parentheses is true, the body of the
loop (in this case, the single Fortran statement call putc(c)) is repeatedly executed.
Eventually the condition becomes false, and the loop terminates, falling through to
the stop. The condition being tested in the while loop is

- getcic) ~= EQOF

The notation ~= is Ratfor shorthand for “not equal to,” just as in PL/I. Fortran
users will find .ne. more familiar, though less concise. Thus the loop continues
while the character returned by getc is not EOF.

getc(c) returns the next character both as its function value and in its argu-
ment C so the value can be both tested and saved for later use, all in a single state-
ment. This is an unconventional Fertran usage, but perfectly legal. It is so handy
that we use it often.

EOF is a symbolic constant that stands for an integer value that is mutually
agreed upon.by getc and the users of getc to signal that the end of the input has
occurred — that there are no more characters, We won’t tell you what its value is,
since the particular value doesn’t matter; it may well be different on different
machines. The only restriction is that EOF must be distinguishable from any possi-
ble real character that getc might return. We will consistently use upper case
names for symbolic constants so they will stand out; all variables and functions will
be in lower case.

There are a fair number of symbolic constants in our programs; they contri-
bute a great deal to the readability of the code. You can see at a glance what the
lest

getclc) ~= EOF

means, because EOF is more meaningful than some magic number like —1 would
be. Chapter 8 describes a program that will let you define and translate symbolic
constants, so thal you can use them in programs and have the actual defining char-
acter strings written into the source code automatically before it is compiled. We
use a program like this to process all the programs in this book. =~ |

To actually run a Ratfor program, the Ratfor source is passed through a pro-
gram called a preprocessor, which translates the control statements like while into
equivalent if's and goto’s, replaces symbolic constants by their definitions, and con-
verts shorthand like == into .ne.. Everything else is assumed to be ordinary For-
tran; it is copied through untouched except for being correctly positioned on the
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output line. The resthing Fortran statements are then compiled in the normal
manner. So the processing sequence is

Ratfor source
— Ratfor preprocessor
— Fortran compiler
— . runnable program

Sti)l other preprocessors can be included in this chain. We will build a Ratfor
preprocessor in Chapter 9. -

The advantage of Ratfor is that it doesn’t obscure what is going on with the
syntactic peculiarities of Fortran, yetl ensuras that the program translates readily into
Fortran or, with a bit more effort, into any similar language. It is a good practice to
wriie first in an easy-to-read higher level language, then translate into whatever
real-life language you happen to be working with — Fortran, PL/I. even assembly
language. The programs in this book use only a few control structures like while,
and a few data types like integer, so it’s not hard to translate mechanically into the
chosen target language.

One Fortran version of copy, for instance, is:

C copy — copy input characters to output
integer getc
integer ¢
10 if (getc(c) .eq. EOF) goto 20
call putc(c)

goto 10
20 continue
stop
end

The Ratfor while statement is a loop with a test at the top, which can be expressed
with an if for the test and a goto at the bottom (o close the loop. We indent the
statements under control of the while for ease of recognition. We have also lefi
EOF as a symbolic constant until we can decide what 10 write in its place. We shall
continue to postpone such substitutions as fong as passible, so that you will not be
mystified by numbers of unknown significance.

copy is equally easy in PL/I:
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/* copy — copy input characters to output */
copy: procedure dptions (main);
declare getc entry (fixed binary) returns wixeu wury yy,
declare putc-entry (fixed binar’jl, ‘
declare c fixed binary;

do while (getc(c) ~= EOF);
call putc(c);
end;

end copy;

Ty o
The PL/I do while statement corresponds closely to the Raifor while, so the transla-
tion is more straightforward.

Why is copy useful? Most operating systems permit you to specify what files
or data sets or physical 1/0 devices correspond to the logical unit numbers or inter-
nal filenames you used when you wrote the program. This correspondence is estab-
lished after the code is compiled, at the time it is actually run. That means you can
have programs around, ready to run, and decide at the last moment what files or
devices to use. It also means you can treat such programs like black boxes, and can
pretty much forget about their innards. If you have the primitive getc read from a
“standard input™ — like Fortran logical unit 5 or PL/I file sysin — and have putc
write on a “standard output™ — Fortran logical unit 6 or PL/I file sysprint — you
can connect them to the appropriate files or devices when the program is run.

By the way, the word “file” has different meanings on different computer sys-
tems. For now, we will use it colloquially to mean a, place where information comes
from (via getc, for example), or a place where it can be put (perhaps with putc).
This might be a disk organized as a permanent “file system” or any [/O device.

Our program copies a stream of characters from any source to any destination.
In an environment such as we Just described, you can use it to read cards onto a
disk file, list a file on a printer, replicate a file — to perferm, in short, a host of util-
ity functions. #

Although there are other ways of doing many of these things, this method is
general and you can build on it. You can improve it, if necessary, in ary number
of subtle ways, make it fancier or make it faster. copy is a basic roe/. Useful in its
own right, it can also serve as a base for constructing other, more elaborate pro-
grams. If you adhere to the design principl€ of pushing details as far down as possi-
ble, by writing in terms of basic primitives which read from an arbitrary source and
write 1o an arbitrary destination, your new tools will be compatible with previous
ones; you will be building a whole set that work together. -

Exercise 1-1: We explicitly declared getc and ¢ to be of type integer; otherwise
Fortran's default typing rules would have made them real variables. Why are
integers preferable to reals? We could have avoided the declarations by naming
the function igetc and the variable ic. Which names do you think are better?
Would you prefer nextc? If you have to read someone else’s code, would you

rather have all variables and functions declared, or only those that absolutely
have to be? O -
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Exercise 1-2: Why don’t we declare all the data to be of type character in our
PL/1 version? What is a useful value to assign to EQF for the actual running

program? Suggest some bad values. O

1.2 Counting Characters

There are times when all you want to know about a file is how many charac-
ters it contains, or how many lines, or how many words. If the file resides on per-
manent storage like a disk, you may be lucky enough to have an operating system
that will tell you at least some of these things. If yoy,are not lucky, or if the “file”
happens to be a card deck, for instance, then the easiest thing is to pass the file
through a program that counts what you want to know.

If you can’t think offhand why anyone would want to merely count the char-
acters in something, don’t worry. This is a book on tool building, remember, and
tools work best in combination with others. Applications will occur soon enough.

Counting characters is the most basic operation:

# charcount — count characters in-standard input
character getc
character ¢
integer nc

nc=0

while (getc(c) ~= EOF)
nc =nc + 1

call putdec(nc, 1)

call putc(NEWLINE)

stop

end

In this program, nc is truly an integer, used strictly for counting. Accordingly its
declaration is separated from those for ¢ and getc, which are characters. This pro-
gram also introduces the declaration character. Even though in most environments
this will be synonymous with integer, we will henceforth distinguish the two types
of variables in all our programs, so you can tell immediately what the usage of a
particular variable will be. The same preprocessor that changes each occurrence of
EOF to a literal number can also be used to alter each instance of character to
integer just before the code is compiled.

To print the number it has computed, charcount calis putdec, which converts
a number to a string of characters suitable for printing and outputs it with putc;
this way it does not have 1o know how output is actually performed. (We will show
you putdec in Chapter 2.) The second argument in the call to putdec is the
minimum field width: the number will be right-adjusted in a field at least this wide.

In no case does putdec force the output device, whatever it might be, to end
the current line, because we might want to put several numbers on one line with
multiple calls to putdec. Thus we have to ask for a new line explicitly, with

call putc(NEWLINE)
NEWLINE is an actual character in large character sets like ASCII or EBCDIC:
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when sent to a typewriter-like device it typically causes a carriage return and line
feed. We will use NEWLINE as a standard character for signaling end of line,
regardless of the source or destination of information, so that our programs can
have a uniform way of distinguishing lines.

You should observe that if the input file contains -no characters, the while test
fails on the first call to getc, and so charcount produces zero, the right answer.
This is an important observation. One of the best things about the while statement
is that it tests at the rop of the loop, before proceeding with the body. Thus if there
is nothing to do, nothing is done, even if this means that we never go through the
loop body. Too many programs, particularly in Fortran, fail to act intelligently when
handed input like “no characters.” We will write ours so they do reasonable things
with extreme cases; one of our basic tools for accomplishing this is the while.

1.3 Counting Lines

Suppose that instead of counting characters, we want to count the number of
lines in some input. How do we tell that a line has been seen? An especially con-
venient solution is to have getc note the end of each line of input and return
NEWLINE at the end of each line. (If your character set doesn’t have a NEWLINE
then, just like EOF, it must be given some agreed-upon value distinct from all other
characters.) Similarly, putc must accept a NEWLINE as a signal to put out a com-
pleted line of text. c

We can thus make any device look like a “typewriter,” with each line of text
ending in a NEWLINE. getc and putc do whatever is necessary to hide the
differences among devices. Programs do not have to know anything about record
lengths on different devices (or even about variable length records on the same dev-
ice); they process one character at a time until 8 NEWLINE is encountered. Treat-
ing NEWLINE as a character, even if it may not exist as such in your local character
set, simplifies many programs; we will make extensive use of it.

If getc returns a NEWLINE at the end of each li e, linecount is easy:

# linecount — count lines in standard input
" character getc
character ¢
integer ni

nl =0
while (getc(c) ~= EOF)
if (c == NEWLINE)
nl=nl+1
call putdec(nl, 1)
call putc(NEWLINE)
stop
end

This time the body of the while is a little bigger — it consists of an if, which in turn
controls the assignment statement nl = n| + 1. The indentation Shows what cod-
is controlled by what, and unobtrusively but cleatly draws attention to the logic !
structure of a program.
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The double equal sign == is the Ratfor symbol for the comparison “is equal
to"; we use it to avoid confusion with the assignment operator, which is a single =
sign. The = = translates into .eq. in Fortran or = in PL/I. As we said in the intro-
duction, Ratfor is Fortran in most respects. In particular, if you don’t care for nota-
tions like ~= and = =, by all means use .ne. and .eq.; they are equally acceplable.

‘The idea that text information is just a string of characters, with arbitrary
length lines delimited by explicit newline characters, seems pretty obvious when
you think about how a typewriter or a terminal works. But for all its obviousness,
it’s still an uncommon concept in many computing systems, where text must often
be forced into fixed length chunks reminiscent of cards.

If your system strongly encourages fixed length text formats, you can see how
getc and putc must work. In Fortran, which is basically a card or record environ-
ment, we equate records and lines. getc reads a record whenever necessary and
‘doles oul characters one at a lime, ending each record with a NEWLINE. putc saves
characters in a buffer until called with a NEWLINE, then writes the entire record
(less the NEWLINE). Buffers should be big enough to hold the largest possible
records. Although there are drawbacks to such an implementation, it is enough to
get started with. The versions of getc and putc at the end of this chapter work this
. way; they will serve temporarily in most Fortran systems.

- This form of input is nor identical to PL/I stream input, by the way. No infor-
mation about record boundaries is passed back to the calling program on stream
input, although it is possible to ignore characters up to the next line by means of
the skip format specification. getc must therefore read records to be able to report
NEWLINE’s, and is thus very similar in both Fortran and PL/I.

Of course the input might indeed be a stream of characters from a keyboard
and the output might indeed be driving a typing mechanism, and all disk files might
be maintained in this format, in which case getc and- putc become trivial. But

* whatever the source or sink, we will usually program in terms of typewriter-like tex,
performing all necessary translations as early as possibie on input and as late as pos-
sible on output, to match up with card readers, line printers, and other disk file for-
mats. (Chapter 2 contains some examples of programs for matching up.) Having a
uniform representation for text solves much of the problem of keeping tools uni-
form.

How should we test linecount 10 make sure it really works? "“hen bugs
occur, they usually arise at the ‘“‘boundaries” or extremes of program operation.
These are the “‘exceptions that prove the rule.” Here the boundaries are fairly sim-
ple: a file with no lines and a file with one line. If the code handles these cases

correctly, and the general case of a file with more than one line, it is probable that it
will handle all inputs properly.

So we feed linecount an empty file. The while test fails the first time and the
body is never obeyed. No lines are counted when none are input. Fine.

If we feed linecount one line, the while is satisfied for every character on the
line; the if is satisfied when the NEWLINE is seen, and the line is counted. Then
the test is repeated and the while loop exits. Again fine.
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A multi-line file. Same behavior as for one line, only now we observe that
after each line, the program ends up at the test part of the while — the proper place
to begin handling the next line, or EOF. The program checks out.

This may seem like excruciating detail for such a simple program, but it’s not.
There are common coding blunders which could have caused any one of those
three tests to fail, sometimes even while the other two tests succeed. You should
learn to think of boundary tests as you code each piece of a program — try them
mentally as you write and then physically on the finished product. In practice, the
lests go much quicker than we can talk about them and cost but a little additional
effort. It is effort that is well repaid.

Exercise 1-3: What happens if the last character of a file fed to linecount is noi a
NEWLINE? Does the program stay sane? Is its behavior a bug or a natural
consequence of our definition of a *line”? O

1.4 Counting Words

The next counting program has applications in text processing — it counts the
words in something. We use it to answer questions like “How many words are
there in this book?” (About 80,000, excluding programs.) For our purposes a word
is a sequence of any characters except blanks, tabs and newlines. Every time there
is a transition from not being in a word to being in a word, that signals another
word to count. The variable inword is used to record which state the program is in
at any given time; initially it is “not in a word.” :

Writing this in Ratfor is succinct:

# wordcount — count words in standard input
character getc ’
character ¢
integer inword, wc

we =0
inword = NO
while (getc(c) ~= EOF)
if(c == BLANK |¢c == NEWLINE | ¢ == TAB)
inword = NO
else if (inword == NO) |
inword = YES
iavc =weC + 1
call putdec(wc, 1)
call putc(NEWLINE)
stop
end

TAB is another symbolic constant, which must be made equal to the internal char-
acter code that getc returns for horizontal tab on your machine. The vertical bar |

is the logical or operator. It will be familiar to PL/I users; Fortran programmers
know it as .or..
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The symbolic constants YES and NO are probably one and zero, but it doesn’t
matter (nor do we care), so long as they are different and everyone agrees upon
their values. They are far easier to read and understand.than idioms like Fortran’s
logical values .true. and .false. or PL/I's '1'b and 'O'b. For this reason, and
because Fortran imposes some arbitrary restrictions on logical comparisons, we will
stick to integer’s and use symboaotic constants like YES and NO.

This example also shows several new and important aspects of Ratfor control
flow. First, an if statement may include an else, to specify an alternate action if the
condition of the if is not met:

it (condition)
statement
else
statement

says “if the condition is true do the statement following the if; else (otherwise) do
the sratement following the else.” One and only one of the two statements is exe-
cuted when the if-eise is encountered. Either statement can in fact be quite com-
plicated; in wordcount the one after the else is yet another If!

Second, we can replace any single statement in Ratfor by a whole group of
statements enclosed in braces, a construction called a compound statement. Braces
act like the do and end statements in PL/I or the begin and end of Algol and its
derivatives: the statements within the braces are treated as if they were a single
statement. Thus if inword is NO in the code

eise if (inword == NO) {
inword = YES
wC =wc + 1

}

both assignments are done. As in all of these languages, braces may in principle be
nested to arbitrary depth.

We prefer braces to begin-end or do-end mainly because they are visually
less obtrusive than spelled-out words, and a lot easier to type. We will consistently
position our braces as shown: the left one on the line that controls the compound
statement, and the right one on a line by itself at the same level of indentation as
the group it terminates. '

It is truly remarkable how much heated debate can result from such trivial
questions as whether braces are better than begin and end, and where they should
be placed. Rather than continue such a debate, suffice it to say that we find our
style convenient and readable, but you are free o alter it as you see fit in your own

code. We do recommend that you be consistent in applying whatever formatting
standards you settle on.

Although the code that follows the while in wordcount is complicated, logi-
cally it is just a single if-else statement, not a compound, so it needs no surround-
ing braces. You may insert them if they make you feel more comfortable.

The else if construction occurs frequently in our programs, often as a longer
~hain of if . else if ... else, 10 perform at most one of several alternatives. Chains
e made ionger by inserting more else if's at 1he appropriate places. Three ruiec
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make such Chlms easy to read

. (1) Scan down the tesis until you find one that is met — the first one encounler!d
selects the case to be performed.

(2) If no test succeeds, the statement associated with the trailing else (if any) is
performed. }

(3) In either situalion,, execunon resumes immediately after the body ot the last
else (or the last eise ff if there is no trailing else.)

Some Ianguages provide a “case” statement for expressing multi-way decisions
directly. In a language without a case, a chain of else ifs is usually the clearesi
equivalent. We,strongly favor this form of writing multi-way decisions, instead of -
arbitrarily nested trees of if-else’s, because it tends to be least confusing. We keep -
all the else if's at the same level of indenting, 10 emphasize that the structure is
really a multi-way decision.

How do we test wordcoynt?’The best place to begin this activity is while the
program is being written. The main assurance you have that a program is correct is
the intellectual effort you put ifito getting it right in the first place: We wrote word-
count with an algorithm based dn- two states — being in a word, and not being in a
word. If we make the transitions between states correctly, set up initial conditions
properly, and propé&rly count the transitions for each new word, we can have
confidence in the program. .Testing is still necessary, however, 10 check that the
algorithm is valid and that the program implements it correctly.

For a program of any complexity, you certainly can’t test all possible inputs.
As we said, programmers have learned from bitter experience that the boundaries
of a program are the most fruitful places 1o examine, for they are where bugs most
often appear. Besides,+if you can show that a program works properly at its
extremes of* operation, you have a convincing argument that it works properly
everywhere between as well. Thus a small selection of critical tests directed at
boundaries is much superior 10 a shotgun-blast of random ones.

Although it’s hard to give a precise definition, intuitively a “boundary” is a
data value for which the program is forced to react differently from an adjacent
value. For example, the case of “no input at all” is a boundary for most programs.
In testing wordcount, if there is no input, the first call of getc returns an EOF, the
body of the while loop is never executed, and the wordcount is zero, as expecled.
The analogous boundary, having input but no words, is also worth checking. If the
input consists entirely of blanks, tabs and newlines, the first if is always satisfied, so
WC is never incremented; again the result is zero, as it should be.

You should also verify that wordcount works when there is a single word of
input, regardiess of where in the input it appears, and when there are two mput
words at various places. If all of these cases are correct, you can be fairly confident
that the program is right.

One final observation. In testing wordcount it was obvious what output was
expecled for each input. That is not always so clear in larger programs Yet it is a
fundamental principle of testing that you must know in advance what answer cact)
test case is supposed o produce I vou don’t, you're not testing; vou're «spen
menting. So part of o respoosibning of writing a program s to v pors
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comprehensive set of test inputs, and outputs against which 1o compare the results
of teslt runs.
Exercise 1-4: Combine the functions of charcount, linecount and wordcount
into one program. In what order should the three counts be printed? Is it
better to have one program that does three things, or three programs that each
do one thing? O

Exercise 1-3: Modify wordcount so il also counts sentences. (Choose your own
definition of a sentence.) Is this program likely to be used often? Compare your
solution to the program shown in Exercise 2.4 of The Elements of Programming
Sivie. by B. W. Kernighan and P. J. Plauger. O

1.5 Removing Tabs

Suppose that you need (o list a text file containing horizontal tab characters on
a device that cannot interpret tabs. As a first approximation, you might be content
with fixed 1ab stops al, say, every eight columns. A tab character is thus replaced
by from one to eight spaces. Lel us write a program detab Lo do this.

The program can have the same siructure as copy, except that we must ela-
borate {he while loop:

while (getc(c) ~= EOF)
if (c == TAB) i
output blanks until next tab stop reached
else
just put character

How do we know when the next tab position is reached? One possibility is to
build into the main program the knowledge thal tabs are set every eight columns;
then an arithmetic test suffices 1o decide if the current column is a tab stop. The
trouble with such an approach comes when we decide to change the program,
perhaps to allow tabs to be sel at positions which aren't related by a simple arith-
metic formula. If the “every eight columns™ decision is firmly wired into the pro-
gram, it will be hard (o cut it out. '

A more flexible organization is an array of tab stops, initialized for now by the
every eight columns rule. This will be a lot easier to change; in fact we haven't
even said whether the array contains a list of stops or a YES/NO indicator at each
column, like a typewriter. Representing the stops in an array, in whatever manner,
leads to a program that will readily upgrade for more general applications.

However we do it, it is still worthwhile 10 write a separate function tabpos
which tells the main program whether a particular column is a tab stop or not. This
way we avoid muddying up the basic logic of the control loop with tab calculations,
and conceal the representation of tab stops from the main routine.

It is clear that the program must also keep track of what column it is in, and it
must recognize the end of each line of text so it can reset the column counter. The
second cut al the tab remover is thus:
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initialize tab stops

col = 1
while {getc(c) -~= EOF)
if (c == TAB)

output (one or more) blanks and update col
until {tabpos(col, tabs) == YES),
else if (c == NEWLINE) {
call putcic)
col = 1
}
else |
call putc(c)
col = col + 1

}

This shows an else if chain with a trailing else, which is there to cover the “‘any-
thing else” case, that is, neither a TAB nor a NEWLINE.

tabpos returns YES if column col is a tab stop, NO if it is not. In principle,
this is an easy task. But wait a moment, and think over our discussion of boundary
conditions. One obvious boundary is the /asr tab stop. What happens if the input
contains a tab in a column after the last tab stop?

One solution is to outlaw tabs after some maximum column, but it’s folly to
write a program that blindly assumes that its input is legal. Or detab could abort or
produce an error message (or both), but this is hardly desirable in a general-purpose
tool. Why not do something intelligent instead? A program should produce rea-
sonable output for reasonable input, and there is nothing unreasonable about a lot
of tabs. Let us build detab so that when a tab is encountered after the last tab stop
it is converted to a single blank.

Since the loop

output (one or more) blanks and update co!
until (tabposicol, tabs) == YES)

will end only when it lands exactly on a tab stop, we must make sure that this
always happens, even when lines extend past the last tab stop setting. A safe con-
vention is 10 assume that there are tab stops set in every column after the last one
set explicitly. tabpos must provide this feature.

All that remains is to spell out a few details and write tabpos. We have
chosen a representation where each element of an array tabs contains a YES if

there is a tab stop at that column, NO if there is not. Here is the final Ratfor ver-
sion:
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# detab < convert tabs to oquivalent number of blanks
character getc :
chayacter ¢
integer tabpos
integer col, i, tabs(MAXLINE)

call settab(tabs) # set Imitial tab stops
col = 1
whilég (getc(c) ~= EOF)
if (c == TAB)
repeat {
call putc(BLANK)
col = col + 1
) uftil (tabpos(cal, tabs) = = YES)
eise if (c == NEWLINE) {

call putc(NEWLINE)
col = 1
}
else {

call putc(c)
col = col + 1
)

stop

end

# tabpos — return YES if col is a tab stép
integer funetion tabpos(col, tabs)
integer col, i, tabs(MAXLINE)

p if (col > MAXLINE)
tabpos = YES
else
tabpos = tabs(col)
return
end

detab uses settab to se up the tabs array initially, according to whatever
representation is expecled by tibpos.
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# settab — set initial tab stops
subroutine settab(tabs)
integer mod
integer i, tabs(MAXLINE)

for(i = 1;i <= MAXLINE;i=i+ 1)
it (modli, 8) == 1)
tabs(i) = YES
else
tabs(i) = NO
returmn
end

The mod function veturns the remainder produced by dividing its first argument by
its second. In this case, mod(i, 8) is used to produce the sequence 1, 2, 3, 4, 5, 6, 7,
0,1,2,.. asiincreases. Thus a | is produced every eighth time, and this is used to
set the tab stop. This is a standard use for the mod function.

It may seem silly to write a five-line function to be called only once, but the
purpose of settab is to conceal a data representation from a routine that does not
have to know about it. For a program the size of detab, this is not absolutely
necessary, but it is vital 10 break larger programs into small pieces that communi-
cate only through well-defined interfaces. The less one part of a program knows
about how another part operates, the more easily each may'be changed. '

Most real programs are subjected to a steady flow of changes and improve-
ments over their lifetimes, and many programmers spend most of their time main-
taining and modifying existing programs. This is an expensive process, so one of
the most important design considerations for a program is that it be easy to change.

The best way we know to achieve this is to write the program So its pieces are
as decoupled as possible, so that a change in one does not affect others. We try to
push down into separate modules those details which would degeneralize the pro-
gram and commit it to some specific mode of operation. ‘getc and putc, for
instance, conceal all details of character set, lines, records, file assignments and
end-of-file handling. Similarly, detab.is organized so the main routine is not con-
cerned with the representation of tab stops, only with counting columns.

Factoring the job into pieces also lets us concentrate on one aspect of a design
at a time. We are more likely to get detab right, and make it understandable, by
restricting it to counting columns. And we are more likely to get tabpos right by
dealing only with tab stops and implementing just one function whose specification -
is easily remembered. The best programs are designed in terms of loosely coupled
functions that each does a simple task.

: <

detab introduces two more control structures, which pretty much complete
our sel. The repeat-unti is a loop that is repeated one or more times. until the traii-
ing test is met. This is opposite from the while, which tests at the top whether to
loop, before doing anything. The while seems to occur naturally more often, but
each form has its uses. In detab, the repeat is necessary to ensure that each input
tab causes at least one blank 10 be outpul.
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The for statement compactly summarizes a frequently encountered pattern:

for linitialize ; condition ; reinitialize)
body

is equivalent to

{

initialize

while {condirion) {
body
reinitialize
}

]

" The idea of the for statement is to summarize all the loop control code in one line,
much as in the conventional Fortran do statement. Unlike the do, however, the for
1s' not restricted to specifying arithmetic sequences. This is important, for as we
shall see, the vast majority of loops are not Fortran do’s, nor even PL/I do's, but
instead require a more elaborate test and more general initialization and reinitializa-
tion. initialize and reinitialize can be any Fortran statements; they are not limited to
statements like i=1 and i=i+1.

. 1.6 Hand Compiling the Code

Ratfor:

Exercise 1-6: Expand the for statement in settab by the formula above. Can it
be replaced by a do loop? O ‘

Exercise I-7: Test detab. It must pass all the tests that copy must pass (except
that tabs are replaced by one to eight spaces). In addition, there are several
other boundaries involving the tab stops. You might consider testing rows of
X's, each with a tab in a different location. What happens if a tab occurs after
the last tab stop? O

Exercise 1-8: What does detab dq if the input contains a backspace character?
Maodify it so it does the right thing. O

Exercise 1-9: There are obviously several other ways to write detab. Implement
the following variations and compare them on the basis of size, complexity and
ease of subsequent change.

(a) "Tabs are set every eight columns; the tabs array is unused.

(b) The tabs array contains a list of the columns which contain tab stops;

_the list is terminated by a zero entry.

(c) Each element of the tabs array contains the number of #olumns to the
next tab stop; the last entry is a zero. :

(d) Repeat (b) and (c) using an explicit count of tabs stops instead of an
end-marker. O ' : '
f

Translating detab into Fortran shows some of the advantagés of writing in
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c detab — convert tabs to equivalent number of blanks; Fortran version
integer getc

integer ¢

integer tabpos

integer col, i, tabs(MAXLINE)

c set initial tab stops
call settab(tabs)
col = 1 - :
10  if (getc(c) .eq. EOF) goto 60
if (c .ne. TAB) goto 30
20 call putc(BLANK)
col = col + 1
it (tabposi(col, tabs) .ne. YES) goto 20
goto 50
else if
if (c .ne. NEWLINE) goto 40
call putc(NEWLINE)
col =1
goto 50

80

else
call putc(g)
col = col + 1
goto 10
stop
end

88 &°

¢ settab — set initial tab stops; Fortran version
subroutine settab(tabs)
integer mod )
integer i, tabs(MAXLINE)

i = 1
10 if (i .gt. MAXLINE) goto 20
if (mod(i, 8) .eq. 1) tabs(i) = YES
if (mod(i, 8) .ne. 1) tabs(i) = NO
=i+ 1
goto 10
20 return
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ic tabpos — retum YES If col is a tab stop; Fortran version
integer function tabpos(col, tabs)
integer col, i, tabs(MAXLINE)

if (col .gt. MAXLINE) tabpos = YES

it (col .le. MAXLINE) tabpos = tabs(col)

retum :
. end

As you can see, it is harder to tell what the flow of control is, even with similar
indentation and pseudo-code comments. All those statement numbers and goto’s
obscure the intent of the code.

Writing the Fortran is purely a mechanical operation, once the Ratfor is
specified. Each structure becomes a simple pattern; no ingenuity is required in the
transiation. Indeed, any ingenious use of goto’s in the final code, any use that does
not make an easily recognized pattern, is going to be nothing but trouble for people
who must understand the code. And that includes the original coder.

By now you are no doubt squirming over the inefficiency of this translation.
There are goto’s that go to a goto; there are multiple tests like

if (col .gt. MAXLINE) tabpos = YES
if (col .le. MAXLINE) tabpos = tabs(col)

instead of the Fortran idiom

tabpos = YES
if (col .le. MAXLINE) tabpos = tabs(col)

And Fortran does provide the do statement to handle the initialization, increment-
ing, and testing of a loop control variable. Why not use it in settab?

There is no objection to the do where the translation is obvious, and in fact
Ratfor provides a do statement (just leave out the statement number following the
do). The initialization loop in settab goes over nicely since MAXLINE must be
greater than zero. But we caution you that the Fortran do is highly restrictive: the
index must typically run from some positive, non-zero value up to some positive
limit, and in many versions of Fortran the loop is always obeyed at least once
regardless of the limits, because the test is done at the bottom. The tremendous
advantage of the while and for is that by testing the loop at the top they automati-
cally test for the special case where there is nothing to do, and then do the right
thing — nothing. :

Moreover, thinking in terms of do’s rather than while’s encourages the notion
that you should be counting something, or that your control variable must run from
I to n in steps of m. But why should there always be a control varisble? Even
though there are many tricks for mapping arbitrary sequences into arithmetic pro-

- gressions, remember they are rricks. They tend to obscure the actual logic and
make a program more error prone. As we shall see from measurements presented
in Chapter 9, program loops seldom fall naturally into the form imposed by the do.

You might argue that the do is more efficient than a for constructed out of if's
and goto's. After all, the compiler knows about do loops and presumably worries
over the code produced. In some cases this is true; matrix computations, for
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example, often benefit from the care a compiler takes with do’s. But surely the
efficiency of settab is a red herring; it is only called once. Branching to branches,
and the multiple tests in tabpos and settab are also irrelevant. Their effect on run-
ning time is so minuscule that we could not detect it.

Profiling the code — thal is, measuring how much time was spent in each part
of the program — revealed that detab spends about 60 percent of its time doing
low-level input (in the routines called by getc) and an additional 20-25 percent
doing low-level output (in routines called by putc). So even if the rest of the pro-
gram could be rewritten to take zero rime (which is hardly likely), the net speedup
would be only 15-20 percent.

The moral should be obvious. By writing a program in a straightforward
manner, you get it working correctly and minimize the chance of confusion. You
can then measure how it performs to decide whether it works well enough and, if
not, where to concentrate your attention. For a given algorithm, gains in speed are
almost always obtained at the cost of readability. Sacrifice clarity for speed only
when you know that you are solving the correct problem correctly and when you
know that the sacrifice is worthwhile.

In PL/1, the program is:
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/* detab — convert tabs into equivalent number of blanks */,
detab: procedure options (main);
declare getc entry (fixed binary) returns (fnxed binary);
declare putc entry (fixed binary); -
declare ¢ fixed binary;
declare settab entry ((*)fixed binary);
declare tabpos entry (fixed binary, (*)fixed binary) returns (fixed binary);
declare (col, tabs(MAXLINE)) fixed binary;

call settab(tabs); /* set initial tab stops */
col = 1;
do while (getclc) ~= EOF);
if c = TAB then do;
loop:
call putc(BLANK);
col = col + 1;
if tabpos(col, tabs) ~= YES then
goto loop;
end;
else if c = NEWLINE then do;
call putc(NEWLINE);

col = 1;
end;

else do;
call putc(c);
col = cof + T1;
end;

end;

end detab;

/* settab — set initial tab stops */
settab: procedure (tabs);
deciare (i, tabs(*)) fixed binary;

do i = 1 to MAXLINE;
if mod(i, 8) = 1 then
tabs(i) = YES;
else
tabs(i) = NO;
end;
end settab;



CHAPTER 1 GETTING STARTED 27

/* tabpos — return YES if col is a tab stop */
tabpos: procedure (col, tabs) returns (fixed binary);
declare (col, tabs(*)) fixed binary;

if col > MAXLINE then

returmn(YES);
else .

return(tabs(col));
end tabpos;

This time we used a do statement in the translation because the PL/I do behaves
much more like a while than the Fortran do. In particular, the PL/I do will be
obeyed zero times if the upper limit is exceeded from the start. PL/I has no analog
for the repeat-until, so it is necessary to build one with an if and a goto, much as
in Fortran. - ' :

Exercise 1-10: Write out a translation of if, if-else, while, for, and repeat-until in
Fortran. Use only the logical if and goto’s. Apply your rules to the Ratfor pro-
gram detab, and compare your result with our Fortran version. What can you
say about “optimizing™ the goto’s you generate? How wéll does your Fortran
compiler do? O

Exercise 1-11: Write out the rules for translating the if, if-else, while, for, and
repeat-until into. PL/I. Use goto’s only when you must. Apply your rules to
the Ratfor program above, and compare your result with our PL/I version.
What can you say about “optimizing” the translation of while and for loops? O

1.7 A Word on Structured Programming

You may be wondering why we make such an issue out of using If-else and
while instead of if and goto. After all, you can do anything, and more, with the
latter than you can with the Ratfor control statements. It turns out, though, that
the extra freedom permitted by goto’s is just what you don’r want. By restricting
yourself to a small set of control flow operations, $ou tend to write code that is
better thought out, more readable, and hence less error-prone. These benefits far
outweigh any freedom of expression that you might sacrifice.

In the narrowest sense, this is what “structured programming” is all about:
coding only with a restricted set of control flow structures. These include statement
grouping with a construct like the Ratfor braces; if-else for decisions; loops like
while or for or repeat-until; and subroutine and functian calls. '

It is sometimes claimed that merely using these structures somehow léads
naturally and automatically to good programs. This is not true, for mechanical rules
are never a substitute for clarity of thought. What is true is that a program which is
well structured typically uses only fhese structures as its building blocks. -

Our approach to structured programming is to stick to the basics. We invest
extra effort in the design and coding process (which is fun) to minimize:-the much
costlier testing and debugging phase (which is not). We put strong emphasis on
clean, comprehensible code, saving efficiency considerations for the end. We check
and test code as we write it, rather than relying on a final debugging binge 1o fix
everything. We make extensive use of gubroutine calls and statement grouping to
modularize code, and we always write control flow in terms of if-else and the
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looping constructs.

But our primary tool.for writing good programs is to strive to make them read-
able. In our experience, readability is the single best criterion of program quality: if
a program is easy to read, it is probably a good program; if it is hard to read, it prob-
ably isn’t good. From time to time we will call attention to matters of style as clear
examples present themselves. We hope that you will learn from these observations,
and keep readability in mind for every line of code you write.

1.8 Ratfor Synopsis

You have already been introduced to most of Ratfor: as the need arises we
will introduce the rest and in each case show you how to hand-compile the code
into Fortran and PL/I. :

To assist you, here is a summary of Ratfor. Essentially, Ratfor is Fortran,
except that several new statements have been added to make it easier to specify
flow of control. At the same time, Ratfor provides some notational coriveniences,
$0 programs can be made more readable, ;

In the following, a siatement is any legal statement in the Fortran you use:
assignment, declaration, subroutine call, 1/0, etc., or any of the Ratfor statements
listed. Any Fortran or Ratfor statement or group of these can be enclosed in braces
{} to make it into a compound statement, which is then equivalent to a single state-
ment, and usable anywhere a single statement can be used. )

The it statement:

if (condition)
statement |
else
siatement?

If condition is true, do statement 1, otherwise do statement2. The else part is optional.
As in most languages, the construction

if (conditionl])
if {condition2)
statement |
else
siatement -

is ambiguous — the else could be associated with either if Braces can be used to
disambiguate this as desired. In the absence of braces, each else goes with the pre-
vious un-elsed if, just as in PL/I or the Algol family. The example above is
indented to agree with the binding rule, but we will always use braces as well in
such cases, to make our intent perfectly clear.

The while statement:

while (condition)
statemeni

Test condition. If it is true, do statement once, then test again. If condition is ever
false, resume with the first statement after the body of the while.
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The for statement:

for {initialize ; condition ; reinitialize)
siatemeni

This is equivalent to

{

initialize

while (condition) |
statement
reinitialize
}

)

with one exception listed below. The initialize and reinitialize parts are single For-
tran statements. If either initialize or reinitialize is omitted, the corresponding part of
the expansion is omitted. If the condition is omitted, it is taken to be always true,
resulting in an “infinite” loop.

Although initialize and reinitialize may be any Fortran statements, as a matter
of style they should always be directly related to loop control. And if two or more
parts of the for are omitted, the statement is usually better written in terms of a
while or repeat.

The repeat-until statement:

repeat
statement
until (condition).

The statement is done one or more times until condition becomes true, at which time
the loop is exited. The until part is optional; if it is omitted, the result is an infinite
loop, which must be broken some other way.

The break statement:

break

The break statement is one way to get out of an infinite repeat loop. It causes
whatever loop it is contained in (which may also be a while, for, or do) to be exited
immediately. Control resumes with the nexi statement after the loop. Only one
loop is terminated by a break, even if the break is contained inside several nested
loops.

We have not made use of break yet: we will in Chapter 2. There are two
other Ratfor statements which we don’t use at all in this book, but which some-
limes provide the clearest way to express an operation. One is analogous to break.

The next statement:
next

causes Wwhatever loop it is contained in to go immediately to the next iteration, skip-
ping the rest of the loop body. next goes to the condition part of a while, do or until,
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to the top of an infinite repeat loop, and to the reinitiatize part of a for. (This is
why the for does not expand directly into a while).

The do statement:

do limits
statement

sets up a standard Fortran do loop. /imits must be a legal Fortran do specification,
likei= 1, n

Ratfor source statements may appear anywhere on a line; it is impertant to
indent systematically so you can see what statements control what. Generally the
end of a line marks the end of a statement, but constructions like

If (¢ == NEWLINE)
n=nl+1

are obviously not finished after the line that contains the if and so they are conun-
ued automatically. This is also true of conditions which extend over more than one
line, as in

while (c = = BLANK
|c == TAB
| ¢ == NEWLINE)
i=i+1

Lines ending with a comma are also continued.

Ratfor uses == for the equality test .8q. and ~= for the inequality .ne.. The
shorthands | and & stand for .or. and .and. respectively. <, <=, > and > = have
the obvidus meanings of .It., .le., .gt. and .ge. respectively. Except for == these
notations are the same as in PL/I. :

A sharp sign # anywhere in a line signals the beginning of a comment, which
is terminated by the end of the line. Symbolic constants contain only letters and
digits; they may be used anywhere, surrounded by non-alphanumerics.

To answer a frequently-asked question, an arbitrary Foertran program is not
necessarily a Ratfor program. Blanks are significght in Ratfor in that keywords like
if, symbolic constants like NEWLINE and reIétiQ’hals like. > = must not contain
blanks or they will not be recognized. Furthefrhore, keywords are reserved, and
should not be used as variable names. Standard Fortran comments, continuation
conventions and the arithmetic if are incompatible, but since Ratfor proviZes better
alternatives for each, this is not a serious problem. _

On the other hand, Ratfor is not far from Fortran. About twenty percent of
the lines in our programs are Ratfor control-flow statements like if and else; every-
thing else is Fortran. We have tried to stick to a subset of Standard (ANSI) Fortran
that is portable without change between different machines. All of our programs
have been run through a verifier that checks for adherence to this portable subset.
Furthermore, to test our claim of portability the farger programs have been run on
three machines, and all have been fun on at least (wo, literally without change.
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Our desire for portability is_the reason for a few constructs that might seem
strange. For example, ANSI Fortran prohibits complicated subscripts, so we occa-
sionally need to invent temporary variables to avoid them. Similarly, variable
names (but not symbolic constants) are limited to six characters. This leads to
some rather strained mnemonics, for which we apologize in advance.

1.9 Simple Versions of getc and putc

getc and putc are sufficiently important that they should be provided by the
local operating system, but often they are not. That doesn’t mean you must do
withcut them, however, since versions adequate for many purposes can be easily
written. For example, here is getc as it might appear in a standard Fortran
environment, taking input from cards. Reading it should-clear up anv residual con-
fusion about what it does. -

# getc (simple version) — get characters from standard input
character function getc(c)
character buf(MAXLINE), ¢
integer i, lastc
data lastc /MAXLINE/, buf(MAXLINE) /NEWLINE/
# note: MAXLINE = MAXCARD + 1 '

lastc = lastc + 1
if (lastc > MAXLINE) {
read(STDIN, 100, end=10) (buf(i), i = 1, MAXCARD)
100 format(MAXCARD a1)
;astc =1
¢ = buf(lastc)
getc = ¢
retum

10 ¢ =EOF
getc = EOF
return
end

getc reads an entire line and hands it out one character at a time. New lines are
read as necessary, and newlines are added to the end of each line by putting a
NEWLINE after the last actual card column. The symbolic constants MAXCARD
and MAXLINE are the card length (probably 80) and the line length; they differ by
one.

The read statement uses the construction end= to detect the end of file con-
dition so getc can return EOF. When end of file is encountered, a branch is taken
to the specified statement. This facility is widely available, but your system may
require another form. STDIN is whatever unit number is used on your system for
Fortraninput; frequently it is .

_ putc is the ob\fious analog‘of getc, collecting characters into a line one at a
time and flushing out the line, blank-padded if need be, when a NEWLINE is
presented to it. STDOUT is the output unit number. often 6.



32 SOFTWARE TOOLS CHAPTER 1

# putc (simple version) — put characters on standard output
subroutine putc(c) v
character buf(MAXCARD), ¢
integer |, lastc
data lastc /0/

if (lastc > MAXCARD | ¢ == NEWLINE) {
for(i = lastc + 1;i <= MAXCARD;i =i+ 1)
buf(i) = BLANK
write(STDOUT, 100) (buf(i), i = 1, MAXCARD)
100 format(MAXCARD at)
;astc =
if (c ~= NEWLINE) {
lastc = lastc + 1
?uf(laatc) =
returm
end

There are some troublesome details in putc, primarily concerning what should
happen if more than a full line of text comes along without a NEWLINE. The most
reasonable solution seems (0 be to put out the line anyway if the buffer is full, as
we did in our version. Silently truncating long lines is less appealing.

Another shortcoming with using a fixed length blank-padded representation is
that trailing blanks can’t be distinguished from padding. The best design in an
environment that encourages blank padding is to have getc strip trailing blanks and
putc reinstall them. Although some information is lost, the number of applications
where this matters is quite small.

We have also assumed that when a line is written with putc (ie, when a
NEWLINE is passed to it), the output will actually appear if the program subse-
quently exits with a stop statement. If your system does not provide such a service
putc must consider the problem of flushing any remaining output when the pro-
gram terminates. One possibility is to modify putc so that

call putc(EOF)

is a signal to force out any accumulated characters.

The execution times of most of the smaller programs in this book are dom-
inated by the character getting and putting mechanisms, even when these are
efficiently implemented. You can be assured of a good return for your effort if you
improve these simple versions.

; ﬁ"xeilrcis% $-12: Modify getc and putc to strip and restore trailing blanks respec-
tively.

Exercise 1-13: Invent a general convention for signaling line boundaries within
fixed-length cards, and modify getc and putc to handle it. This provides a way

to gain the benefits of variable-length records even if the local system does not
allow them. O '
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/1.10 Prospectus

What have we done so far? We wrote several elementary but useful tools.
We tried to structure them so they will be easy to understand, and easy to change if
the need arises. We wrote them in a language which can be translated and run on
almost any computer system without change. We wrote them in terms of primitives
that conceal the differences among operating systems.

What we're going 10 do is repeal that process for a number of tools which we
think will be useful 10 you, arid which should teach you various lessons about pro-
gramming. Most of these programs are bigger than the ones so far, some a Jot
bigger. Yet the basic approach of careful structuring and isolation of program from
system will remain a constant theme. This is the only way to cope with big pro-
grams and real systems.

One thing you will notice is that programs often use code writlen in earlier
sections or chapters. This is important. One way to achieve greater software pro-
ductivity is to build on what has already been done, instead of endlessly reinventing
the same things with minor variations. In a book, however, this organization does
place a burden on the reader, since everything needed 1o run a given program isn’t
all in one place. We have tried to reduce it by carefully chosen names, reminders,
back-pointers and an extensive index. Still, it will sometimes be hard to dive into
the middle of a chapter and immediately appreciate what all the code does.:

One of the best ways 1o learn good programming is to read and think about
actual programs, to ask questions like “Why was it done that way?” or “Why not
write it like this?” We believe that the amount of code in this book is an asset, not
a liability, and we think you will profit from studying it, even if you would write
things differently.

Bibliographic Notes

We assume throughout this book that you have a working knowledge of For-
tran. If you need to know more, see D. D. McCracken, A Simplified Guide to Fortran
Programming (Wiley, 1974). It provides an introduction that avoids unnecessary
mathematics and concentrates on presenting just the good features of the language.

The Fortran verifier we used is described in “The PFORT verifier.,” B. G.
Ryder, Software—Praciice and Experience, October, 1974. This paper discusses the
portable subset of Fortran in considerable detail. The article “RATFOR —a prepro-
cessor for a rational Fortran,” by B. W. Kernighan, Sofiware— Practice and Experience
(October, 1975) contains more discussion of the Ratfor language, especially its
design considerations. There are many other Fortran preprocessors available
besides Ratfor; the bibliography at the end of Chapter 9 indicates some possibilities.






CHAPTER 2

FILTERS

We are going 1o continue what we began in the previous chapter — wriling
simple programs that read a standard input and write a standard output. By obvious
analogy to electronics (or plumbing) we call such programs filiers, because they
make useful changes 10 a stream of data passing through. You will find that many
tools fall into this category, including most of those in this book.

2.1 Putting Tabs Back

Let us begin by writing the filter entab, 1o complement detab. entab replaces
strings of blanks by equivalent tabs and blanks. Remember what we said earlier
about the benefits of having all your files look as much alike as possible? You
might use entab to read card images and produce typewriter-like text. That way,
you could convert your files to a standard representation, one that has no wastefu!
imbedded blank strings. As an added payoff, your files are smaller and they all look
alike; that makes it easier to write programs that talk and work together.

Another use for entab is to prepare output to he sent to a typewriter-like ter-
minal. You might have a program that expects to drive a line printer. You would
like to speed up the typing by tabbing whenever possible. Rather than rewrite a
working program, you are better off with a separate program to filter the output just
before it is typed. Thus entab.

The trick of getting most filters right is to find an orderly way of recognizing
the components of the input stream, so that the order can be reflected in the flow
of control of the program rather than in a collection of switches and flags. We got
away with one flag in wordcount, for that is a small program, but anything larger
quickly becomes confusing. If we think of the input to entab as a repetition of the
patiern: zero or more blanks, followed by a non-blank character (or EOF), then this
determines the control structure of the program:
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col = 1
repeat { \
while (getc(c) == BLANK) # collect blanks
it (at tab stop)
output a tab
if (any blanks left over)
put them out
# ¢ is now EOF or non blank
if (c == EOF)
break
call putc(c)
if (c == NEWLINE)
col = 1
else
col = col + 1
)

col is the current output column.

break is a statement we haven’t used before. It causes an immediate exit
from an enclosing loop — a while, for, repeat, or do. A repeat loop without its
trailing until clause specifies an “infinite” loop, i.e., one with no testing, just an
unconditional branch from the bottom back to the top. Some other way is needed
to terminate execution of such a loop; in this case it is the break statement, exe-
cuted when an EOF is seen. Loops are written this way when we need one or more
statements both before and after the test (or tests) controlling repetition of the loop.

break should nor be used in an undisciplined way, as a substitute for a prop-
erly thought out while or untit test. In particular, be wary of loops that exit from
several places. When there are multiple break’s from diverse parts of a loop, it is
difficult to ensure uniform behavior for all possible exits. You should always try to
express the exit condition — be it from the test part of a while or until, or an if con-
trolling a break — as a single logical expression.

. An easy way for entab to keep track of the blanks is to use another variable
newcol that moves away from col as blanks are encountered. Whenever a tab is
output, col is made to catch up to newcol. Then, when a non-blank, non-tab char-
acter is encountered, if col is less than newcol, there are excess blanks accumu-

lated (not enough to be replaced by a tab) which must be output before the charac-
ter can be. The job is done:
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# entab — replacg blanks by tabs and blanks
& character getc
' characterc¢ . .
integer tabpos ;
integer cbl, i, newgol, tabs(MAXLINE

call sotl’ab(tnba)
col = 1
repeat {
.newcol = col ;- _
while (getc(c) == BLANK) { # collect bianks
newcol = newcol + 1
if (tabpos(newcol, tabs) == YES) (
call putc(TAB)
col = newcol
)
}
for (; col < newcol; col = col + 1)
call putc(BLANK) # output leftover blanks
if (¢ == EOF)
) break
call putclc)
if (c == NEWLINE)
col = {
else
col = col + 1
}

stop
end

tabpos and settab are, of course, the same routines used by detab in Chapter !,
again the program is organized so the representation of tab stops is hidden from the
main routine. Note the use of a for statement with no initialization clause. In thes
case the code that went before provides all the initialization needed.

Exercise 2-1: Walk through entab with a file having two characters, one charac-
ter, none. Try it with lines containing zero to ten blanks, followed by an x. Try
zero to ten bianks followed by end of file. Under what circumstance will a file
be restored to its original form after being filtered by detab and entab in turn’
Can you think of any uses for such an operation? CJ

Exercise 2-2: What happens if entab reads a tab character? Make the simplest
addition you can think of to the code to handle tabs correctly. How would you
rewrite the code so that it maps an arbitrary string of spaces and tabs into the
minimum number required to give the same appearance? What does entap do
with text containing backspaces? [
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2.2 Command Arguments

entab uses the same convention as detab does, a tab every eight columns. It
would be nice, however, if there were an easy way 1o pass a list of tab settings as
arguments to either of these programs at the time the program is run, so the normal
settings could be temporarily overridden. Some operating systems make provision -
for you to access the command line or control card that invoked the program, so
you can pick up arguments like options, parameters or other information. If such is
the case on your system, you should provide the primitive function getarg, which
does whatever is needed to make argument information available to a program.
Most of the programs we present will benefit from having some (optional) argu-
ments. For a few, arguments are mandatory. We will assume from here on that
you can implement getarg in some form.

Our specific design for getarg is the following.
getarg(n, array, maxsize)

copies the characters of the nth argument into the integer array array, one character
per array element. As before, we are going to use integers to hold characters. max-
size specifies the maximum number of characters that we are prepared (o deal
with; getarg will truncate the argument if necessary to fit it into the space provided.
getarg returns as its value the length of the argument (the number of characters) if
the nth argument exists; if there are less than n arguments, EOF is returned. This
strongly suggests that EOF should be a negative value so it can be readily dis-
tinguished from a valid length. You might also consider making EOF a iarge
number, larger than any conceivable value of maxsize, but this is less desirable.

Regardless of the choice, however, a program should always test the value
returned by getarg:for exact equality with EOF, and never take advantage of any
secret knowledge about its value. If you fail to observe this principle, your code will
be prone to falling apart mysteriously when its environment changes. The more a
program depends on specific details of its host system, the less robust it is.

The argument that getarg places in array can now be used as a sequence of
characters. The problem is that although we know the number of characters in the
array, that information is separate, not part of the array, and this causes problems.
It is much more convenient if the length information for an array of characters is
carried along with it. '

Two possibilities spring to mind. One is that the first element of the array,
array(1), could contain the number of characters that follow. The other organiza-
tion is 1o mark the end of the array by some special value, one that is not any valid
Character. Each of these organizations has good and bad points (which you should
think about for yourself). Afier some anguish, we decided on a mark-at-the-end
representation. Every character string in our programs ¢ontains as its last element a
special marker, which we call EOS. A string of one character has array(1) set to
the character and array(2) to an EOS; an empty or null string has array(1) an EOS. -

Thus one final thing that getarg must do is to ensure that the string it returns

is properly termingted with an EOS, and this must fit within the limits of maxsize
characters.
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If you are able to design the interface from scratch, it seems most convenient
for getarg to assume that arguments are separated by one or more b!an.ks and/or
tabs. (To provide for an argument with imbedded blanks or tabs, you might allow
optional quotes around it, to be stripped off by getarg.) For supplying arguments to
programs, we feel that commas and parentheses as argument separators merely add
noise and keystrokes, and are better avoided.

Exercise 2-3: Write a program echo that copies its arguments onto the standard
output. There should be one space separating adjacent arguments and a newline
at the end. Can you think of any uses for echo besides testing your implemen-
tation of getarg? OJ

Exercise 2-4: Modify detab and entab to accept a list of tab stops as arguments,
so users can call the program with commands like

detab 9 17 25 33 41
entab 10 16 33 73

Of course the code that interprets these arguments and fills the tabs array
should be careful not to overfill the array. Both programs should do something
intelligent and useful if there are no arguments. (Later on in this chapter there
is a program ctoi for converting character strings to integers.) [

Exercise 2-5: Extend the programs to accept the shorthand
entab m +n

lo mean tab stops every n columns, starting at column m. O

2.3 Overstrikes

You can overstrike characters on a typewriter by backspacing over what is
already typed. This is how you underline words, for one thing; it is.also a way to
build additional characters from existing ones. If you send your outputl to a line
printer, however, the result may be a hash, because a typical printer doesn’t know
what to do with backspace characters.

Many printers do, however, provide for overstriking entire lines. The Fortran
convention for controlling this function is to provide an extra carriage control char-
acter at the beginning of each line: a blank means “space before printing,” and a

plus sign (+) means “do not space before printing,” i.e., overstrike what has gone
before.

The filter overstrike looks for backspaces in typewriter text and generates a
sequence of print lines with carriage control codes to reproduce the effect of the
backspaces. If we adopt a viewpoint similar to that for entab, that the input is an
alternation of zero or more backspaces and non-backspace characters, the resulting
code is very similar. If a string of one or more backspaces is encountered, the pro-

gram ends the current line and inserts the appropriate number of spaces in the
overstrike line,

This is not the only way to do it, of course, but it is one of the least compli-
cated. Nasty behavior occurs if the text to be printed contains words underlined
one letter at a time. Each sequence of characrer, backspace, underline causes a whole
new line to be generated, which can be quite slow. So a better way would be to
have two or more line buffers to build the overstrike images as they are needed.



40 SOFTWARE TOOLS CHAPTER 2

But that is harder to code and get right. It is often better to get on with something
that does most of the job well enough, then improve and add things as they prove
to be worthwhile.

overstrike is useful even for text that contains no backspaces, for it convc.rts
the typewriter text produced by most of the programs in this book into lines with
carriage controls, suitable for driving-a line printer. It can serve as a final ﬁlte:r
whenever printer output is desired, again encouraging you.to keep as much as possi-
ble to a standard internal form for text for other programs.

# overstrike — convert backspaces into multiple lines
character getc
character ¢
integer max
integer col, newcol

col = 1
repeat |

newcol = col

while (getc(c) = = BACKSPACE) # eat up backspaces

_newcol = max(newcol—1, 1)
If (Wdwcol < col) | # start overstrike line
call putc(NEWLINE)
call putc(NOSKIP)
for (col = 1; col < newcol; col = col + 1)
} call putc(BLANK)

else if (col == 1 & ¢ == EOF) # start normal line

call putc(SKIP)

# eise middie of line

if (c == EOF)

break
call putc(c) # normal character
if (c == NEWLINE)

col = 1
else

col = col + 1
}

stop
end

max is a function, which we leave to you 1o write or obtain, for finding the max-
‘mum of its arguments. In PL/I, max i$ a built-in generic function. In Fortran, you
can use max0, which finds the maximum of two or more integers and returns an
tnteger result. & is the logical and, which in Fortran is .and..

We used the symbolic constants NOSKIP and SKIP instead of PLUS and
BLANK because the former are more descriptive of the function to be performed,
and the latter are not universal. Besides, it is important to avoid confusion between
a blank being put out to cause a line skip and one used 10 fill a line. The purpose
of sy holic constants 1s to retain mnemonic information as iong as possible.
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We need no trailing else in the else if sequence in this example, since the
third alternative (in the middle of a line) requires no action. But we stuck in a
comment to make clear what the implied alternative is. We will frequently ter-
minate an else if chain with an else, if only as a comment to spell out all the possi-
ble cases. .

Exercise 2-6: What are a half-dozen test inputs that exercise critical boundaries
of overstrike? Why did we write

newcol = max(newcol—1, 1)
instead of
newcol = newcol — 1

Give a test input and sample outputs that show the difference between the two
cases. Our version of overstrike simulates the behavior of a terminal where
backspaces are ignored once the left margin is reached. Rewrite the code to
keep proper track of where characters should appear but print only those char-
acters that occur in or after column one. OJ

Exercise 2-7: As we said earlier, if backspaces come one at a time instead of in
long runs (for example, if ach letter in a word is individually backspaced and
underlined), overstrike is inefficient, in that it puts out a fresh line for each one.
Modify it to put out fewer lines. O

Exercise 2-8: Another standard Fortran carriage control is a 1, which causes the
next line to be printed at the top of the next page. Modify overstrike to look
for a special FORMFEED character and map each occurrence into a page ejecl.
You might also consider adapting overstrike to look for long runs of emply lines
and replace them by ejects when possible, since this is often faster on line
printers. O

Exercise 2-9: overstrike in series with detab provides a general typewriter-to-
printer conversion. Would it be worth combining them into a single program?
Can you think of any other functions worth adding? O

2.4 Text Compression

Tabs and backspaces can be viewed in one sense as a shorthand; certainly
typewriter encoded files tend to be shorter than card images or printer lines. But
they are a very special form of shorthand. What we are going to consider next is a
scheme suitable for compressing and expanding any text that has runs of repeated
characters. The repeated characters are not necessarily blanks; they can be any-
thing. '

We emphasize that this is not the ultimate compression scheme. A file can
have considerable redundant information that does not appear as repetitions of adja-
cent characters — consider a dictionary, for instance. But card images and print
lines tend to have long strings of blanks, and computer output in general is often

repetitious. So our naive approach should have a reasonable payoff for many of the
things we have to deal with.

_ Certainly a file with no repetitions will end up no shorter after “compression"’;
in fact it gets slightly longer. All compression methods depend on having some
knowledge of the structure of their input — otherwise there would be no redundant
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information to squeeze out. And so with every method you can always find a spe-
cial case that gets worse when compressed. A file containing random information is
a good test case, since on the average il has nothing to squeeze.

One measure of the robusiness of a compression scheme is how bad it gets
when it gets bad. We don’t want things to blow up in our faces when a file is ill-
suited, but we don’t mind if the result gets slightly longer; that is inevitable and is
thus only a little bit bad. Keep these thoughts in mind as we build the program.
We will come back to them later.

The scheme we use is to look continuously for a run of any character. If we
get one, we want to output something that says, “This is a run of rhis character, and
it is so long.” Between runs, we output chunks of stuff preceded by something that
says, “‘Here comes a chunk of stuff, and it is so long.”” Big chunks, or long runs, can
be oulput as a series of manageably smaller pieces. The output is an alternation of

repeat code
character to be repeated
repeal count

and

chunk counr -
that many characters

. The important thing, as always, is to find a way of looking at the inpul data
that makes it easy to lay out the program. In this case, we think of the input as a
series of runs of one or more identical characters. We compare the length of each
run against some threshold THRESH, left arbitrary for now. If the length of a run
meets or exceeds THRESH it is output as an encoded run; otherwise it is appended
to an internal buffer, eventually (0 be output as part of a chunk. Our first cut is:

for (lastc = getc(lastc); lastor—~= EOF; lastc = c) |
for (nrep = 1; getclc) == Ia?tc; nrep = nrep + 1) # collect run
if (nrep < THRESH) :
for (; nrep > 0; nrep = nrep — 1) # append short run
add a lastc to buffer
else
put out any chunk from buffer
call putc(RCODE) '
¢all putc(lastc)
put out repeat count

)

put out any chunk from buffer

Here are two ways of using the for statement that we have not encougtered beforé.
The outer for makes sure that each time the loop body is obeyed, lastc always
holds the last character not processed: Nothing is being counted up or down, yet

lr_|i§ is surely as valid a way of controlling a loop as any. It shows. the greater flexi-
bility of the for over the more traditional do. '
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The first inner for has no body except a semicolon. All the work is done in
the test part, where getc returns a new character each time it’s called, and in the
reinitialize part, which increases nrep. The semicolon is used to mark the end of
the for; otherwise the for would try 1o control the following if. A semicolon used
this way is called a null statement. 1t is best to put the semicolon alone on a line, for
it is otherwise easily overlooked and the code misread. While it can be used any-
where a Ratfor statement is permitted, the null statement ShOl_.lld generally only be
used as the empty body of a loop; other occurrences should be removed by revising
the code.

We still have to figure out how to add characters to the buffer and how to
dump them out. Since dumping occurs in two different places, we are encouraged
lo write a subroutine to do the job. Adding a character to the buffer not only
involves incrementing an index and doing an indexed assignment, but also implies
checking the index for a buffer full condition. If that occurs, there is a third occa-
sion for dumping the buffer. A subroutine is definitely called for.

How big should the buffer be? There is no reason to make it bigger than the
largest chunk we can output, which is limited in turn by the range of numbers we
can represent as a character. That range also limits the number of repetitions we
can represent with one encoding, because the count must be stored in a character.

This raises a second, more fundamental concern — how to represent counts as
characters. So far we have avoided saying much about the internal or external
representations of characters. So long as all characters have different codes and we
only make integer comparisons for equality, just about any scheme will do. In fact,
as we have written them, essentially all of IHe programs in this book are indepen-
dent of the internal representation of characters.

compress is an exception. (The others are expand, the inverse of compress,
and the encryption program crypt. These are discussed in the next two sections.)
For compress, we could represent a count as a string of numeric characters and
continue to avoid the problem, but this is wasteful when we are in the business of
lext compression. !

The best thing is for getc to map all characters into a compact range of posi-
live numbers, starting at zero or one. (In some Fortran implementations, the r1
input format does this for you, but it is nonstandard.) Codes such as EOF and EOS
can be given small negative values, for reasons we discussed earlier in this chapter.
putc performs the inverse mapping from small positive integers to externally
representable characters.

Under these circumstances, no special conversion is necessary when reading
and writing counts. All we need 1o do is reserve some large characier value for the
repetition code RCODE, and set the maximum count 1o a smaller value. Or we
could use zero for RCODE, since we never want to output a count of zero. On a
computer with an eight-bit character representation, for example, getc could
represent characters internally with integers in the range 0 to 255. Setting RCODE
to 255 permits MAXCHUNK (0 be as large as 254. If RCODE can be set to zero,
chunks can be 255 characters long.

You should convince yourself that this scheme works correctly even when the
character RCODE itself occurs in the text to be compressed. ’
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The final version of compress is:

# compress — compress standard input
character getc
character bul{MAXCHUNK), c, lastc
integer nrep, nsave
# must have RCODE > MAXCHUNK or RCODE = 0

nsave = 0
for (lastc = getc(lastc); lastc ~= EOF; lastc = c) {
for (nrep = 1; getcic) == lastc; nrep = nrep + 1)
if (nrep > = MAXCHUNK) # count repetitions
break
if (nrep < THRESH) - # append short string
for ( ; nrep > O; nrep = nrep — 1) {
nsave = nsave + 1
buf(nsave) = lastc
if (nsave > = MAXCHUNK)
call putbuf(buf, nsave)
}
eise |

call putbuf(buf, nsave)
call putc(RCODE)
call putcllastc)

fall putcinrep)

}
call putbuf(buf, nsave) # put last chunk
stop
end

# putbuf — output buf(1) ... buf(nsave), clear nsave
subroutine putbuf(buf, nsave)
character buf{(MAXCHUNK)
integer i, nsave

it (nsave > 0) {
call putc(nsave)
for(i=1,i <= nsave:i=i+ 1)
call putc(buf(i))
nsave = Q
return
end

A point of style: After appending a short string to the buffer, we tested
whether nsave .was equal 10 or greater than its maximum safe value. (We did the
spmp with nrep.) And at the end of putbuf, we set nsave to zero even when it fails
ine test nsave > 0, an action that is anly significant if nsave is negative. But from
reading the code, we know thal nsave can never exceed MAXCHUNK or gO
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negative, so why bother?

This is what is known as ‘“‘defensive programming.” It costs next to nothing in
source text or execution time, yet it reduces the chance of the program going wild
should an important control variable somehow be damaged. You can’t print out
error messages everywhere, but you can and should take out insurance whenever
possible.

It is much easier to debug a program if the output is not voluminous and if
additional storage overwrites do not occur as a side effect of the original bug. The
way to ensure saner behavior is to do the sort of things we did. Write your if,
while, and until tests so they steer crazy situations back in a safe direction. Use the
last else of a chain of else-if’s to catch conditions that should “never” occur, but -
just might. Never check for equality if it doesn’t hurt to check for “greater than or
equal 10" or for “less than or equal to.” In particular, don’t let loops repeat when a
variable is out of its expected range. Don't make your program a sucker for bugs.

Why did we write

for (nrep = 1; getc(c) == lastc; nrep = nrep + 1)
if (nrep > = MAXCHUNK)
break

instead of .

for (nrep = 1; getc(c) == lastc & nrep < MAXCHUNK: nrep = nrep + 1)

This is a subtle question, which has nothing 1o do with null statements. In Fortran,
as in most languages currently in use, there is nq way to specify the order of
evaluation of logical expressions connected by & and |. The compiler is free to
make the tests in any order, and in fact to ignore some if it can deduce the truth
value without making them. Most of the time this makes no difference. Here, how-
ever, the call to getc must happen, or ¢ will not be set properly. If nrep is tested
first, and getc is never called, the result is a particularly subtle bug. Thus we write
two separate statements when one might seem adequate.

We always prefer to use a single logical expression to control a loop or an if;
the resulting code is more readable. But whenever the order of evaluation is impor-
lant, we write code that will work right without depending on the decisions made by
any one compiler. That way the program can be run with another compiler without
suddenly acquiring mystifying bugs.

Now let’s go back to our earlier discussion of compression methods, to decide

where to set the threshold THRESH. If THRESH is less than or equal to one, then

every character is a candidate for being a repetition string. Ap input abcdef wauld
be encoded as:
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RCODE

a

1 (repeat count)
RCODE

b

1

RCODE

C

1

elc.

The output would be three times as long as the input, which is not nice behavior.
{The numbers are counts, not characters.) ;

A threshold of two would handie this case much better. Everything looks like
a chunk, so there would only be one code output every MAXCHUNK characters.
Still, a file like abbabba would be encoded as:

1 (chunk count)
a

RCODE

b r)

2 (repeat count)
1 (chunk counr)
a

elc.

This amounts to five characters output for every jthree input. Still not good. A
threshold of three can also lose ground.

At four the threshold has us breaking ‘even on nasty strings, and at five we
always do better by encoding repetitions. Higher values discourage coding repeti-
tions even when it would save space, so we want to avoid them. Of course, we can
never escape the worst-case limit, when there are no repetitions, of one exira char-
acter for every MAXCHUNK characters; but we expected that. It seems best, there-
fore, to run compress with THRESH set to five.

Exercise 2-10: Describe precisely what combination of circumstances will pro-
duce what invalid output if the statement

for (nrep = 1; getc(c) == fastc & nrep -< MAXCHUNK: nrep = nrep + 1)
is used in compress, as discussed above. (J

Exercise 2-11: How would you take advantage of the redundancy in a dictionary"
(a sorted word list without definitions) to encode it in minimum space? Test
your scheme by encoding the words on page 73 of your favorite dictionary. O
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2.5 Text Expansion

Now that we have a way to compress lext, we need a companion program 10
expand it once again so it can be used by other programs. We know what lhf: input
looks like: a sequence of repetitions and uncompressed chunks, each containing ‘a
code character telling which of the two follows and how many characters it
represents. Qur first impulse is thus 10‘writc

while (getc(code) ~= EOF)
if (code == RCODE) { # it's a repetition
¢ = getcl(c)
for (code = getcl(code); code > O; code = code — 1)
] call putc(c)

else ‘
for ( ; code > 0; code = code — 1) # it's a chunk
call putc(getc(c))

For valid input this works fine, . but what happens if an EOF is encoupfered
while reading into ¢? The program is unprepared for this, and so tries to send one
or more EOF codes to putc. It may even make additional calls to getc. We have
not defined what either of these primitives does undsr such circumstances.
Although they should behave intelligently, it is important 1o make sure the program

- that calls them behaves sanely no matter what the input.

We could interpose another function, to be called in place of getc, which
would remember an EOF and avoid further calls. With this would go a function
that discards EOF’s, to be called in plale of putc. Or we could modify getc and
putc directly. Either choice would ensure correct behavior when reading or writing'
past end of file. It would permit less careful programming. Such a simple solution
is not always possible, however, so we prefer to face squarely the basic issues of
error checking. ' :

We could also have the new input program stop when it finds EOF, since
there is nothing else to do by way of wrapup. Sometimes this is the best, indeed
the only, thing to do. But we try to avoid such solutions, convenient as they may at
first appear, because they violate a basic principle of top-down design: every func-
tion should return to where it is called. This way, strategy is kept visible (and
changeable) at the highest levél of the code, and execution proceeds strictly from
top to bottom.

So our working version of expand checks for EOF after every call on getc:
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# expand — uncompress standard input
character getc
character c, code

whila'(gatc(code) ~= EOF)
if (code == RCODE) [  # expand repetition
if (getc(c) == EOF)

break
if (getc(code) == EOF)
‘  break
for ( ; code > 0; code = code — 1)
} call putc(c)
else { : # expand chunk

for ( ; code > O; code = code — 1) {
if (getc(c) == EOF)

break
call putc(c)
if (c == EOF)
break
)
stop
end

Once again we have to spread a logical expression across multiple statements

it (getc(c) == EOF)
break

if (getc(code) == EOF)
break

to ensure correct order of evaluation. And in the else part, note that two break’s
are necessary to get out of a doubly nested loop, the inner for and the outer while.

Error checking interferes with readability, no question about it, but it is neces-
sary. With the best of languages, error checking obscures the main flow of events
because the checks themselves impose a structure on the cade which is different
from that which expresses the basic job to be done. Programs written from the
start with well thought out error checks, however, prove to be more reliable and
live longer than those where the error checking is pasted on as an afterthought.

Exercise 2-12: Define what getc and putc should do on' EOF, so as to simplify
-routines that call them. Rewrite expand 1o take advantage of this improvement.
a

Exercise 2-13: What happens if you send an arbitrary (uncompressed) file to the
first version of expand? To the final version? What happens if one character
gets dropped from a valid compressed file? Can you think of any way to resyn-
chronize reading with this encoding scheme? Can you devise a coding scheme
that is easier to resynchronize? What is ils worst-case expansion, and its
behavior with/files of random data? O
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Exercise 2-14: The special code RCODE only conveys one bit of information:
whether the next item is a repetition or not. If the full count range seldom
occurred, there might be some advantage in halving the allowable range and

- including the code in the same character as the count. Describe a clean way of
coding this and rewrite compress and expand to implement it. Does the range
of counts have to be a power of two? A multiple of two? What should the
value of THRESH be? O

Exercise 2-15: Prove that any compression scheme that is reversible, accepts any
input, and makes some files smaller must also make some files longer. O

2.6 Encryption

One way 10 insure the privacy of computer files is to encrypt them, i.e., to store
a representation of the original data that cannot be understood without the inverse
process of decryption. True, many computer systems offer some degree of protection
from other people reading your files, but there are almost always holes in the
defenses, over which you have no control. By using the crypt program described
here, you can provide your own. protection fors information you wish to keep
confidential.

- The scheme uses a text string key, which you specify, to determine how to
alter each character from the standard input before writing it to the standard output.
The first character of ‘the key is used with the first input character, the second with
the second, and so on. If the key is shorter than the input, which it usually is, it is
reused from the beginning as often as necessary.

# crypt — encrypt and decrypt
character getc, xor
character c, key(MAXKEY)
integer getarg, mod
integer i, keylen

keylen = getarg(1, key, MAXKEY)
if (keylen == EQF) .
call error("usage: crypt key.")
tor (i = 1; getc(c) ~= EOF; i = mod(i, keylen) + 1)
call putc(xor(c, key(i))) -
stop
end

error is a primitive that prints the message specified (up to but not including
the period that marks the end) and stops. True, it violates the spirit of what we just
said about error handling (or at least it does when called from anywhere other than
the main routine), but there are times when things get just too messed up ta con-
tinue processing. In some cases, no amount of high-level strategy will elp us
proceed further, at léast not without completely obscuring the basic inten{ of the
code. We will use erroras a standard way of reporting fatal errors. '

Hc_ow is each key character used? There are any number of functions that can
bg'spemﬁed to derive a valid output character from two other characters, but for
biriary encoded characters the most suitable function is the exclusive-or. It is also
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known as the symmetric Sum, half addition, or not eguivalence. There is no standard
symbol for the exclusive-or; we will use @.
In terms of Boolean algebra, exclusive-or is defined as:

a®b=1(a&-b)|(-a&b)

The value is true if a and b have different truth values, false if they are the same.
To exclusive-or two characters together, we mean to perform the operation between
corresponding bits of their internal binary representations. Standard Fortran has no
provision for bit-wise logical operations, but many installations provide functions
that perform and, or and not. If an exclusive-or function xor is not directly pro-
vided, you can write it in terms of the other logical functions:

# xor — exclusive-orof a and b
character function xor{a, b)
tharacter and, not; or
character a, b

xor = or(and(a, not(b)), and(not(a), b))
return
end

Like compress and expand, this function requires that the internal represen-
tations for valid characters lie in a compact range. There is the further restriction
that 'he representations form a complete set of #-bit numbers, for some n. That is,
the number of characters must be a power of two. Otherwise, it might be possible
for a key character 10 combine with an input character to form a code that cannot
be output. If that is the case, some other less useful function wilt have 1o be substi-
tuted.

The advantage of exclusive-or is its symmetry:

adbda=>b
adbd®b=a

The order of evaluation is irrelevant. This means that you can decrypt a file with
the same program (and the same key of course) that you used to encode it, since
applying the key twice gives you back what you started with. There’s no need to
figure out how to undo4he effect of one program in order to write a second.

It also means you can double entrypi a file, then easily decrypt it. Let us say
you first encrypt a file with the key brillig. Take the encrypted version and further
encrypt with frumious. The information can be restored by decrypting with the two
keys in either order, because of the symmetry of exclusive-or. The net effect is as if
you had encrypted once with a key whose length is the least common muitiple of
the two key lengths, in this case 7 times 8 or 56 characters. Moreover, the resulting
key is a string of characters that no longer looks like English text, and so is harder
to guess. The resulting code is considerably harder to crack.

We emphasize, by the way, that there are far more effective encryption
schemes than this one, which is in fact one of the earliest and best known. Unless
the key is very long, you could expect the CIA or the NSA 1o decode your file over-
night. And even if you are not bothered by those organizations, most computer
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1

centers have their share of puzzle solvers in search of a challenge.

For proof against casual probing or accidental display, however, crypt works
nicely. If anyone decrypts your files, it will probably be because you left a copy of
the key lying around! Until you can close that barn door, don’t worry about any-
thing fancier.

Exercise 2-16: What do you do with an encrypted file whose key you've forgot-
ten? O

Exercise 2-17: If you know the clear-text version of the first line or two of a file,
and you can read the encrypted version, how would you determine the key used
to encrypt i1? What tools would you use? O

Exercise 2-18: Write xor(a, b) for non-negative a and b using only standard For-
tran operations, without using and, or and not. How fast is it compared to other
available routines? How sensitive is it to the word size of the machine and 1o
the type of arithmetic the machine does? [J

2.7 Character Transliteration

One class of filters transliterates certain characters on their way through, pass-
ing all other characters through unmodified. We would like 10 have a program
translit so that we can write

translit x y

and have all occurrences of x in the standard input be replaced by y on the sian-
dard output. Multiple translations are also handy:

translit xy yx

would change all x’s into y's and all ¥'s into x's. And it would be nice to have the
shorthand

translit a—z A—2

to translate all lower case letters 10 upper case, or
translit a—zA—2 A;—Za—z

lo do case reversal. Even good typists prefer
translit A—Z a-z

to

translit ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijkimnopqrstuvwxyz

Once the arguments have been expanded to eliminate any shorthand, the
translation loop is straightforward:
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while (getc(c) ~= EOF) {
i = index(from, c)
if (i > 0) # found a match
call putcltofi))
else # no match
call putc(c)
)

from holds the set of characters to be translated and to the corresponding transla-
tions. index returns the index of the character in from that matches ¢, or zero if ¢
isn’t in from. index is a built-in function in PL/I (for character strings, but not for
our extended codes); it can be written in Ratfor as:

# index — find character ¢ in string str
integer function index(str, c)
character c, str(ARB)

for {index = 1, str(index) ~= EOS; index = index + 1)
if (str(index) == ¢)

return

index = 0

return

end

We will use the symbolic constant ARB for an array size declaration whose value is
arbitrary because the array is passed in as an argument and its size is irrelevant to
the routine. ARB would normally be given a large positive value.

There are times when we would like to translate a whole class of characters
into just one character, and then to collapse runs of that translation into just one
instance. For example, translating blanks, tabs, and newlines into newlines and
then collapsing multiple newlines leaves each of the words in a document on a
separate line, ready for further processing. Or we might want to convert all alpha-
betic symbols in a program text into a’s and all numbers into n’s. We specify this
collapsing operation by giving a second argument that is shorter than the first:

translit a—zA—-Z7 a
translit 0—9 n b

The implication is that the last character in the second argument (the to string) is
to be replicated as often as necessary to make a string as long as the first argument,
and that this replicated character should never appear twice in succession in the
output.

The main processing for translit then becomes:
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lastto = length(to)
if (length(from) > lastto)

collap = YES
else

collap = NO
repeat {

i = index(from, getc(c))
if (collap == YES & | > = lastto) { # collapse
call putc(to(lastto))
repeat
i = index(from, getc(c))
until (i < lastto)

)

if (c == EQOF)
break

if (i > 0) # translate
call putc(toli))

else # copy
call putc(c)

)

length is a tiny routine that computes the length of a character string, excluding the
EOS. We use it here to decide how to set collap, which indicates whether or not
collapsing is to take place. ;

# length — compute length of string
integer function length(str)
integer str(ARB)

for (length = O; str(length+ 1) ~= EOS; length = length + 1)
retum
end

translit leaves open the possibility that some characters can be translated
while others are collapsed, not so much because it is likely to be a heavily used
option but so that the program behaves in a sane and predictable fashion no matter
what the arguments. Esoteric cases should do something reasonable.

Only characters corresponding to the last translation character (or beyond) are
subject to collapsing. The index lastto points at the last character in the to array if
that array is shorter than from, otherwise it points at the EOS in to and never
affects translations.

But there is a bug: if to is missing or empty, containing only an EOS, any
translation will reference to(0). (You might want to verify this.) We could give an
error message when the second argument of translit is empty, but we could also
take this condition as a request to defere all occurrences of characters in the first
string, since that is a useful and sensible interpretation. The changes to implement
this are straightforward if we keep firmly in mind that the condition lastto= =0
always calls for the matched character to be deleted. The matched character is one
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whose index is greater than zero.
One final capability is worth adding: sometimes we would like to be able to
translate and compress a/l bur a set of characters. For instance

translit -a—z —

would replace strings of non-letiers with a dash (minus). The leading = in the from
string reads as a *‘not,” just as in Ratfor source code. And

translit -a—2

would delete all but lower case letters.

The-addition is once again easy because of the way the program is partitioned
into functional modules. We need only introduce a flag alibut, set 1o YES when we
wish to deal with a/l/ bur a specified set of characters, and a new function xindex
which interfaces between index and the rest of the program.

# xindex — invert condition returned by index
integer function xindex(array, c, allbut, lastto)
character array(ARB), ¢
integer index
integer allbut, lastto

it (¢ == EOF)
xindex = 0
else if (allbut == NO)
xindex = indéx(array, c)
else if (index(array, c) > 0) '
xindex = 0
else § e
xindex = lastto + 1
retumn
end

When allbut is NO, xindex returns the value returned by index. When allbut is
YES, however, xindex tells a lie: if index says the character was found, xindex says
it wasn’t; if index says it wasn’t found, xindex says it was. Furthermore, we
presume that the set of all bur arfew charallers is so huge that it only makes sense
to map them all into one character (or delete them), so if allbut is YES, xindex
returns an index that is-guaranteed 1o be colla if the character is in the set, zero
if it is not, or the normal result of index if Bifbut is NO. xindex is also careful
never to report EOF as a matched character. :

With this organization, index remains simple, and so does the program that

. ¥ ] . i . . .
uses it through xindex. lmagme what the logic would be like if the equivalent deci-
sions were scattered throughout the main routine instead of localized in Xindex,

By the way, we could hawe writien xindex as

]
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xindex = index(array, c)

if (c == EOF | (allbut == YES & xindex > 0))
xindex = 0

else if (allbut == YES & xindex == 0)
xindex = lastto + 1

This is shorter but less clear. Logical decisions that intermix & and | or that require
parentheses seem to be hard to grasp, so we avoid them. The version we used
shows clearly that exactly one of four cases is to be chosen. When in doubt, try the
“telephone test” — if you can understand a logical expression when it’s read aloud,
then it is acceptably clear. Otherwise, it should be rewritten.

All that remains is to add the argument-interpreting code and we have a
powerful character translator:



56 SOFTWARE TOOLS CHAPTER 2

# translit — map characters
character getc
character arg(MAXARR), c, from(MAXSET), to(MAXSET)
integer getarg, length, makset, xindex
integer alibut, collap, i, lastto

it (getarg(1, arg, MAXARR) == EOF)
call error("usage: translit from to.")
else if (arg(1) == NOT) {
allbut = YES
if (makset(arg, 2, from, MAXSET) == NO)
} call error("from: too large.")

else {
allbut = NO
if (makset(arg, 1, from, MAXSET) == NO)
! call error("from: too large.")

if (getarg(2, arg, MAXARR) = = EOF)
to(1) = EOS
else if (makset(arg, 1, to, MAXSET) == NO)
call error("to: too large.")

lastto = length(to)
if (length(from) > lastto | allbut == YES)

collap = YES
else
collap = NO
repeat {
i = xindex(from, getc(c), allbut, lastto)
if (collap == YES & i > = lastto & lastto > 0) { # collapse
call putc(to(lastto))
repeat
i = xindex(from, getc(c), allbut, lastto)
: until {i < lastto)
if (c == EOF)
break
if i > 0 & lastto > 0) # translate
call putc(to(i))
eise if (i == () # copy
call putc(c)
| # else delete
stop

end
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Notice, by the way, that the message printed out when there are no arguments
is not just ‘‘no arguments.” Instead, a prompt is given reminding the user hovff to
use the program properly. Better to tell people concisely how to do things right
than tell them only that they did something wrong.

Other than that, we wrote translit so that it produces few error messages. An
unusual argument is given some reasonable interpretation whenever possible, and a
harmless interpretation otherwise. For a general purpose tool, this is a good design
principle. Otherwise, we might inadvertently head off a useful application we didn’t
think of at the start. It also minimizes the confusion introduced by a welter of error

checks.
makset creates the from and to sets, by calling filset and addset.

# makset — make set from array(k) in set .
integer function makset(array, k, set, size)
integer addset
integer |, |, k, size
character array(ARB), set(size)

i=k

i=1 :

call filset(EQS, array, i, set, j, size)
makset = addset(EOS, set, |, size)
return

end

addset adds a character at a time 1o a specified position of an array and increments
the index. It also checks that there’s enough room to do so. We will use this func-
tion extensively in later programs.

# addset — put c¢ in set(j) if it fits, increment |
integer function addset(c, set, j, maxsiz)
integer j, maxsiz
character c, set(maxsiz)

if (i > maxsiz)
addset = NO

else |
set(j) = c
=i+
addset = YES
}

return

end

tranglit provides shorthand for consecutive lower case letters, upper case
letters, and digits, and does so without making any assumptions about the internal’
representation of characters in integer variabiles. filset does all the work of building
a translation set, expanding shorthand as necessary, with the help of addset,
dodash, esc and index. We wrote filset in a general fashion, looking for an arbi-
trary delimiter and returning updated indices, because we expect it to be of use in
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our later dealings with sets of characters.

# filset — expand set at array(i) into set(j), stop at delim
subroutine filset(delim, array, i, set, j, rnaxsgt]
character esc
integer addset, index
integer i, j, junk, maxset
character array(ARB), delim, set(maxset)
string digits "0123456789"
string lowalf "abcdefghijkimnopgrstuvwxyz"
string upaif "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

for ( ; array(i) ~= delim & array(i) ~= EOS;i =i + 1)

return
end

if (array(i) == ESCAPE)
junk = addset(esclarray, i), set, j, maxset)
else if (array(l) ~= DASH)
junk = addset(array(i), set, j, maxset)
else if (j <= 1] array(i+ 1) == EOS) # literal —
junk = addset(DASH, set, j, maxset)
else if (index(digits, set{j— 1)) > 0)
call dodash(digits, array, i, set, j, maxset)
else if (index(lowalf, set(j— 1)) > 0)
call dodash(lowalf, array, i, set, j, maxset)
else if (index(upalf, set(j— 1)) > 0) :
call dodash(upalf, array, i, set, j, maxset)
else
junk = addset(DASH, set, j, maxset)

The string declaration is a shorthand we use to avoid burdening programs
with long initializations. In Fortran

string id "xyz"

must be expanded into

integer id(4)

data id(1) LETX/
data id(2) LETY/
data id(3) LETZ/
data id(4) /EOS/

where LETX, etc., are symbolic constants for whatever internal representation is
used for the corresponding letter. Chapter 8 contains a discussion of how string
can be translated automatically with a macro processor.

The other new thing in filset is the set of calls of the form
junk = addset( ...)

Since filset has no interest in the value returned by addset (final checking is done
by makset), you might think we could throw away the value by writing instead
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call addset( ...)

Although this is much more esthetic, regrettably some implementations of Fortran
really distinguish between subroutines and functions, and get upset if a function is
called. If our programs are to be truly portable, we must protect against this by
always calling functions as funciions. We will always assign unwanted function
values 10 junk to show that they are explicitly discarded.

translit also provides an escape convention for writing tabs and newlines so that
they are visible and cause a minimum of grief for any program that must inspec!
the arguments. We use the al-sign @ as an escape character: whatever character fol-
lows the escape character is in some way special. In particular, we define @t to be
a tab and @n to be a newline, so we can write:

translit " @t@n" @n

to change all occurrences of “whitespace” (blanks, tabs, and newlines) to just one
newline and leave one word per line. (Note the use of quotes, which we mentioned
earlier, 1o include a blank in the first argument string.) Other special codes can be
added easily, if need be. The escape character also turns off the special meaning of
any character following, including blanks and quotes and the escape itself, so that
special characters can be used literally; The example above could also be written

translit @ @t@n @n

provided getarg also knows about escapes.

The escape convention provides a clean-and uniform mechanism for altering
the meaning of special characters. Checking for an escape, .and returning the
appropriale character and the proper index is done by esc:

# esc — map array(i) into escaped character if appropriate
character function esc(array, i)
character array(ARB)
integer i

it (array(i) ~= ESCAPE)
esc = array(i)
else if (array(i+ 1) == EQS) # @ not special at end
esc = ESCAPE
else |
i= 41
if (array(i) == LETN)
esc = NEWLINE
else if (array(i) == LETT)
esc = TAB
else
! esc = array(i)

return
end

Likc_e.xindex. esc conceals complexity in a simple interface, instead of sbreading
decisions throughout the code.
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Most of the code in filset is a multi-way branch. If the character under con-
sideration is escaped or not a.dash, it is added to the set immediately, as is a dash
that occurs as first or last character, or not preceded by a letter or digit. Only if a
dash appears between letters or digits that could represent shorthand is_ it expanded.
This is done by dodash: :

# dodash — expand array(i— 1)—array(i+ 1) into set(j)... from vatid
subroutine dodash(valid, array, i, set, j, maxset)
character esc T
integer addset, index
integer i, j, junk, k, limit, maxset
character array(ARB), set(maxset), valid(ARB)

i=i+1

] =7F=1 '

limit = index(valid, esc(array, 1))

for (k = index(valid, set(j)); k <= limit;k = k + 1)
junk = addset(valid(k), set, j, maxset)

return

end

translit is not a easy program lo understand, because it does many things, yet
the functions are worth combining because they all address similar problems. You
learn the most useful formats, like

translit A—Z a—z

for case conversion, and study the formation rules only when you encounter a new
application. The program itself is not complicated, however, because it was con-
structed in a modular fashion beginning with the simplest applications. The added
complexity is confined to separate new modules and does not clutter up the original
structure.

What determines the running time of translit? As you might expect for a
program that does little computation, it spends most of its.CPU time doing process-
ing for I/O — in our case between 70 and 85 percent. Most of this time is nor in
getc and putc, however, but in the lower-level routines that they call, over which
we have no control. Handling characters one at a time with getc and putc costs a
negligible amount. After 1/0, the rest of the CPU time goes into xindex and index,
which are called once per input character, and the main routine. For a call like

translit a—z A—~Z

index took 19 percent of the time, the main routine 7 percent, and xindex 4 per-
cent. When the to set is small, however, as with

translit ~@n @n

the times were: index 5 percent, xindex 6 percent and main 6 percent. So index is
the routine to speed up (should I/0 ever be made sufficiently fast), because the
time it consumes varies with both the number of input characters and the size of
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the from sel.
Exercise 2-19: Describe the actions performed by the following commands.

translit a—b—d abcd
translit a—c xyz
translit —ac xyz
transtit @@

How would you convert runs of blanks into single occurrences? O

Exercise 2-20: One purpose of the escape mechanism is to let you input charac-
ters that aie difficult to type or hard to read, or that have special meaning.
Extend esc to recognize s for space, b for backspace, and perhaps a string of
octal or hexadecimal digits to represent an arbitrary bit pattern. O

Exercise 2-2]: When you build the primitive error, make use of esc so an
escaped period can be used to get a literal period into the message. [

2.8 Numbérs

transilit is used frequently 1o filler files before counting things in them, as with
charcount introduced in the previous chapter. Since we were primarily concerned
then with introducing Ratfor, we posiponed the description of putdec, the subrou-
tine that printed the final count. Before going any further, here it is.

putaec(n, w) puts out the number n as a string of at least w characters, includ-
ing a sign if n is negative. If fewer than w characters are needed, blanks are
inserted to the left 1o make up the count: if more than w are needed, more are pro-
vided. It is this feature that makes putdec more useful than conventional output
options in most languages.

# putdec — put decimal integer n in field width > = w
subroutine putdec(n, w)
character chars{MAXCHARS)
integer itoc
integer i, n, nd, w

nd = itoc(n, chars, MAXCHARS)
fori=nd+ 1i<=wi=i+ 1)
call putc(BLANK)

for(i=1i<=ndi=i+1)
call putc(chars(i))

return

end

putdec in turn calls on itoc 10 do the conversion. itoc converts an integer to
characters in an array provided by the caller, and returns the number of characlers
it took, excluding the EOS. itoc obtains the digits in reverse order because it is
easier, then flips them before returning.
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# itoc — convert integer int to char string in str
integer function itoc(int, str, size)
integer abs, mod
integer d, i, int, intval, j, k, size
character str(size)
string digits "0123456789"

intval = abs(int)
str(1) = EOS

i=1
repeat ( # gererate digits
i=i+1
d = mod(intval, 10)
str(i) = digits(d+ 1)
intval = intval / 10
} until {intval == 0] i > = size)
if (int <0&i < size) | . # then sign
i=i+1
str{i) = MINUS
i 5
itoc =) — 1
fori=1t1j<ii=j+ 1) # then reverse
k = str{i)
str(i) = str(j)
strij) = k
i=i—-1
}
return
end

abs is a function that returns tive absolute value of its argument. (You can use
iabs in Foriran.)

The comeiement of itoc is of course ctoi, a routine for converling a characler
string 10 an integer. A useful design is this: The call

n = ctoilc, i)

slarts looking at position i of ¢. Leading blanks and 1abs are ignored; any subse-
quent digits are converted 10 the correct numeric value. The first non-digit seen
terminates the scan: upon return i pointd to this position. n is the value of the
integer. We will use ctoi regularly throughout the book. ‘
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# ctoi — convert string at in(i) to integer, increment i
integer function ctoi(in, i)
character in(ARB)
integer index
integer d, i
string digits "0123456789"

while (in(i) == BLANK | in(i) == TAB)
i=i+1

for (ctoi = O; in(i) ~= EOS:;i =i + 1) {
d = indexl(digits, inli))
if(d == 0)  # non-digit
break

ctoi = 10*ctoi + d — 1
}

return

end

Now for the payoff. We can use charcount in series with translit to provide
all sorts of useful information. Let’s invent a bit of job control language: we adopt
the notation | to indicate a series connection of two programs. (Don't confuse it
with the or operator in logical conditions. There are only so many characters to go
around, so we have to double up on meanings sometimes.)

translit ~@n | charcount

means “tak¢ the output produced by translit and feed it as input to charcount”
We'll call this construction a pipeline. Whether a pipeline is a direct connection
between simultaneously executing processes, or just a prescription for what inter-
mediate lemporary files to write and read, is not relevant for most applications. Our
concern rests with what we can do with such pipelines.

The example we just gave, for instance, deletes everything but the newlines in
a file, then counts them up. We have a line counting program directly equivalent to
linecount. Counting words is only a little harder:

translit " @t@n" @n | translit ~@n | charcount

First we pﬁl one word per line by compressing whitespace, then count lines as
before. We can even count all the decimal digit strings in a program:

translit 0—~9 9 | translit -9 | charcount

This converts each string of digits into a single 9, deletes all other characters, then
counts the 9’s: '

Writing a program like this latter one is a nuisance; it is not likely that. you
would ‘want to stockpile such an odd assortment of gadgets against the likelihood of
eventually having a need for them. But having a single tool as powerful as translit
makes sense. You can use it alone or in conjunction with other filters like char-
count to perform a host of variations. This is what tool building is all about.
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Exercise 2-22: Many computers store integers in /wo’s complement nolation,
which has ose more negative number than it has positive numbers. Other
representations have as many negative numbers as positive numbers but have
two representations of zero. Rewrite putdec to handle two's complement arith-
metic properly. (Do you know where the current version fails?) [J

Exercise 2-23: Modify ctoi to recognize an optional leading + or —. O

Exercise 2-24: Write ctof, which converts a character string to a floating point
number; it should recognize an optional sign, an optional decimal point, and
scientific notation for an exponent, as in

—-1.23E-4

O

Exercise 2-25: wordcount counts words directly, instead of using translit and
charcount. Do you think the greater efficiency you may attain is worth the
extra effort? O

Exercise 2-26: Write a pipeline to convert an encrypted file to lower case
(assuming you know the key). Should crypt be able to translate characters as
well as translit does? Shouid translit know how to encrypt and decrypt? O

Exercise 2-27: Write a filter tail which produces only the last # lines of its input
as output, where # is an optional argument. That is,

program | tail 10

prints the last ten lines produced by program. Of course there is a limit on how
large n can be in a practical implementation. If no value of » is specified, what
is a reasonable default? O

Exercise 2-28: Design and implement a filter calc to simulate a pockel calculator.
calc should deal with at least +, — and =, so an expression like

1+2-3=

can be evaluated. Refinements include more operators, parentheses, memory,
and the like. How would you modify calc 10 handle numbers 100 large to fit in
one machine word? O

Exercise 2-29: Write a program 10 take arbitrary bit patterns and interpret them
as octal or hexadecimal numbers, as characters, and perhaps as machine instruc-
tions, as appropriate for your particular eomputer. Implement it as a filter. O

29 'Summary

The filters presented in this chapter are diverse, bui most share an important
feature. Each encourages, in its own way, a standard representation for 1exi 1o be
passed between programs or to be stored in files for later use. By pu§hing informa-
tion about particular devices as far oul 10 the edges of a sysitem as possible, we
expand the range of programs that can freely cooperate. And by writing terminal
fillers 10 interface these devices to standard format files, we isolate and contain
device-dependent information. That way, radical changes can be made in the peri-
pherals attached to a machine without affecting more than a module or two. It also
means thal you can have considerable assurance that each new device can be put to
use with little reprogramming. This is an important consideration in planning for
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painless growth.

translit is an even more general tool. Having it around, you can ignore many
of the little character-set dependencies that so often haunt a computer center and
make it difficult to combine software packages. You can use translit to take up the
slack between two programs that don’t quite cooperate, and thus avoid the messy
problem of recoding one (or both). And besides, it's useful all by itself.

Once you learn that you can isolate and adapt by introducing filters, you begin
to think more freely in terms of combining existing programs instead of writing new
ones. You overcome much of the temptation to build a whole new package; instead
you adapt pieces that already exist. You become, in short, more of a tool user.
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CHAPTER 3

FILES

Up 10 this point we have talked about programs which read one input and
write one outpul, without really worrying about how to get the input and output
where we want them. Although many useful programs need only one input and
one outpul, this is hardly adequate in general. In this chapter we will discuss pro-
grams which have more complicated interactions with their environment — reading
or writing more than one file, and creating and deleting files as they run. These
programs are mainly intended for an operating system which provides some kind of
permanent file system where information can be kept for extended periods on
secondary storage and easily accessed by running programs.

Sadly, operations like these are hard even to talk about, let alone program,
because:

Each operating system has its own jargon for describing system actions; there
is no standard terminology.

Each operating system has its own capabilities and limitations: there are no
standard functions.

Some of the things we want 10 do can't be done easily on some operating sys-
tems: there are no perfect systems.

As we did in the previous chapters, we will try 10 avoid these difficulties by
organizing our discussion and programs around primitive functions — operations like
getc, putc, and getarg, which are conceptually simple, each performing a well-
defined task. The mechanics Bf how a primitive function is accomplished and the
way it is expressed will vary from system to system, but the basic functions will be
easy lo understand, and easy to implement on any sysiem if they do not already
exist. Defining and using primitive functions to localize operating system depen-

dencies is a crucial form of modularization. It is the only way to cope with real sys»
lems.

67
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3.1 File Comparison

One instance of a more complicated relationship with the operating system is
reading multiple input files or data sets. An example of a program that has more
than one input is one that compares fwo inpul sources, and lists the places where
they differ. This is a useful tool — for comparing the output of one program with
another, for example, or for comparing two versions of a text. It mechanizes a task
all too often done manually.

The design of compare depends on what is to be compared. We will write-a
version that compares two text files; variations are left as exercises. For text the
" natural unit of comparison is the line — if two lines differ in length, we can resyn-
chronize at the next line. .Of course a missing line in one of the files will destroy
synchronization for the rest of the input, so this is not the best comparison imagin-
able, but it is a good beginning. In outline the program is

- repeat { S
get a line from tile 1
get a line from file 2
if (either input encountered EOF)
break _
if (line1 ~= {ine2)
print line number, character position,
\ and offending lines
if (only one input is ended)
print message about which input terminated.

First we check the general flow of control by examining some critical boun-
dary cases. As long as the two files are identical, no output will be produced; if
they end together all is well, even if both are empty. If one file is a prefix of the
other, then a message o that effect is printed. Finally, if the files differ anywhere in
some line, the differing lines will be printed.

Now we can begin to fill in details. Comparing two lines is a self-contained
tusk that should be isolated in a separate routine. The function equal compares two
sirings; it returns YES if they are identical, NO if they differ. Each string must of
course be terminated by an EOS. We compare strings terminated by EOS, not
lines terminated by NEWLINE, because the more general routine costs nothing
extra, yet is much more likely to be useful in other programs.
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# equal — compare sir1 to str2; return YES if equal, NO if not
integer function equal(str1, str2)
character str1(ARB), str2(ARB)
integer i.

for(i = 1;stri(i) ==str2(i);i=i+ 1)
if (str1(i) == EQS) |

equal = YES
return
)

equal = NO

return

end

The next problem, and the one which is the principal subject of this chapter,
is how to connect the program 1o its sources of input — how o arrange for the
operations

get a line from file 1
get a line from file 2

Up 1o now, we have assumed that a program has some default standard input and
standard output connected to it when it runs, which getc and putc use implicitly.
These are often a card reader and line printer in balch systems, or the user’s termi-
nal keyboard and printer in an interactive environment. Almost all operating sys-
lems provide some way to change these default assignments, and to add other
inputs and outputs. For example, most batch systems have a control card which
says (in effect)

Connect Fortran logical unit number N to external file F

so that the Fortran 1/0 statements
and -

will operate on F. Interactive systems often provide a command 1o perform the
same function. In PL/I one can connect the internal file name used in

get file (name) ...
or
put file (name) ...
with some data source or sink in the external environment. Controf card syniax

varies wildly from system 1o system, but the function is always available.

Thus a rudimentary version of compare could read from two input streams,
with internal names by convention perhaps | and 2 in Fortran and name1 and
name2 in PL/I, and require the user to connect the right external files to these inter-
nal names by control card or command, This compare does not take any explicit
action 16 connect itself 10 its sources — someone else must do the work. :
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# compare (simple version) — compare file 1 to file 2
character line 1(MAXLINE), line2(MAXLINE)
integer equal, getlin
integer lineno, mt, m2

linena = 0
repeat |
m1 = getlin(line1, INFILE 1)
m2 = getlin{line2, INFILE2)
if (m1 == EOF | m2 == EOF)
break
lineno = lineno + 1
if (equal(iine1, line2) == NO)
call difmsg(lineno, line1, line2)

f(m1 == EOF & m2 ~= EOF)
call remark("eof on file 1.")
else if (m2 == EQOF & m1 ~= EOF)
call remark("eof on file 2.")
# else they match
stop
end

remark is a general-purpose message printer, identical to error in Chapter 2, excepl
that it returns after printing, instead of stopping. Notice that compare produces no
message if the files are identical. Generally a program should say nothing unless
and untii it has something to say. ’

If there are any discrepancies beiween the two files, difmsg prints the line
number and the differing lines; you can fill in the details to suit yourself, using putc
and putdec. Ours is just

# difmsg — print line numbers and differing lines
subroutine difmsg(lineno, line1, line2)
character fine 1(ARB), line2(ARB)
integer lineno

call, putdec(iineno, 5)

cail putc(NEWLINE)

call putlin{line 1, STDOUT)
call putlin(line2, STDOUT)
retum

end

The function call

getlin(line, infile)

copies the next line from the file with the internal name infile into the character
string line. [t guarantees that the input line is terminated with a newline and an
EOS. getlin returns EOF when it encounters end of file, and otherwise returns the
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line length (excluding the EOS). Like getc, getlin maps characters into their inter-
nal representation. It might even call a form of getc to do the work, although more
often getlin would be the low level primitive, and getc would call upon it. (In
effect the simple getc and putc in Chapter 1 work that way.) Since getlin retua_'ns
either the string length or EOF, once again EOF should probably be a negative
“value.
putlin is a primitive to output a line onto a given file. It is the complement of
getlin, performing whatever character translation is needed. We will assume that
output produced by in.erleaved calls 10 putc and putlin goes out in the proper order.
STDOUT is the internal name for the standard output; as you might expect, there is
a.corresponding STDIN for the standard input. The system must arrange that these
files are ready to read and write when the program begins to run.

Exercise 3-1: Implement getlin and putlin. Alter the getc and putc of Chapter 1
to use getlin and putlin. Ensure that interleaved calls of getc and getlin from
the same’and different files work correctly. Do the same for putc and putlin. O

Exercise 3-2: In a non-interactive environment, compare probably should not
print too much output for files that are very different. Add an optional argu-
ment so the comparison terminates after a specified number of mismatched lines
has occurred. An alternate design is to have compare stop after the first
mismatch. In that case, the optional argument would allow more than one
mismatch. O

Exercise 3-3: Construct a version of compare such that fvo lines are considered
to be the same if they are the same after each run of blanks is replaced by a sin-
gle blank. Can you achieve the same effect by using translit? Can you steal any
code from translit? O

Exercise 3-4: (Hard) Our compare is very rudimentary. It is useful for finding
out the first place where two files have become different, but it breaks down
quickly after that, producing voluminous but uninformative output. Invent a
scheme which can cope with missing and transposed lines. How much space
and time does your method take, as a function of the file sizes? Can it break

down completely? (See the bibliographic notes at the end of this chapter.) (0

3.2 Connecting Files by Name

Let us return to the question of how 0 conmect the external name of a file 1o
the name used within the program. Normally the e: ternal name will be the name
of a file in a file system, or perhaps some temporary fi;: assigned for the duration of
the job. Less frequently it will be an I/O device such a. a tape drive. As we said,
the traditional way to connect the external name and inter - 2l name is by a control
card; in some environments this is all that is possible. But nc one wants to have to
say

connect file1 to name 1
connect file2 to name?

compare

" just because compare can only read the internal streams 1 and 2. It’s not even the
extra work of preparing the connect commands that makes this bad, althou:! thal

iS nuisance enough; it’s that you have to remember the internal names the prc vum
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uses. How much more natural to say
compare filet file2

. and let compare worry about accessing the files.

' * Suppose we pass the actual pame of the file to the program and let the pro-
gram itself arrange the correspondence between external name and internal stream.
In effect, the program does during execution what the control cards would have
done prior to execution. Let us call the primitive that performs this task open.
open does whatever is necessary Lo access the file, and assigns it an internal file
name or number, which is returned as the function value:

internal-name = openlexternal-name, access-mode)

This internal-name is now used for subsequent calls to getlin and puttin.

Depending on the local environment, open may need other information in
addition td the external name — buffer space, access mode, and so on. We will
summarize all this exira material as access-mode, which in our programs will always
be one of the symbolic constants READ, WRITE, or READWRITE, to indicate how
the program intends to use the file. Of course if the system you are using provides
file security in some form, open has to negotiate for the access you wish.

open signals any kind of error by returning the value ERR instead of a legal _
internal name. A convenient implementation is to have the internal names be
small positive integers; open simply returns the first unassigned value. In this case
ERR would best be zero or negative.

Given open, compare can now be writlen as
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# compare — compare two files for equality
character arg 1{(MAXLINE), arg2(MAXLINE)
character line 1(MAXLINE), line2(MAXLINE)
integer equal, getarg, getlin, open
integer Infil1, infil2, lineno, m1, m2

if (getarg(1, arg1, MAXLINE) == EOF
| getarg(2, arg2, MAXLINE) == EOF)
call error("usage: compare file1 file2.")
infil1 = open(arg1, READ)
if (infil1 == ERR)
call cant(arg1)
infil2 = openlarg2, READ)
if (infil2 == ERR)
call cant(arg2)
lineno = 0
repeat (
m1 = getlin(line 1, infil1)
m2 = getlin(line2, infil2)
if (m1 == EOF | m2 == EOF)
break
lineno = lineno + 1, |
it (equal(line1, line2) == NO)
call difmsg(lineno, line1, line2)
}

if (m1 == EOF & m2 -= EOF)
call remark("eof on file 1.")
else if (M2 == EOF & mt ~= EOF)
call remark("eof on file 2.")
stop
end

cant(name) prints
name: can't open

and exits. Even though this is a trifling task. it occurs often enough 10 warrant a
Separale routine.

Most interactive systems provide the connection ability (with varying degrees
of grace). it is less common in batch environments. Clearly the function must exist
as parl of any operating system that provides a way 1o store files by name, for how
else could the program that interprets the command language operate? Yet all too
often the operation is arbitrarily restricted 1o *‘system” programs and forbidden to
ordinary users. This is regretiable, for it is important that a program be able to
attach input sources dynamically. Programs should be easy Lo use, as a matter of
good human engineering. You should only have to say ‘“‘compare these files,” and
let the program da all the work. The less setup you have to do before actually
using a program, the more likely you are to think of it as a tool.
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What can you do if you can’t connect files dynamically? One alternative is to
specify that the input files are by convention in standard plages, like input stream
numbers 1, 2, 3, ... The number of inputs can be specified by the user (the less
desirable choice) or deduced by the program.

A second variation is to choose your own internal names, which are handed to
the program as arguments. Then you say

connect file1 2
connect flle2 3
compare 2 3

You still make the connection, but at least you don’t have to remember what names
the program uses. .

A final possibility, which requires some cooperation from the local operating
system, is to specify files by name, then have a program generare the appropriate
control cards with the proper correspondence between external and internal names,
invdﬁ?ng compare as the last step. The generated control cards are then run,
ideally as part of the same job that generated them.

Exercise.3-5: Does
compare f f

work on your system? If not, why not? Should it? Why would you want to do
such an operation? O

Exercise 3-6: Modify compare so that if it is called with a single argument, it
assumes the other file is the standard input. Then you can use compare in
pipelines, like this

expand | compare f

Is this design of any value when pipelines must be implemented with temporary
files? OO

Exercise 3-7: (Harder) Extend the syntax and semantics of pipelines so borh
sources for compare can be the outputs of programs. O

3.3 File Inclusion

Once open exists, we can conveniently build tools that access any number of
files. One example is Include, which just copies its standard input to its standard
output, except that any input line that begins

inciude filename

is replaced by the entire contents of the file filename.

Many of the larger programs in this book use include, typically to include a
set of common declarations. This ensures that all routines which use a common
block get the same version, and that only one change need be made to affect all
routines. Similarly, when we compile a program, all the definitions of the symbolic
constants are picked up with an include line. Since we tend to use symbolic con-
slants wherever possible, most of our programs include a standard set of-things like
EOF and EOS, and perhaps another set peculiar to a given set of routines.  You
might also use include to insert canned control card sequences, or, in program
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testing, a script of tests; the included files would be previously developed test cases.
(And the outputs would be compared using compare!)

include is a generalization of a facility found in the PL/I preprocessor, where
lines of the form

% include 'iile;

are replaced by the contents of file. The mechanism is restricted to PL/I source
programs, however, so it is of little use for anything else. Our version can be used
for any text files. #

The general outline of include is

while (getlin(line, file) ~= EOF)
if (line starts with "include”)
include new file
else
output line

If the included file can contain further include’s, this is obviously a recursive pro-
cedure, that is, the operation is defined in terms of itself. If the language you are
using does not permit recursion (Fortran, for example), you must either simulate it
with a stack of file identifiers or disallow it completely. As it turns out, nested
include’s are useful and not at all difficult to deal with.

The other question is how o decide if the line contains include. This is best
broken into two steps — finding the first word on the line, then comparing it with
include. We write a routine getwrd which isolates the next word on the input line,
a “word” being a string of non-blank characters delimited by blanks, tabs or new-
lines. getwrd skips any leading blanks and tabs and returns the word and its length
(which we don't use here). getwrd also sets an index 1o just past the end of the
word, so if the word is include, we can use getwrd again to find the file name, by
starting to look right after the include.
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# getwrd — get non-u!ank word from in(i) into out, increment i
integer function getwrd(in, i, out)
character in(AKR), out(ARB)
integer i, j

while (in(i) == BLANK | in(i) == TAB)
=04+ 1

j=1

while (in(i) ~= EOS & in(i) ~= BLANK

& in(i) == TAB & in(i) ~= NEWLINE) {

out(j) = in(i)
i=i+ 1
j=i+1

out(j) = EOS
getwrd = j — 1
return

end

The main routine looks like this:

# include — replace include file by contents of file
character line(MAXLINE), str(MAXLINE)
integer equal, getlin, getwrd, open
integer infile(NFILES), len, level, loc
string incl "include"

infile(1) = STDIN
for (level = 1; level > 0O; level = level — 1) {
while (getlin(line, infile(level)) ~= EOF) {
loc = 1
len = getwrd(line, loc, str)
if (equal(str, incl) == NO)
call putlin{line, STDOUT)}
else {
level = level + 1
if (level > NFILES)
call error(*includes nested too deeply.”)
len = getwrdl(line, loc, str)
infile(level) = open(str, READ)
if (infile(level) == ERR)
call cant(str)

}

if (level > 1)
call closelinfile(level))

stop
end
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equal decides if the word is include; we wrote it earlier in this chapter. Notice that
it is used lo compare two sirings, not two lines — generality has paid off aiready.

We turned the if-else around from our pseudo-code version of include,
because we find it is betler 10 associate shorter segments of code with the if and
save the longer alternative for the else. That way we don’t lose track of a tiny trail-
ing else clause halfway down the page.

The primitive operation close is the opposile of open: it breaks the connec-
lion between an external name and an internal one, and frees the internal name
and any associated resources for some other use. (close is nor the rewind operation
familiar to Fortran programmers, which repositions without closing.) The reason for
using close here is that we do not know how many times a parlicular file will be
used nor how many different files there will be. Since most systems have a limit on
the number of simultaneously open files, we must explicitly close them to avoid
running out of internal names.

Although our programs are careful to close files when finished, it is con-
venient if the system closes all open files when a program terminates. This
simplifies the handling of abnormal terminations.

include also assumes implicitly a property of open which we didn’t mention
earlier — when a file is opened, it must be positioned at its beginning. This
behavior is vital for include, since most frequently a file is included several times.

Exercise 3-8: Modify include for a system where files cannot be opened by
name. Describe a systematic way to use it. O

3.4 File Concatenation

The next program we will write is concat, which cou_atenates a set of named
input files onlo its standard output. A common use for concat is to combine multi-
ple files into one, for use by another program which can only read s standard
inpul, like the filters of Chapter 2. It is also the easiest way (o prinl the contents of
a file without reformatting or any other interpretation. '

In effect, concat is a version of include that takes all its file names from an
argument list instead of from lines saying include. This makes it easier to use for
many purposes, since it requires no preparation. The code is also easier (o wrile:
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# concat — concatenate named files onto standard output
character name(NAMESIZE) '
integer getarg, open
integer fin, i

for (i = 1; getarg(i, name, NAMESIZE) ~= EOF;i =i + 1) {
fin = open(name, READ)
if (fin == ERR)
‘call cant(name)
call fcopyl(fin, STDOUT)
call closel(fin) )

]

stop
end

Observe that if there are no input files, concat does the right thing — it produces
no output whatsoever.

The actual copying is done by fcopy. Of course fcopy is essentially the exam-
ple we began with in Chapter 1, packaged as a subroutine. The only difference is
that the program reads or writes specified files instead of using the standard input
and standard output,

# fcopy — copy file in to file out
subroutine fcopy(in, out)
character buf{MAXLINE)
integer getlin
integer in, out

while (getlin(buf, in) ~= EOF)
call putlin(buf, out)

retum

end

fcopy assumes that its files are all opened, positioned and ready to go; it sim-
ply copies. This way we can use it to copy paris of files. If fcopy carefully opened
and closed its files, that would limit its usefulness. Don't put arbitrary restrictions
on programs, particularly by making them try do too many things. If you want to
open and close files, wrap another layer around fcopy, just as we did.

3.5 File Printer

One of the most useful programs that has the form “indeterminate number of
inputs, one output” is a file printer or lister. print is invoked with one or more files
as arguments; it prints the files with top and bottom margins, and, at the top of
each page, the file name, page number, and perhaps the date and time. Each new
file begins on a new page. print is used instead of concat when you want a pretly,
self-identifying listing of a set of files.

In outline, the program is
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tfor each file
get name
open{name)
fprintiname, fin) .
closelfin)

fprint{iname, fin)

initialize
while (getlin(line, fin) ~= EOF) {
if (at top)
print page header
print line
if (page full)

space to bottom
}
it (page not full)
space to bottom

This organization puts all of the code for stepping through the argument list at
one level, and all the details of counting lines for an individual file at a lower level.

The actual code for print is

# print — print files with headings
character name{NAMESIZE)
integer getarg, open
integer fin, i

for (i = 1; getarg(i, name, NAMESIZE) ~= EOF; i = i + 1) {
fin = open(name, READ)
if (fin == ERR)
call cant(name)
call fprintiname, fin)
call close(fin)
}
stop
end

fprint has to be carefuily thought out so it doesn’t botch its boundary condi-
tions. The most obvious pitfall is that the right number of lines must be printed on
each page, or the output will gradually drift up or down successive pages. Less
obvious, if a file exactly fills the last page, the next file should begin at the top of

the nexit page, with no intervening blank page (or worse, a page with just a heading
on it).
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# fprint — print file "name” from fin
subroutine fprint{name, fin)
character line(MAXLINE), name(NAMESIZE)
integer getlin, open
integer fin, lineno, pageno

pageno = 0
lineno = 0 '
while (getlin(line, fin) ~= EOF) {
if (lineno == Q) {
call skip(MARGIN 1)
pageno = pageno + 1
call head(name, pageno)
call skip(MARGIN?2)
lineno = MARGIN1 + MARGIN2 + 1
}

call putlin(line, STDOUT)
lineno = lineno + 1
if (lineno > = BOTTOM) {
call skip(PAGELEN —lineno)

lineno = 0
}
}
if (lineno > 0)
call skip(PAGELEN —lineno)
return
end

The symbolic constants MARGIN1 and MARGIN2 are the number of lines before
and after the heading line. BOTTOM is the line number of the last text line on a
page. PAGELEN is the number of lines 'n a page. For standard 8%x11 paper with

6 lines per inch, PAGELEN is 66. The margins will usually be two or three lines
each.

skip produces n blank lines; we use a liny separale routine rather than clutter
up fprint with four occurrences of the loop.

# skip — output n biank lines
subroutine skip(n)

integer i, n

for(i=ti<=ni=i+1)
call putc(NEWLINE)

return

end

Since we want the printed listing to identify the files by name, it is natural and
convenient 1o attach files (o the program dynamically by name instead of by some
control card mechanism. At the least, subroutine head should print a single line

with the file name and page number. It might also print the date and time if they
are available,
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# head — print top of page header
subroutine head(name, pageno)
character name(NAMESIZE)
integer pageno
string page " Page "

call putlin(name, STDOUT)

call putlin(page, STDOUT)

call putdec(pageno, 1)

call putc(NEWLINE)

return

end

Since putlin does nor add a newline at the end of the string it is putting out, you can
make several calls to putlin (o build up one output line, as we did here to get the
name and page number on the same line.

Once the basic tool is working, many refinements are possible, and some are
very desirable. You might consider adding the capability 1o

e convert tabs to spaces

change default paper length, margins, line spacing, tab stops, eic.
fold long lines

number lines

e Start and stop on specified pages

e print multiple files in parallel

e print multi-column output

All of these are easy except for the last, multi-column printing. That can be done,
of course, by accumulating a whole page before printing any of it.

When you write a program, there is a great lemptation to add more and more
“features” like these, little things that it will do for you. But beware — unless the
features work together in a uniform way, the result is going to be a grab-bag of
unrelated capabilities, most of which won't gel used because nobody can remember
them. If you have to look up how 10 use a program for even the simplest applica-
tions, you know you've gone too far. When in doubt, treat “feature” as a pejora-
tive. (Think of a hundred-bladed Swiss army knife.)

We have found the following syntax for optional arguments 10 be convenient.
Optional arguments are usually a single letter, or at least a short string, They are
introduced by a character which is unlikely to begin a file name, so arguments can
be distinguished from file names. (We use a minus sign.) If print provides multi-

column output, for example, it might be specified by the argument —cn where # is
the number of columns.

print —c4 filet file2 ..

calls for printing of the files in 4-column format. By processing the arguments
strictly left to right, the program permits you to set up parameters for a file, print it,
then selectively alter them for the next file.
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Once you have optional capabilities, the question arises of what to do when a
particular option is left unspecified. This should never be considered an error;
instead some default value should be chosen. Selecting the right default behavior of
a program may seem like a trivial concern, but if you do it wrong, everyone suffers
(or your program isn’t used). Sometimes’ the decision is obvious: page lengths are
pretty much standardized, for example. But others are less clear: should print fold
very long lines into several shorter ones by default? If so, where? Keep in mind
that you are building tools, and make them as useful and as easy 1o use as possible.
There is a general principle that things that are said often should be concise; there-
fore the defaults should reflect the most common usage. Furthermore, defaults
should be set so the user who doesn’t know any options gets reasonable behavior.
Try not to surprise your users, and don’t limit rheir options.

Exercise 3-9: Implement some of the enhancements of print, accessible through
optional arguments. Before you do, try to predict which will be heavily used
and which not at all. Afler your new version has been used for a while, deter-
mine how accurate your predictions were. What options should print choose by
default? O

3.6  Multi-stage Processing: Pipelines

This book is about tools, so by now it has probably occurred to you that with
a little care you could use print as a tool to print the output from any program. If
.this were easy, then no other program would ever have to contain code for things
like muliti-column printing — one version of print could serve all comers. '

Suppose we modify print slightly so that if it has no file name arguments, it
reverts to taking its input from the standard input. This is an easy task because of
the way we organized it in the first place. We need only add a test for no argu-
ments and an empty file name for the standard ifput.

# print (default input STDIN) — print files with headings
character name(NAMESIZE)
integer getarg, open
integer fin, i
string null ™"

for (i = 1; getarg(i, name, NAMESIZE) ~= EOF; i = i + 1) |
fin = open(name, READ)
if (fin == ERR)
call cantiname)
call fprint{iname, fin)
call close(fin)

if (i == 1) # no files specified
call fprintinull, STDIN)

stop

end

.Any program wlrhich wanis to use print as a post-processor need only arrange
that its output be d_|re.c1ed to the standard input of print. print itself should not.
know or care that it is being used by some other program. With the pipeline

'
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notation introduced in Chapler 2, for instance, we merely say

program ... | print

This lets any program have formatted output, within the capabilities .of print. Ar_td
since print will have wide use, some effort can be lavished on enhancing its capabil-
ities and making it efficient.

Just how to arrange a pipeline varies quite a bit from system to system.
ldeally, program and print should be concurrent processes, connected by the.sys-
tem, neither knowing the other is running. Less desirable, but more likely to be
feasible, they can communicate via temporary files. Suppose we adopt the notation

prog >file

to mean that the standard output of prog is to be coilected on file, which is created
if necessary (preferably by the system, automatically and without the program being
aware of il.) Then we can simulate the pipeline with

prog >tempfile
print <tempfile
remove tempfile

where <file has the analogous meaning of taking the standard input from file, and
remove causes tempfile 10 be discan.:led‘ Temporaries are clumsier than pipes, but
you can live with them, especially if your local operating system is gracious about
creating files upon demand. ‘

Readers who are sensitive to questions of efficiency may wonder if it is
economical lo use two programs when one would serve. The answer depends on
the true costs involved, which are often not properly estimated. Most people who
lalk about “efficiency” are concerned primarily with how much machine resources
are used in the final run or in hands-off production, not with how much “people”
and machine time is consumed in all the compilations, debugging and other false
starts that prepare for the final run. Throughout this book we consistently take the
view thal people cost a great deal more than machines, and that the disparity will
increase in the future. Therefore the most important consideration is that people
get their jobs done with a minimum of fuss and bother.

One way 10 help this happen is to provide 10ols. It is not sufficient, however,
lo have a large collection of “utilities,” if each is hard 10 use, deals with just one
special case (even though it has a lot of “features™), and cannot be connected to
other 100ls in any useful way. Tools must work together. One advantage of the
pipeline is that it encourages people who build programs to think in terms of how
programs can be connected 10 other programs. This in turn forces a certain degree

of standardization, for a program which will not interface cleanly to other programs
cannot share a pipeline with them.

A second consideration in favor of the pipeline is that it encourages the con-
struction of smaller programs to do simpler functions. These smaller programs are
much easier o write, debug, document, maintain-and improve independently than
they would be if combined into a single monster. And of course separate programs
can be combined in novel ways, something which is hardly possible if they have
already been combined in some “obvious™ way. "
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A final consideration is that many jobs will not get done at all unless they can
be done quickly. Efficiency is hardly of importance for a temporary hookup meant
to be used only a few times. Should a particular organization of tools prove so use-
ful that it begins to consume significant resources, rhen you can consider replacing it
with a more efficient version. And you are way ahead at this point, for you are
writing a program that has precise specifications and that has been shown to be use-
ful. This is the best formula known for ensuring the success of a programming
effort.

Exercise 3-10: Determine if it is possible in your operating system to construct a
program which reads an input line describing a pipeline and arranges the neces-
sary operating system commands to make the operation happen. Build it if pos-
sible. If not, what facilities are lacking, and bow would you provide them most
easily? OO

. 3.7 Creating Files Dynamically

We come now to an area which is of great importance in programs that
interact with their environment — the ability to creare files or information streams
dynamically, that is, while the program runs. makecopy illustrates the problems.

makecopy f g

copies file f to file g. g is created if necessary: if it already exists, its contents are
overwritten.

How do we create the output file? Since each operating system has a different
syntax for this operation, we will assume that the operation of creating a file is done
by a primitive function create, which you will have to provide in the appropriate
form on your machine. Iis use is

internal-name = createlextermal-name, access-mode)

create and open are very similar; the external name is the name that the file is to
have in the external world; the internal name is again for use by getlin and putlin.
As with open, create may well need further information, such as access permis-
sions; we summarize all this in access-mode. A create of a file that already exists
should first remove the old version or truncate it to zero length; this ensures that
re-using a file is not a special case. If the file creation fails for any reason, create
returns ERR.
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# makecopy — copy one file to another
character iname(NAMESIZE), oname(NAMESIZE)
integer create, getarg, open
integer fin, fout

if (getarg(1, iname, NAMESIZE) == EOF
| getarg(2, oname, NAMESIZE) == EOF) :

call error("usage: makecopy input output.")

fin = open(iname, READ)

if (fin == ERROR)
call cant(iname)

four = create(oname, WRITE)

if (fout == ERROR)
call cant{(oname)

call fcopy(fin, fout)

call close(fin)

call close(fout)

stop

end

Exercise 3-11: Many operating systems offer a “copy” command like makecopy.
Sometimes if the tatget file already exists, the command either refuses to
proceed, or requests confirmation 'before destroying the old contents. Is this
desirable behavior? What should happen with

makecopy f f
O

3.8 Putting it All Together: archive

As the final example of this chapter, let us construct a program which requires
all of the file system primitives we have discussed, and which could profit from a
few others not yet mentioned. archive is a library maintainer whose purpose is 1o
collect sets of arbitrary files into one big file and to maintain that file as an
“archive.” This often saves storage space and, more important, gives you a handle
by which you can deal with a whole group of related files at once. Files can be
extracted from the archive, new ones can be added, old ones can be deleted or
replaced by updated versions, and data about the contents can be listed. Thus an
archive can provide a library service for other programs like loaders, compilers, and
SO on.

archive is invoked by the command line
archive command archname optional filenames

command is a single-letter command which specifies what operation we want to per-
form on the archive archname. The optional filenames specify individual files that
participate in the action. The possible commands are
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delete named members from archive

print named members on standard output
print table of archive contents

update named archive members or add at end
extract named files from archive

x o 0T a

To make archive easy 10 use, we adopt the rule that if no files are named, the
action is done on al/l files in the archive:

archive t arch

lists the entire table of contents. But if any files are explicitly named, they are the
only ones that take part in the action. For instance,

archive t arch f ¢

lists only information about f and g. archive also provides a warning for each expli-
citly named file that doesn’t exist in the archive. These are services that cost little
to implement but add much 10 the human engineering of the program.

The archive program is a natural_for what we like to call *left-corner” con-
struction. The idea is to nibble off a small, manageable corner of the program — a
part that does something useful — and make that work. Once it does, more and
more pieces are added until the whole thing is done. If care is taken with the origi-
_ nal design, later pieces should fit in relatively smoothly. Debugging and testing are

easier, for the pieces are only added one at a time. And of course if you decide 10
scrap the whole thing at some point, you are only scrapping that fraction built so
far.

The beauty of left-corner construction is that the program does some part of
its job very early in the game. By implementing the most useful functions first, you
get an idea of how valuable the program will be before investing any time in the
difficult or esoteric services (which often prove to be unnecessary or unwanted any-
way). You also ensure that the simpler functions are handled simply, which leads
to greater efficiency in the end.

The dirst function to onsider is adding files to an archive. (Creating a new
archive can be done by making an empty archive, thén adding files to it.) Until we
can create and add to an archive, no other operation is very interesting anyway.
Thus we come naturally to the question of what the format of an archive file should
be. There are at least two possibilities. The first is to have a “dictionary" at the
beginning of the archive, which lists the files contained, plus other useful informa-
tion about them — where they are in the archive, how big they are, when they
were archived, and so on. The second method, which we will use, is to distribute
this dictionary information throughout the file, one piece per file. Each approach
has its advantages and disadvantages; one of the exercises is concerned with mak-
ing a delailed comparison. Before reading further, you might think about what is
likely to be easy and what will be hard for each organization. '

As always, the local environment can radically affect the merits of the two
organizations, by helping or hindering various operations. Furthermore, any conclu-
sions we draw must take into account how the program is actually used, which’

often depends on what it does well, which depends in turn on the organization, and
S0 on.
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With the centralized dictionary, an operation like listing the table of contents
is likely to be faster, because the information is concentrated. This may also allow
better error checking, because all the information is available at one time. It also
simplifies any task in which the data must be accessed in a different order from the
one in which they are stored. On the negative side, however, you really have to be
prepared to deal with the dictionary all at once, which can limit the number of
members in an archive. With a distributed dictionary, operations on the table of
contents will in all probability be slower, unless your system lets you move quickly
to any point in a file without reading the intervening data. Even with this facility
the time 1o access a particular file will be longer than with the centralized diction-
ary, because you have 1o at least loek at dictionary entries until you find the one
you want. But this slowdown will be small in comparison (o the time required 1o
aclually process the file.

After some debate, and having once built a centralized dictionary version, we
decided 1o write archive with a distributed dictionary. In retrospect, this seems like
a clearer and less complicated organization, with no significant loss of efficiency.

Since we are‘using a distributed dictionary, each entry in an archive begins
with a header, containing as a bare minimum the file name and some reliable way
to distinguish a header from the contents of an archive member. The archive looks
like this:

header for file 1
file 1
header for file 2.
file 2

Given this picture, we can see immediately how to implement some operations. For
example, to list the file names, we need merely find the headers and print the
relevant parts. Other operations are harder, and depend on what services are pro-
vided by the local operating system.

The top level of archive is a multi-way branch that calls the routine appropri-
ate for the command. We will show it all, even though at the early stages it need
only call those routines currently ‘written.
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# archive — file maintainer
character aname(NAMESIZE)
integer getarg
integer comand(2)

if (getarg(1, comand, 2) == EOF
| getarg(2, aname, NAMESIZE) == EOF)
call help
call getins
if (comand(1) == UPD)
call update(aname)
else if (comand{1) == TBL)
call table(aname)
else if (comand(1) == EXTR | comand(1) == PRINT)
call extrac(aname, comand(1)) -
else if (comand(1) == DEL)
call delete(aname)
else i
caill help
stop
end

The extract and print functions are combined in one routine because they will differ
only in what file the output is to be sent to. We decided not 1o use the more read-
able symbolic constants UPDATE, TABLE, and so on for the commands, even
though they would be more natural, because many computer systems permit letters
only in a single case, and there would then be no way (o distinguish them from
update and table. We try (o avoid these case conflicts in any given program So our
programs will move unchanged to such systems.

help is called when archive has been used incorrectly. For a program that is
easy to descrive, the most useful diagnostic is a brief synopsis of how to use it.

# help — diagnostic printout
subroutine help

call error("usage: archive {dptux} archname [files].")
retum ‘
end

This message is usually enough to remind the user of what to sgay.

The routine getfns feiches the file name arguments from the command line
and collects them in an array fname; nfiles is the number of file arguments. getfns
also checks the argument list for duplicates and overflow.
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# getfns — get file names into fname, check for duplicates
subroutine getins
integer equal, getarg
integer i, j
include carch

errcnt = Q
for{i = 1;i <= MAXFILES;i =i+ 1)
if (getarg(i+ 2, fname(1, i), NAMESIZE) == EOF)
break
nfiles =i — 1
if (i > MAXFILES)
if (getargli+2, j, 1) ~= EOF)
call error("too many file names.")
for(i= 1,i <=nfiles;i =i+ 1)
fstat(i}) = NO
for(i = 1.i < nfiles; i =i + 1)
for{j=i+ 1;j <=nfiles; j =]+ 1)
if (equal(fname(1, i), fname(1, j)) == YES) {
call putlin(fname(1, i), ERROUT)
call error(": duplicate file name.")
}
return
end

Since Fortran stores two-dimensional arrays by column instead of by row, we access
the Ith file name as fname(1, i) rather than fnameli, 1) so the characters of a name
will be contiguous.

A note to PL/I programmers: fname(1, i) is a one-dimensional array, in this
case a cross-section of the two-dimensional array fname. Fortran doesn’t know
aboul such matiers, so we are obliged to write fname(1, i), which looks like a single
element, when in fact we mean the whole ith column. So in PL/I all references in
getfns of the form fname(1, i) must be changed to fname(*, i). This is another of
those language difficulties we cannot always avoid (although we try), so we do our
best to point them out in advance.

archive is eventually going o print a message about any files which have been
named but not seen in the archive. fstat is used to record this information: if
fstat(i) is NO, the ith file has not yet been seen in the archive. These variables are
needed by several routines, so they are kept in a common block carch, which is
inserted where needed by an include statement.

common /carch/ tname(NAMESIZE, MAXFILES), fstat(MAXFILES), nfiles, errcnt

character fname # file arguments _

integer fstat # YES if touched, NO otherwise; init = NO
integer nfiles # number of file args

integer errcnt # error count; init = 0

errcnt is used (o count errors; it is used by several routines, and is thus best kept in
common as well. '
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Notice that the main routine of archive does not know about this common
block, because it doesn’t have to. Fortran common is a convenient way (o deal with
a group of related variables, but it is also dangerous since it is less disciplined than
passing arguments, and can make it hard to determine what routines are using what
variables. In a language with more powerful data structure facilities than Fortran,
an alternative is to put a group of related variables in a sstucture, and pass that as a
single argument to routines that need access. We don’t avoid Fortran common or
PL/I external variables, but we are careful to restrict usage as much as possible to
those routines that “need to know.” (In some implementations of Fortran, the main
routine may need 10 contain carch anyway.)

The line
call putiin{fname(1, i}, ERROUT)

is the first explicit mention of the file ERROUT, which is used for diagnostics. We
assume it is automatically assigned, like STDIN and STDOUT, when the:program is
started. By definition error and remark write on ERROUT. Although ERROUT
might be synonymous with STDOUT, generally it should be distinct; this way infor-
mative but not disastrous messages can appear without cluttering up the main out-
put of a program, or disappearing down a pipeline.

Updating an archive breaks cleanly into two stages: replacing existing
members with new versions, and adding to the end any files named as arguments
but not present in the archive. We assume that the only way to add data to the end
of a file is to copy the existing information to a new file, add the new data to the
end of that, then copy the whole thing back 1o the original. Even though some sys-
tems allow you 10 add at the end or rewrite in the middle of a file, it is unwise 1o do
so. It is safer not to alter an existing archive until you're sure that the replacement

is complete and correct.
The process of updating can be summarized as

open archive (create if new)
create temporary file

update existing archive contents onto temporary
for each new file {

create header and copy to temporary
;:opy file to temporary

it no errors
move temporary bacli to archive

These operations are controlled by update.
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# update — update existing files, add new ones at end
subroutine update(aname)
character aname(NAMESIZE)
integer create, getarg, open
integer afd, i, ttd
include carch
string tname "archtemp"

afd = open(aname, READWRITE)
if (afd == ERR) # maybe it's a new one
~ afd = create(aname, READWRITE)
if (afd == ERR)
call cant(aname)
tid = create(tname, READWRITE)
if (tfd == ERR)
call cant(tname) _
call replac(aftd, tid, UPD, errcnt) # update existing
for{i = 1;i <= nfiles; i =i + 1) # add new ones
if (fstat(i) == NO) (
call addfil(fname(1, i), tfd, errcnt)
{stat(i} = YES

call close(afd)
call close(tfd)
if (errcnt == 0)
call amove{tname, aname)
else '
call remark("fatal errors — archive not altered.")
call remove(tname)
return
end

update first tries to open the archive; if this fails it tries to create it, under the
assumption that it must be a new archive. Only if both operations fail does update
give up.

archive is designed to identify as many errors as possible per run. update
processes all the files in the argument list, even though it may have encountered an
error irying (o open one of them. errcnt counts the errors; the archive is updated
only if errcnt is zero at the end of the run. replac copies an archive onto the tem-
porary, updating any files specified. addfil adds a single file to the end of the tem-
porary if it can. (We will return to replac and addfil shortly.) remove is the com-
plement of create, a primitive for removing a file forever.

amove moves the information from the temporary back onto the archive file if
no errors have occurred. In the worst case, this has to be done by physically

removing the old archive, creating a new one, then copying the temporary back
onto it, like this:
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# amove — move namel to name2
subroutine amove(name 1, name?2)
character name 1(ARB), name2(ARB)
integer create, open
integer 1d1, td2

fd1 = open(name 1, READ)
if (fld1 == ERR)
call cant(name1)
fd2 = create(name2, WRITE)
if (fd2 == ERR)
call cant(name?2)
* call fcopy(td1, td2)
return
end

In a different environment, you might be able merely 10 rename the temporary to be
the new archive. This is a useful primitive to have available, for it is clearly more
efficient than physically copying the entire file, and it ak 9 minimizes the length of
time during which the permanent copy of the archive is in an incomplete state. We
use “‘move” for any file transfer that could be effected by renaming, and “‘copy”
only when we explicitly want the source (o remain unaltered.

Let us deal with addfil next, since it is relatively self-contained.

# addfil — add file "name" to archive
subroutine addfiliname, fd, errcnt)
character head(MAXLINE), name(ARB)
integer open
integer errcnt, fd, nid

nfd = open(name, READ)

if (nfd == ERR) {
call putlininame, ERROUT)
call remark(": can't add.")
}errcnt = arrcnt + 1

if (errent == 0) {
call makhdr(name, head)
call putlin(head, fd)
call fcopylntd, fd)
call close(ntd)

return
end

makhdr makes the uniquely identifiable header record that preccdes each
archived file. For testing, any printable string is quite adequale. We use —h-—, fol-
lowed by a blank and the filename. For ultimate use, you will probably wani to add
at least the'date and time the file was archived.
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Further contents depend on the iocal system. The main consideration is to
eliminate any possibility of confusing a header with the contents of an archive
member. If it is easy and fast to find out the size of a file in convenient units, such
as the number of characters or the number of records, the header can contain the
file size as one of its entries, and there is no difficulty in deciding what is a header
and what is text inside an archive. Our version of makhdr includes a character
count in the header, separated from the file name by a blank.

# makhdr — make header line for archive member
subroutine makhdr(name, head)
character head(MAXLINE), name(NAMESIZE)
integer fsize, itoc, length
integer i
string hdr "—h—"

call scopy(hdr, 1, head, 1)

i = length(hdr) + 1

head(i) = BLANK

call scopy(name, 1, head, i+ 1)

i = length(head) + 1

head(i) = BLANK

i =i+ 1+ itoclfsize(name), head(i+ 1), MAXCHARS)
head(i) = NEWLINE -
head(i+ 1) = EQOS

return

end

makhdr uses length and itoc, which we wrote in Chapter 2. scopy is a basic
Siring copying routine:

scopylfrom, i, to, j)
copies the (sub)string of from that starts at i to to(j).

# Scopy — copy string at from(i) to tolj)
subroutine scopy{from, i, to, j)
character from(ARB), to(ARB)
integer i, j, k1, k2

k2 = |

for (k1 = i; from(k1) ~= EOS; k1 = k1 + 1) |
to(k2) = fromik1) _
;(2 = k2 + 1

tolk2) = EOS

return

end

' ‘“_rhe funczic_m fsize returns the size of a file in characters. Ideally this wili be a
primitive, a service of the local file system. The less favorable (but common) case
1S that you can only find out how big a file is by reading through it. Although this
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is costly, if you extract contents more than you replace them you can endgre the
extra overhead even with double reading. Remember, archive reads and writes the
eniire archive twice to update it; the incremental cost of reading a few of the
members one more time is small in comparison.

# {size — size of file in characters
integer function fsize(name)
character getch *
character ¢, name(ARB)
integer gpen
integer fd

fd = open(name, READ)
if (fld == ERR) .
fsize = ERR
else {
for (fsize = O; getchlc, fd) ~= EOF; fsize = fsize + 1)

call close(td)
}

return

end

fsize reads single characters from the file with getch, which is directly analogous 1o
getc, except that it uses an explicit file instead of the standard input STDIN. Thus
yetelc) is identical 1o getch(c, STDIN), and in fact getc might well be implemented
us a call to getch.

Exercise 3-12: How would you test the part of archive built so far? What are
some critical boundaries? O :

Exercise 3-13: fsize opens the file anew, even though it has already been opened
by addfil. Does this work on your system? Should it? If it doesn’1, how would
you rewrite fsize 10 ge¥ around the problem? What primitive operations are
needed? O

Exercise 3-14: The subroutine update tries 10 copy a file that has been created
but which has never had anything written on it. What is a reasonable behavior
in this case? What happens on your system? What primitive should deal with
the situation if the system does something unreasonable? O

3.9 More Archive Commands

Now that we can create an archive and put files in it (and presumably have
carefully tested that much), can we print the table of contents? That seems to be
the next easiest function to add in a left-corner approach. Recall that archive is to
list the files named as arguments, or all the files if there are no file arguments.

The 1able of contents operation is basically this: '
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open archive
for each file in archive |{
if (header matches any argument)
print header information
skip over archived file

}

warn about any that couldn’t be found
This is done by table:

# table — print table of archive contents
subroutine table(aname)

character aname(NAMESIZE), in(MAXLINE), Iname(NAMESIZE)

integer filarg, gethdr, open
integer afd, size

afd = open(aname, READ)
if (ald == ERR)
call cant{aname)
while (gethdr(afd, in, Iname, size) ~= EOF) {
if (filarg(lname) == YES)
call tprint(in)
call fskip(afd, size)

call notfnd
return
end

95

table opens the archive for reading only, so you can read an archive that you might

nol have permission o alter.

tprint prints the desired information from the header; our dummy version

prints the entire header line, which is just what we need for testing the program.

# tprint — print table entry for one member
subroutine tprint(buf)
character buf(ARB)

call putlin(buf, STDOUT)
return
end

gethdr tests whether the next input is a header; if so, il returns the header.
the file name and the size. If gethdr fails 1o see an archive header immediately,
something has gone awry: either the file in question is not an archive or ils contents
have been corrupted. In any case. archive can proceed no further, so gethdr cxiis

with an error message.



96 SOFTWARE TOOLS CHAPTER 3

# gethdr — get header info from fd
integer function gethdr{fd, buf, nme, size) :
character buf(MAXLINE), c, name(NAMESIZE), temp(NAMESIZE) .
integer ctoi, equal, getlin, getwrd
integer td, i, len, size
string hdr "—h—"

if (getlin{buf, fd) = = EOF) {
gethdr = EOF
retum

)
| =1 :
len = getwrd(buf, i, temp)
if (equal(temp, hdr) == NO) °
call error("archive not in proper format.”)
gethdr = YES ;
len = getwrd{buf, i, name)-
size = ctoi(buf, i)
retum '
end

gethdr uses getwrd, which we wrote for include, and equal, which we wrote for
compare, rather than inventing new routines for the same job. And it uses ctoi to
convert the size as a character string into a number. We are beginning to accumu-
late a nice library of small utility functions.

makhdr and gethdr are independent bl‘ the sbeciﬁc header chosen; if you
don’t care for —h—, the literal string is all that need be changed to instail a new
one. :

fskip uses the size returned by gethdr to skip over the archived file: if all is
consistent, this shouid leave the file positioned at a new header for the next call of
gethdr. In a congenial system tskip will be a primitive that skips without reading
the intervening data. For use in more hostile environments, here is a version that
reads the right number of characters:

# fekip — skip n characters on file td
subroutine fskip(td, n)
character getch
.character c
integer 1d, i, n

for(i= 1 i<=mmpi=i|4+ 1)
if (getch(c, fd) = = EOF)
_ " break
retumn
end

filarg tests whether the file name from the archive matches any of the file
names in the argument list, using equal to do the string comparison. If there are no
file arguments, filarg also considers that to be a match.
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# filarg — check if name matches argument list
integer function filarg(name)
character name(ARB)
integer equal, getarg
integer i
include carch

i (nfiles <= 0) {
filarg = YES
;etum
for(i=1;i <= nfiles;i =i+ 1)
if (equal(name, mame(1, i)) == YES) {
fstat(i) = YES

filarg = YES
return
}

filarg = NO

retumn

end

fstat(l) records whether the ith named file argument has ever been “found.” Ini-
tially NO for all arguments, the corresponding position is set to YES if filarg finds a -

maltch. This list is used by notfnd to print names which were arguments but not in
the archive.

# notfnd — print "not found" message
subroutine notind
integer i
include carch

for (i = 1;i <= nfiles; | = i + 1)
if (fstat(i) == NO) {
cal putlin(fname(1, i), ERROUT)
call remark(": not in archive.”)
errcnt = errcnt + 1

}
-return
end

It also sets the error count, but that isn’t used by table, since it hardly matters
when we are not attempting to alter the archive.

The next step in the incremental construction is extracting — to get the infor-
mation back out of the archive once we put it in. The logic is clear enough:
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open archive
for each file in archive
if (it's to be extracted) |
create fie
copy from archive to file

}

. warn about any that couldn’t be extracted

We also allow archive contents to be collected on the standard output instead of in
files. The p command lets you list members, or extract them with different names
from those they were stored with. For example,

archive p arch file1 >file2

oxtracts file1 into file2. Of course to permit this usage, the program must avoid
verbiage like

.successfut extraction
1 files extracted
contents of file1:

and so on. This is partly good practice for a tool-using environment, where gratui-
tous comments interfere with the smooth interconnection of programs, and partly
good design for people, who soon get weary of programs that talk too much.
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# extrac — extract files from archive
subroutine extrac{aname, cmd)
character aname(NAMESIZE), ename(NAMESIZE), in(MAXLINE)
integer create, filarg, gethdr, open
integer afd, cmd, efd, size
include carch

afd = open{aname, READ)
if (afd == ERR)
call cant(aname)
if (cmd == PRINT)
efd = STDOUT
else
efd = ERR
while (gethdr(afd, in, ename, size) ~= EOF)
if (filarg(ename) == NO)
call fskiplatd, size)
else |
if (efd ~= STDOUT)
efd = create(ename, WRITE)
if (efd == ERR) {
call putlin(ename, ERROUT)
call remark(": can't create.")
errcnt = errcnt + 1
call fskip(afd, size)

+ else |
call acopylafd, efd, size)
if (etd == STDOUT)
call closelefd)
)

call notfnd
return
end

Again, most of the complexity is in error detection and recovery, not in the opera-
lion itself,

acopy copies a member of an archive onto a file, using the size information
from the header, instead of looking for the next header. (The test for EOF is a
safety measure.) That way it can be used 10 copy any kind of information at all — it
is completely independent of the content of the archived files.
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# acopy — copy size characters from fdi to fdo
subroutine acopy(fdi, fdo, size)
character getch
character ¢
integer fdi, fdo, i, size

for(i=1i<=size;i=i+ 1){
if (getch(c, fdi) == EOF)
break
;:all putch(c, fdo)
retum
end

putch is the complement of getch; it puis characters on a given file.

Deleting is identical to updating except that no file replaces a deleted file: we
can use replac for both the u and d commands.

# delete — delete files from archive
subroutine delete(aname)
character aname(NAMESIZE), in{MAXLINE)
integer create, open
integer afd, tfd
include carch
string tname "archtemp”

it (nfiles <= 0) # protect innocents
call error("delete by name only.")
afd = open{aname, READWRITE)
if (afd == ERR)
call cant(aname)
tfd = create(tname, READWRITE)
if (tfd == ERR)
call cant{tname)
call replac(afd, tfd, DEL, errcnt)
call notind
call close(afd)
call close(tfd)
if (errcnt == Q)
call amove(tname, aname)
else
call remark("fatal errors — archive not altered.")
call remove(tname)
retum
end

We have made the command
archive d archname

illegal — it does nor delete all the files from the archive. If you really want 1o do
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that, you have to remove them explicitly. It is a small refinement, but it makes the
program safer.
Finally, here is replac.

# replac — replace or delete files
subroutine replac(afd, tfd, cmd, errcnt)
character in(MAXLINE), uname(NAMESIZE)
integer filarg, gethdr
integer afd, cmd, errcnt, size, tfd

while (gethdr(afd, in, uname, size) ~= EOF)
if (filarg(uname) == YES) |
it cmd == UPD) # add new one
call addfil(uname, tfd, errcnt)
call fskip(afd, size) # discard old one

}

call putlin(in, ttd)
call acopy(afd, tfd, size)

else {

return
end

replac uses addfil to copy the new version of a file to the temporary, fskip to skip
over the archived version, and acopy to copy members that are unchanged.

By now it may have struck you that about half the code in archive is con-
cerned with error-checking. Many programs can afford to be somewhat cavalier
about protecting users from the operating system and their own innocence, because
even if the program is badly used, the results aren’t likely to be calamitous. But
error handling is particularly important for a program like archive, because it
changes files rather than simply making new ones. It overwrites existing files with
supposedly correct new contents, so it had better be cautious. For example, it may
seem paranoid to abort an entire updating operation merely because one of the files
couldn’t be accessed. But safety first! It’s better 10 have to run it again than to risk
destroying an archive. :

3.10 Program Structure

At this point you may well be lost, not because archive is a complicated pro-
gram but because there are an awful lot of pieces. Many of the pieces are old
friends, however. These include the file maintenance primitives open, create,
close and remove; the input and output primitives getlin, getarg and putlin; the
error printers cant, error, and remark; and utilities like ctoi, itoc, length, scopy,
equal and getwrd. You should learn to think of these low level assistants as
language extensions, facilities that help you express common operations succinctly,
and without distracting you from the real task at hand.

The remaining complexity can be grasped by writing out the hierarchy of sub-
routines written specifically for archive. This tells you how the program is organ-
ized by showing what routines call on what others to do the job. It turns out that
the hierarchical structure of a program changes much less from its earliest design
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than does the code, so a program hierarchy is a useful document to supplement the
actual program listing — unlike flowcharis, which merely echo the code and quickly
get out of phase with it as changes are made. Some people even draw “‘structure
charis™ showing the hierarchy of calls and the arguments passed and returned on
each call.

For archive we can write the hierarchy as

archive
help
getins
update
replac
gethdr, filarg, fskip, addfil, acopy
addfil
. makhdr, fcopy
amove
table
gethdr, filarg, fskip, notfnd, tprint
extrac ] ’
gethdr, filarg, fskip, notind, acopy
delete

replac, notfnd, amove

This says that archive makes calls on help, getfns, update, table, extrac and
delete (in addition to various low level routines mentioned above) to do its job.
update in turn calls replac, addfil, and amove; replace and addfil call still other
routines, and so on. We list some of the sets horizontally, separated by commas,
instead of vertically, to save space. We also don’t bother to show an expansion
more than once (note the instance of reépiac in the fast line), for much the same
reason that we leave out all the low level routines: it just adds clutter. We will fre-
- quently present hierarchies for the larger programs, to help you keep track of the
organization.

The hierarchy reveals several things. First, the overall structure of archive is
clearly just a case statement, making a call on one of the four cases update, table,
extrac or delete. Each case is expanded in terms of a handful of action routines.
gethdr, filarg, etc., play a role similar to open, getlin, and the other primitives —
they permit the basic functions that must be performed to be expressed at a more
abstract (and readable) level, as well as insulating archive from low level implemen-
tation decisions. At each level the lower routines are used as building blocks that
perform some function, with relatively little dependence on how they perform it.

Notice that no one routine must know about more than half a dozen immedi-
ate subordinates. It is a good rule of thumb that a person can’t properly keep track
of more than about seven things at a time, so this hierarchy gives some reassurance
that no part of the design will be 100 cifficult to grasp. Finally, it is worth observing
that operations as diverse as update, table, and delete make use of essentially the
same action routines in different sequences. This is the reward of orderly design,
that common operations can be identified and singled out as basic actions. Pro-
grams built this way are easier to get right and to maintain, because the strategy for
each case (update, tabie, eic.) and the details of each action (gethdr, filarg, etc.)
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can all be dealt with separately. _
Exercise 3-15: Now that you have seen archive with a distributed dictionary,
design and implement a version with the dictionary at the beginning. Compare
the advantages and disadvantages. Observations about “efficiency” shouid be
supported by empirical studies of the operations people really perform on an
archive. O
Exercise 3-16: archive could be simpler and faster if the operating system pro-
vided ceriain primitive operations. We mentioned renaming the lemporary
instead of copying, knowing how big a file is without having to read it, moving
1o an arbitrary point in a file without reading intervening material, and selec-
tively overwriting parts of a file. Consider these and other primitives that might
be useful. Do they exist in your system? Could thev? How do these primitives
affect the dictionary-at-the-front version? O :

Exercise 3-17: In most systems, an archive program saves space because it col-
lects small files into one big one; this eliminates the breakage or fragmentation
that normally comes from putting each file into an integral number of blocks or
tracks on some secondary storage device. Theoretically, what is this saving?
Measure and see if the theoretical prediction is observed in practice. [

Exercise 3-18: archive produces no warning about
archive u arch

Should it? If you could find out the date and time a file was last changed, what
would be a useful interpretation for this command? Should there be separate
commands for creating a new archive and updating an existing one? Should
there be a warning that a new archive is being created? O

Exercise 3-19: I you work in an interactive environment, add-a *verbose”
.option, so archive will print out messages about whal it is doing as it runs, and
offer you the choice on each file of having the command operate or nol operate.
1|

Exercise 3-20: How can you add a file t 10 an archive that already contains an {?
Should multiple occurrences be allowed in an archive? If you concatenate two
archives with concat, is the result a valid archive? [

Exercise 3-21: archive provides no way to specify the position of a file added to
an archive. Does it need one? What syntax would you use? Implement it. O

Exercise 3-22: Qur archive files are always made as small as possible, by recreat-
ing them when they change. Some systems provide programs rather like our
archive that don’t reclaim space unless explicitly requested. Discuss the merits
and demerits of such an organization. O

3.11 Summary

This chapler has discussed how programs interface to their environment, par-
ticularly how they access file information. Few systems are regular and systematic
in the interface they present, and of course there are great differences between sys-
tems. We have tried to write the discussion and the programs in terms of a handful
of primitive operations that are likely to exist or #i least be implementable on most
operating systems. Describing system interactions exclusively with such primitives
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is the most effective approach we know of for coping with the bewildering complex-
ity of typical operating systems.
The file system primitives we use are:

open Connect the external name of an information stream (a “file”) to an
' internal name which is then usable by the program. Position the file at
the beginning. This operation is traditionally available by control card on
most systems. Extremely useful but less often available is the ability to
open a file by its external name from within a running program. Opening

a fresh instance of an already open file should be permissible.

create Create a new file, preferably by name, from within a running program. If
the file already exists, the old version should be removed or truncgted and
overwritien. create is a crucial primitive, but the least likely to be avail-
able. Even major modern operating systems still do not provide it.

close  Break the connection made by open or create. Mark the end of the file
if necessary, so thal subsequent reads will find an EOF.

remove Remove a file from the file system.

We assume that when a program is started by the operaling system it already has
the three files STDIN, STDOUT and ERROUT open and ready to go. We presume
that when a program terminates for any reason, any open files are closed gracefully.
We have ajso assumed that a file is made the right size by the system — if you
write more information on it, it gets bigger automatically. It seems intuitively obvi-
ous that a file should be as big as it is, and that it should get bigger as you put more
into it, but on all too many systems you have to arrange this yourself, clumsily.

One mark of a good operating system is that all of these operations are avail-
able, uniform, easy to use, and applicable without major exception 1o all files from
all programs. You might find it an enlightening experience to read some of the
manuals for your operating system and see how well it does by these criteria.
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file size. The basic procedure itself is not too difficult, but it requires considerable
help from the local operating system in order to handle lines of a priori unknown
length without wasting great amounts of storage. For more information, see M. D.
Mcliroy and J. W. Hunt, “An algorithm for differential file comparison,” Bell Labs
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Although there is a substantial literature on the implementation of file sys-
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Thompson and D. M. Ritchie, CACM, July, 1974, ;

Structure charts are described in W. P. Stevens, G. J. Myers and .L. L. Con;
stantine, “Structured design,” /BM Sysiems Journal, April, 1974. ' '



CHAPTER 4

SORTING

Sorting is an everyday programming task, and often a building block in larger
processes. In this chapter we will tackle sorting, .but we will be more concerned
with the human interface of a sort program than with presenting some “best possi-
ble” sorting algorithm. If a sorting program is so poorly packaged that people feel '
compelled to write their own instead of figuring out how to use it, then the quality
of its sorting algorithm is surely irrelevant. But if the packaging is good, if users
perceive sorting as a convenient roo/, then it will be used, the algorithm can be
improved as needed; and al users will benefit.

4.1 Bubble Sort

Every programmer is familiar with some variant of the interchange sort. For
example the bubble sort sorts an array into ascending order like this:

# bubble — bubble sort v(1) ... v(n) increasing
subroutine bubble(v, n)
integer i, j, k, n, v(n)

fori=mni>1i=i~—1)
for(i=1j<izi=j+ 1)

if (v(j) > v(j+ 1) { # compare
k = v(j) # exchange
vij) = v(j+1) #
vij+1) = k #
retumn
end

The inner loop rearranges out-of-order adjacent elements on each pass; by the end
of the pass, the largest element has been “bubbled” to the top, that is, to v{i). The
outer loop repeats the process, each time decyeasing the current array limit | by one.

The main advantage of the bubble sort is its simplicity. Its drawback, a seri-
ous one, is that it gets very slow very fast as the number of elements to be sorted
gets large. Thé time complexity of bubble sorting (and similar sorts) is #2. That is,
- the time required to sort varies as the square of the number of items to be sorted:
twice as big takes about four times as long. How large is too large? That depends

105
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on the alternative being considered, and on how often the data is to be sorted, but
something between ten and fifty items might be a reasonable limit, above which the
bubble sort is better replaced by a more sophisticated algorithm.

In real life, by the way, you would certainly name the routine sort, not bub-
ble, so you could change the algorithm without upsetting users. We use bubble
here because we want a unique name for each program. '

4.2 Shell Sort

In a sense, the Shell sort is the next step up in complexity from the bubble
sort; we present it because it is similar in spirit, compact, but much faster for larger
arrays. The time complexity of the Shell sort is approximately nld,

The basic idea of the Shell sort is that in the early stages far-apart elements
are compared, instead of adjacent ones. This tends 1o eliminate large amounts of
disorder .quickly, so later stages have less work to do. Gradually the interval
between compared elements is decreased, until it reaches one, at which point it
effectively becomes an adjacent interchange method.

# shell — Shell sort v(1)...v(n) increasing
subroutine shell(v, n)
integer gap, i, j, ig, k, n, v(n)

for (gap = n/2; gap > 0; gap = gap/2)
fori=gap+ 1i<=ni=1i+ 1)

for(j =i —gap;j>0;j=) — gap) |
jg =j+ gap
if (v(j) <= vljg))  # compare
break '
k = vij) # exchange
v(j) = vijg) .
r(ig) =Kk #
return
end

The outermost loop controls the gap between compared elements. Inivally n/2, it
shrinks by a factor of two each pass until it becomes zero. The middle loop com-
pares elements separated by gap; the innermost loop reverses any that are out of

order. Since gap is eventually reduced to one, eventually all elements are ordered
correctly.

A word on modularity. Many sorting procedures have three distinct parts. A
r_omparfson operation decides what the order of two elements is. An exchange opera-
tion interchanges two out-of-order elements. Finally, a sorring algorithm decides
what comparisons and exchanges must be made. Often the only thing that need
change between two sorting procedures is the algorithm, so a program should be
carefully organized 10 take this into account. If the three aspects are clearly
separated, each may be individually improved without affecting the others.
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Exercise 4-1: How would you test a sorting program? What are the obvious
boundary conditions that must be checked to ensure correct operation? What
programs would you write 10 help in your verification? What programs have we
already written that help? O

Exercise 4-2: Compare the bubble sort and the Shell sort experimentally. Where
is the crossover point at which the Shell sort becomes better on your machine?
0

Exercise 4-3: In our version of the Shell sort, when two out-of-order elements
are found they are immediately exchanged. If an element is small relative to the
other elements at the current gap, however, several unnecessary exchanges may
be performed. Redistribute the exchange so the element moving toward the
beginning of the array is held in a iemporary location until its correct position
has been found. Measure this version to decide if the increase in speed
outweighs the loss of clarity in the algorithm. O

Exercise 4-4: The Shell sort has been observed o run somewhai faster when the
value of gap is always odd. Modify shell accordingly and experiment to see
how large the effect is. O

4.3 Sorting Text

Since many of the tools we discuss in this book are for manipulating texi, it is
useful to adapt our sorting procedure for this kind of operation 100. One especially
useful form is a program that sorts a text file line by line inlo increasing lexico-
graphic order. As we shall soon see, this operation is useful in its own right, and
also as a part of other processes.

There are two major considerations in the design — convenience and
efficiency. sort should be dead easy 1o use, requiring no setup at all for common
sorting 1asks. Al the same time il should be reasonably effective (i.e., cheap) on
both small files and on moderately big ones. sort is not intended 10 replace a care-
fully tailored sort for a repeated production application, but it should be a tool that
is convenient and economical over a wide spectrum of input file sizes — one which
will encourage a casual user 10 select it as a matter of course. The first draft will be
a program which sorts a set of lines that fits into memory all at once. Later we will
expand it 1o handle files too big to be stored completely in memory.

We will write the sorting program 1o read its standard input and write its stan-
dard output, so it can be used as a filter. Of course sort can't produce any output
until all of the input has been read (why?), so calling it a filler may seem to be
stretching a point, but that is not important. What is important is that as far as the:
user is concerned, the program looks like a filter, so it can be used in a pipeline,
Later on we shall see how this organization makes sorting a flexible 1o0l.

The subroutines presented earlier in this chapter sorted arrays of integers;
here we want 1o treat lines of text. Unfortunately lines are not all of the same
length and typically they are much longer than a single integer, so they cannot be
moved or compared directly, at least not in Fortran. What data representation will
cope efficiently and conveniently with variable length lines?

One solution is to refer 1o the lines indirectly, by pointers. An array finbuf
holds the lines to be sorteq, packed end to end. A second array, linptr, contains
indices which indicate where the ‘corresponding lines begin in linbuf. That is,
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linptr(i) is the index in linbuf of the beginning of the ith line. When an exchange is
called for, the pointers are exchanged, not the text lines themselves. This eliminates
the twin problems of complicated storage management and hlgh overhead thal
would be part of moving the lines themselves.

The in-memory sort is:

# sort — sort text lines in memory
character linbuf(MAXTEXT)
integer gtext
integer linptr(MAXPTR), nlines

if (gtext(linptr, nlines, linbuf, STDIN) == EOF) {
call shell(linptr, nlines, linbuf) -
;:all ptext{linptr, nlines, linbuf, STDOUT)
else
call error("too big to sort.")
stop :
end

It calls a modified version of shell, which we will show in a moment, that moves
the pointers in linptr, not the lines themselves. gtext reads the lines and sels up
" the pointers; ptext uses the pointers to output the lines in sorted order.

gtext returns EOF if end of file was encountered during input; it is used here
only to provide some error checking. linptr{i) is set to the index of the first charac-
ter of the ith line. MAXLINE is the length of the longest line we are willing (o deal
with and MAXPTR the maximum number of lines.

# gtext — get text lines into linbut
integer function gtext(linptr, nlines, linbuf, infile)
character linbuf(MAXTEXT)
integer getlin
integer infile, Ibp, len, linptr(MAXPTR), nlines

nlines = 0
ibp = 1
repeat |
len = getlin(linbuf(ibp), infile) -
if (len == EQF)
- break
nlines = nlines + 1
linptr(nlines) = Ibp

lbp=1Ibp +len+ 1 - #"1" = room for EOS

} until (lbp > = MAXTEXT —MAXLINE | nlines > = MAXPTR)
gtext = |en
returmn

end
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# ptext — output text lines from linbuf
subroutine ptext(linptr, nlines, linbuf, outfil)
character linbuf(ARB)
integer i, j, linptr{MAXPTR), nlines, outfil

for(i= 1;i <= nlines; i =i+ 1) {
j = linptr(i)
call putlin{linbuf(j), outfil)

return
end

Once again there are problems in trapslating this code 1o PL/I or some other
languages, because of the way Fortran deals with portions of an array. The sub-
scripled references to linbuf are used by the called routines as starting points for
subarrays that happen to be imbedded in linbuf, not as single array elements. There
are more suitable ways of allocating storage and pointers in PL/I, but if you just
want to replicate this code, the changes are few. First, declate an array of charac-
ters line, then change the subscripted linbuf references from linbuf(i) to
addr(linbuf(i))— >line. PL/I may be wordier here, but it does avoid the Fortran
problem of an array reference that looks like a scalar.

Of course we can write and test gtext and ptext independently of whatever
sorting procedure we use.- In fact there need not even be a sort: a dummy shell
that returns without doing anything is enough for verifying that gtext indeed builds
arrays that ptext can interpret properly. This is a typical example of incremental
construction and testing. It's easier to test a program whose pieces implement
separate functions and interact only through clear, well-defined iriterfaces than it .is
to cope with a single routine of tightly interwoven code.

Our sort must also be modified to treat comparison and exchange as subrou-
tines. Here is the Shell sort.

# shell — Shell sort for character lines
subroutine shell(linptr, nlines, linbuf)
character linbuf(ARB)
integer compar
integer gap, i, ig, j, k, linptr(ARB), nlines

for (gap = nlines/2; gap > O; gap = gap/2)
for(j = gap + 1;j <= nlines; j = j + 1)
for(i=j — gap;i > 0i =i — gap) {

ig =1+ gap
if (compar(linptr(i), linptr(ig), linbuf) <= 0)
break

call exchan(linptr(i), linptr(ig), linbuf)

return
end
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The exchange operation is the easier part: exchan only needs to exchange the
two pointers but it is also passed linbut to avoid having to change the calling
sequence for more general applications.

# exchan — exchange linbuf{lp 1) with linbuf(ip2)
subroutine exchan(ip1, Ip2, linbuf)
character linbutf{ARB)
integer k, Ip1, ip2

k= Ip1
ip1 = ip2
Ip2 = k
retum
end

compar returns a negative value if its first argument is less than its second,
zero if its arguments are equal, and a positive value if the first is greater than the
second. How do we. handle comparisons?. The main difficulty is the perennial
problem of the character set being used. In Fortran, at least, there is typically no
guarantee that the letter ‘a’, as entered with a read statement, will compare less
‘than the letter ‘2. (On many machines it won’t!) In PL/I, the problem should not
arise with letters stored as character variables — ‘a’ is less than ‘z — but there
may well be punctuation characters wirhin the alphabet. (And PL/I character vari-
ables may not have enough bits to hold extra codes like EOS.) The whole topic is a
can of worms!

One solution is to provide a two-argument routine lexord, which returns the
lexical ordering that holds between any pair of characters:

iexord(c1, ¢2)

returns —1if ¢1<c2, zero if c1==c2, and +1if c1>c2. compar could then ca!
lexord when it needs to know the relationship between two characters. Of course it
typically only has to call lexord once per cali of compar (why?), so this organiza-
tion is not as expensive as you might think at first.

A second solution is to tune compar for a particular environment, as we will
do here. Each character is mapped into its correct place in the ordering immedi-
ately upon input. All subsequent comparisons may be made directly. The charac-
ters are mapped back into external representation before final output. This is a
compromise between efficiency and portability. In fact, if the character set is truly
disorderly, it’s the cheapest organization. It’s better to map the characters once on
input and once on output rather than every time they must be compared. Here is a
version of compar which is appropriate if letters and numbers each sort in increas-
ing order.



CHAPTER 4 SORTING 111

# compar — compare linbuf(ip 1) with linbuf(Ip2)
integer function compar(ip1, Ip2, linbuf)
character linbuf(ARB)
integer i, j, Ip1, Ip2

i = Ip1
i = Ip2
while (linbuf(i) == linbuf(})) {
if (linbuf(i) == EOS) {
compar = 0
return
J
i=i+1
j =11
}
it (linbuf(i) < linbuf(j))
compar = —1
else
compar = +1
return
end

The subroutine organization in sort is such that a knowledgable user could
provide private versions of compar and exchan for special applications, while still
deriving the benefit of whatever sophistication has gone into the sorting algorithm.
It is even possible to use this code directly for sorting integers: if compar ignores
linbuf, everything works.

Exercise 4-3: The sorting program has a fair amount of overhead in the inner
loop. Experiment with moving the comparison and exchange into shell. How
much improvement does this make? Make some reasonable assumptions about
how often sort will be used and how big the files will be, then decide if it
should be changed. O

Lxercise 4-6: Add an option to sort to allow the direction of sorting to be:
reversed:

sort —r

sorts into decreasing order instead of ascending. Where should the direction-
changing code go — in compar, in shell, in ptext, or somewhere else? [J

4.4 Quicksort

One of the best sorting methods known is quicksort, developed originally by
C. A R. Hoare. Although in the worst case its running time can be proportional to
n”, quicksort can be arranged so the worst case rarely occurs, and its average run-
ning time is nlog n.

Quicksort is best described as a recursive procedure. The essential idea is to
partition ‘the original set 10 be sorted by rearranging it into two groups — all those
elements less than some arbitrary value chosen from the set, and all those greater
than or equal to the value. Then the same partitioning process is applied 1o the two
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subsets in turn until each subset contains only one element. When all subsets have
been partitioned, the original set is sorted.

subroutine quickl(v, i, j)

it(i >=j)
retum
partition the elements v(i) ... v(j) so that
v(i), vli+ 1) .. vik—1) < vik) < vik+1) ... v(j)
where i < k < j
call quick(v, i, k— 1)
call quick(v, k+1, j)
return
end

To sort an array v, you just say
catl quick(v, 1, n)

and stand well back. You should walk through a few small test cases by hand 1o be
sure you understand the basic flow of control, before reading on into the details.

The heart of the algorithm is “partition the elements so thht ... . The recur-
sive algorithm does not make any copies of the original array v: all work is done by
passing indices to indicate what range of v is to be rearranged ai a particular step.
This means that the only extra storage needed by quicksort is space for the stack of
array limits describing subsets not yet partitioned. It is easy to show that if at each
stage quicksort deals with the shorrer subset before the longer, the stack never gets
deeper than logzn. Even for n equal to a million, log,n is only 20, so this extra
space requirement is insignificant.

As a practical matier, we don't want to use recursion — not because it's
expensive, for it isn’t in quicksort (the recursion is not in the innermost loop), but
because it's not available in Fortran. To simulate the recursion, we need a stack
conlaining the indices of the as-yet-unpartitioned subseits of the original array. In
outline, the non-recursive quicksort is
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subroutine quick{v, m, n)

wil)=m # lower limit
uv(1) = n # upper limit

p=1 # stack pointer for simulated recursion
whiie (p > 0)
if (Iv(p) > = uv(p)) # subset has only one element
p=p—1 # pop stack
else |

partition v{lv(p)) ... v(uv(p)) so that for some i
viivip)) ... v{i—1) < vli) < v(i+ 1) ... vluv(p))
if (lower partition longer) { # stack so shorter done first
stack lower at p
.stack upper at p+ 1

eise {
stack upper at p
stack lower at p+ 1

}

p=p+ 1 # push onto stack
}

return
end

Partitioning is the important step. We select a “pivol” element pivlin arbi-
trarily — the last element in the set — and rearrange all lines with respect 10 the
pivol. The elements are rearranged entirely within the subsel of v between Iv(p)
and uv(p).

i = Iv(p) — 1

i = uvlp)

pivlin = last line, i.e., line(j)

while (i < j) {
increase i until line(i) > = pivlin
decrease j until j <= i| line(j) <= pivlin
# at this point, either i and j have met
# or we have an out-of-order pair
if(i <j # exchange out-of-order pair

exchange line(i) and line(j)

}

# i and j have met
# move the pivot el=ment pivlin to the “middie”
exchange line(i) and last line

Writing the actual code requires real care. We found that the only way we
could be confident of the result was to write a series of assertions — statements that
have to be true at particular points in the code — ending with the assertion that a
successful partition has been done. Not all code requires you to write and verify
formal assertions, but the method is a valuable lechnique for understanding what
your program really does. And only with understanding can you be truly confident
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that vour code is right.

We begin partitioning by picking the end element linbuf(linptr(j)) as our pivot.
When the partitioning is done we want to have

i set to some value between Iv(p) and uv(p) inclusive;
all lines with indices less than i less than or equal to linbuf(linptr(i));
all lines with indices greater than i greater than or equal to linbuf(linptr(i)).

And of course we must b2 sure that we don’t access outside the limits of the array,
or inadvertently destroy any elements. Here is the partitioning code.

i = Iv(p) — 1
j = uv(p)
pivlin = linptr(j) # the pivot line
while (i < j) |
for (i = i + 1; compar(linptr(i), pivlin, linbuf) < 0:i =i+ 1)

# linptr(lv(p)) ... linptr(i— 1) all point to lines < pivot line
# i < uv(p) because there is a pivot line to stop it
for(i=j—1j>ij=j)—1)
it (compar(linptr(j), piviin, linbuf) <= 0)
break '
# linptr(j+ 1) ... linptr(uv(p)— 1) all point to lines > pivot
# j 2 i 2 Ivip) so we haven't fallen off the end
if (i < j)
call exchan(linptr(i), linptr(j), linbut)
# i < j, i and j point to out-of-order lines
} # it i < ], linbuf(linptr(i)) < pivot & linbuf(linptr(j)) > pivot
# 1 and j have met
# move pivot element to position i
call exchan(linptr(i), linptr(uv(p)), linbuf)
# i is a valid pivot point

These asserliops are not formally complete, bul they are enough that we can be rea-
sonably sure of the code.

We can now put the pieces together for the final version of quicksort, subrou-
line quick:
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# quick — quicksort for character lines
subroutine quick(linptr, nlines, linbuf)
character linbuf(ARB) '
integer compar
integer i, j, linptr(ARB), IV(LOGPTR), nlines, p, pivlin, uv(LOGPTR)

Iv(1) = 1
uv(1) = nlines
p=1
while (p > 0)
if (lv(p) > = uv(p)) # only one element in this subset
p=p—1 # pop stack
else {
i=lvip) — 1
j = uv(p)
piviin = linptr(j) # pivot line
while (i < j) {
for (i=i+1; compar(linptr(i), pivlin, linbuf) < O: i=i+1)
fori=j—1j>ij=j—-1)
if (comparl(linptr(j), piviin, linbuf) <= 0)
break
if (i <j) # out of order pair
call exchan(linptr(i), linptr(j), linbuf)
}
i = uvip) : # move pivot to position i
call exchan(linptr(i), linptr(j), linbuf)
if(i—Ivip) < uvip)—i) {  # stack so shorter done first
vip+1) = Ivip)
uvip+1) =i =1
vip) =i + 1
else {
vip+1) =i+ 1
uv(p+1) = uv(p)
l}.uv(p) =ji—1
!}'D =p+1 # push onto stack
return
end

LOGPTR is the smallest integer at least as big as logz MAXPTR, the maximum

number of lines that are 10 be sorted. As we said before, this is only 20 even for
files of a million lines.

Like most sorting algorithms, quicksort has many variations. We can oniv
suggest a few here; the bibliography at the end of the chapter indicates others.
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As presented, quick does not use the fact that there may Be several elements
all equal 1o the pivot. If all such elements are brought together at one partitioning,
no further partitions need involve them. The “fat pivot” aigorithm returns two
values k1 and k2 from the partitioning, such that

vilvip)) ... vik1—1) < wik1) = ... = v(k2} < v(k2+1) ... vluvi(p))
and successive parlitions are done on the subsets
ivip) ... k1—1 and k2+1 ... uv(p)

This organization is faster for sorting data like word lists which frequently contain
many duplicate entries.

Exercise 4-7: Experiment with a fat pivot algorithm. How much faster is il on
files with significant duplication? How much slower is i} than a regular quick-
sort on files with little or no duplication? O

Exercise 4-8: 1f an array is already sorted in either order, pivoting on the end
element is a bad thing 1o do: it converts the algorithm into an n? procedure.
(Why?) One solution is to pivot on the middle element of a set instead. More
complicated but more effective is to pivot on the median of three or more ele-
ments. Investigate these variations. O

Exercise 4-9: Our quicksort may make more comparisons than are absolutely
necessary. Find a version that cuts down on the number of comparisons
between actual lines, even at the expense of doing more of other bookkeeping
operations, and see how much difference this makes. O

4.5 Sorting Big Files

“Big” means more data than will fit in memory all at once: this is where life
gets complicated. This kind of sorting is often called external sorting, because some
of the data has to reside on temporary intermediate filess. What we did in the previ-
ous section is by contrast internal sorting.

As with internal sorting, there is an astonishing variety of external sorting
methods to choose from. The essential idea of most is simple: chunks of the input
(as big as possible) are sorted internally and copied onto intermediate files; each
chunk is called a run. When the entire input has been split into sorted runs, the
runs are merged, typically onto further intermediate files. Eventually all the data
winds up merged on one file; this final run is the sorted output.

Not all operating systems let you create an arbitrary number of files, which is
implied by this approach, so it may be necessary to add the complexity of managing
a limited number of intermediates. Even if you can have lots of intermediate files,
however, merging from a large number of sources has 1o be properly organized or it
becomes too slow. (Consider the extreme case: if each file contains only one line of
the original input, how long would merging lake, as a function of the number of
lines?)

One of the clearest sorting procedures is to place each run on a separate file,
until the input is exhausted. Then the first m files are merged onio a new file, and
the m files removed. (m is a parameter, typically between 3 and 7, called the merge
order). This process is repeated with the next » files until there is only one file left,
which is the sorted output. This procedure never has to deal with more than m
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merge files plus one output file at a time.

The main routine of sort implements this straiegy. Most of it is concerned
with creating, opening, closing and removing files al the right limes.

# sort — external sort of text lines
character linbuf(MAXTEXT), name(NAMESIZE)
integer gtext, makfil, min, open
integer infi(MERGEORDER), linptr(MAXPTR), nlines
integer high, lim, low, outfil, t

high = 0
repeat | # initial formation of runs
t = gtext(linptr, nlines, linbuf, STDIN)
call quickl(linptr, nlines, linbuf)
high = high + 1
outfil = makfil(high)
call ptext(linptr, nlines, linbuf, outfil)
call close(outfil)
} until (t == EOF)

for (low = 1; low < high; low = low + MERGEORDER) [ # merge
lim = min(low + MERGEORDER — 1, high)
call gopen(infil, low, lim)
high = high + 1
outfil = makfil(high)
call merge(infil, lim—tlow+ 1, outfil)
call close{outfil)
call gremov(infil, low, lim)

call gname(high, name) # final cleanup
outfil = open(name, READ)

call fcopy(outfil, STDOUT)

call close(outfil)

call remove(name)

stop

end

The merge phase of sort uses two indices low and high to indicate the range
of files still active. high is incremented by I, MERGEORDER files slarling at low
are merged onto file high, then low is incremented by MERGEORDER. When low
catches up to high, merging is done and the single run on the last file is copied onto
the fina! output.

We have already seen gtext, ptext, and quick earlier in this chapter, and
fcopy, which copies one file to another, is from Chapter 3. min computes the
minimum of two numbers; it can be replaced by min0O in Fortran.

Within the main routine, files are referred 1o by a number corresponding 1o

their order of creation. makfil creates a new temporary file for a given number,
using gname to convert the number into a unique, systematic name.
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# makfil — make new file for number n
integer function makfil(n)
character name(NAMESIZE)
integer create
integer n

call gname(n, name)
makfil = create(name, READWRITE)
if (makfil == ERR) ’
call cant(name)
return
end

CHAPTER 4

gname copies a standagd prefix (stemp) into name, then appends n as a character
string. Thus the temporary files used by sort are calied stemp 1, stemp2, and so on.

# gname — make unique name for file id n
subroutine gname(n, name)
character name(NAMESIZE)
integer itoc, length
integer i, junk, n
string stemp "stemp"

call scopy(stemp, 1, name, 1)

i = length(stemp) + 1

junk = itoc(n, name(i), NAMESIZE —i)
retumn

end

Recall that we use junk to discard an unwanted function value, as discussed in

Chapter 2.

gbpen and gremov open and remove consecutively numbered seis of files.
Notice that they both regenerate the file name, rather than deal with the complexity

of carrying the names around.

# gopen — open group of files low ... lim
subroutine gopen(infil, low, lim)
character name(NAMESIZE)
integer i, infil(MERGEORDER), lim, low
integer open

for(i=1,i <= lim—low+1;i =i+ 1){
call gname(low+i— 1, name)
infil(i) = open(name, READ)
it {infil(i) == ERR)
call cant{name)

retum
end
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# gremov — remove group of files low ... lim
subroutine gremov(infil, low, lim)
character name(NAMESIZE)
integer i, infil{MERGEORDER), lim, low

for(i=1i <= lim—low+1i=i+ 1)|{
call closel(infil{i))
call gname(low+i— 1, name)
call remove(name)

retum
end

Al any given time there are no more than MERGEORDER input files and one
oulput file open, although there may be other temporary files created but not open.
sort assumes that files can be crealed dynamically and made as large as necessary
while the input is being read, although on some systems you may in fact have to
specify size limits for these files. In any case, it is critically important that the files
come and go without the knowledge of the user. Few things put people off so fast
as having (o provide a collection of scratch files with mystical parameters for what
should be a simple process.

merge is now the only unspecified code. In principle its task is easy. Since
the input files are sorted, the first line on each file is the smallest. merge selecls
the smailest of these, which is necessarily the smallest line in the entire group, and
copies it 1o the output. The next line from that file replaces the line that went out,
and a fresh smallest one is identified. When EOF is encountered on a file, the
corresponding run is finished. When the run on each file is finished, merge is
done.

The main question is how to efficiently select the smallest line each time. The
obvious method, linearly searching the MERGEORDER lines currently available, is
acceplable if MERGEORDER is small, but we can do better with a better algorithm
and data structure.

One of the best is to arrange the lines as a heap. A heap has the desirable pro-
perties that its smallest entry can be found immediately, and a new element can be
put into the proper position in a heap in a time that grows only logarithmically with
the heap size. Pictorially you can imagine a heap as a binary tree (1hat is, each ele-
ment has at most two descendants) in which each element is less than or equal to
its children. From a programming standpoint, it is easier (o represent a heap as an
array h such that the children of element k are stored at positions 2k and 2k+ 1.
Then h(1) is less than or equal to h(2) and h(3); K(2) is less than or equal to h(4) and
h(5), and in general, h(k) is less than or equal to h(2k) and h(2k+1). h(1) is the
smallest thing in the heap.

With a heap, the merging process is as follows.
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read one line from each file
form a heap
while (there's still input) {
output smallest line [heap(1)]
get a new line into heap(1)
reheap: move new line into its proper place in the heap

}

The smaliest line is in the first position. That element is output, a new one is read
in to take its place, and the new element is moved to its proper place in the heap
(“reheaping™). The initial heap can be formed by using quick to sort the lines,
since a sorted array is a heap (why?) although the converse is not true (why?).
True, sorting does a bit more work than necessary, but the difference will be imper-
ceptible. Why write extra code?

# merge — merge infil(1) ... infil(nfiles) onto outfil
subroutine mergel(infil, nfiles, outfil)
character linbuf(MERGETEXT)
integer getlin
integer i, inf, Ibp, Ip1, nf, nfiles, outfil
integer infil(MERGEORDER), linptr(MERGEQRDER)

lbp = 1
nf=20
for (i = 1;i <= nfiles;i =i + 1)# get one line from each file
if (getlin(linbuf(lbp), infil(i)) ~= EOF) {
nf=nf + 1
linptr(nf) = 1bp
;bp = |bp + MAXLINE # room for largest line
call quick(linptr, nf, linbuf) # make initial heap

while (nf > 0) |
Ip1 = tinptr(1)
call puttin(linbuf(ip 1), outfil)
inf = Ip1 / MAXLINE + 1 # compute file index
if (getlin(linbuf(lp1), infilinf)) == EOF) |
linptr(1) = linptr(nf) g
;lf =nf— 1

call reheap(linptr, nf, linbuf)

return
. end

To avoid complicated storage management, merge reserves space for the longest
possible line in each slot. This makes it easy to decide which file is associated with
a particular line by dividing the line origin by the maximum line size.

Reheaping compares the top element 1o its children. [f the element is less
than or equal 1o both, it is in its proper position and the Job is done. If not, then
the element is exchanged with the smaller of its children. and the process repeated



CHAPTER 4 SORTING 121

at the next level of the tree, i.e, by comparing the element with its children in its
new position. Eventually the element percolates through the tree to the place
where it belongs. .

It is easy to show Lhat the reheaping lime is proportional to the logarithm of
*MERGEORDER, while a linear search of course takes lime linearly proportional to
MERGEORDER. The heap procedure is only a few more lines of code than the
linear version and should be fasier for typical values of MERGEORDER.

# reheap — propagate linbuf(linptr(1)) to proper place in heap
subroutine reheap(linptr, nf, linbuf)
character linbuf(MAXTEXT)
integer compar
integer i, j, nf, linptr{nf)

for(i=12%i<=nfi=j|

j=2*i
if (j < nf) # find smaller child
if (compar(linptr(j), linptr(j+ 1), linbuf) > 0)
j=j+1
if (compar(linptr(i), linptr(j), linbuf) <= 0)
break # proper position found
cali exchan(linptr(i), linptr(j), linbuf) # percolate
} '
return
end

Notice that quick, merge and reheap all work properly if called with no data
items, This is entirely because all of the loops in the code test at the top instead of
the bottom. [t is a good omen for the overall reliability of a program when its
boundaries are reliable without special attention.

You should also glance back over the organization of sort and observe the
way in which it is broken into functional modules. The sort, the merge, the com-
pare, the input and the output can each be replaced separately withoul upsetting the
rest of the program.

Exercise 4-10: How much intermediate file space is needed all at once (o sort
input containing » characters? [

4.6 Improvements

Once the basic version works, we can make sort faster and we can make it do
more things. Since this is a book aboul tools, not aigorithms, we are more
interested in functional enhancements, but let us first mention some efficiency con-
siderations.

We measured sort on two different inputs. The first consisted of 270 lines
with 6900 characters, the second 1330 lines and 34800 characters. We allowed
10000 characters in linbuf, so the first set of data were processed on a single tem-
porary with no merge phase. The second set produced four initial runs, which were
then merged onto a fifth file before being copied to the final output.
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Here are the CPU times for the two tests.

total time 6.5 sec. 36.9 sec.
(all 1/0) 94.1% 91.6%
compar 4.6 6.1
quick 09 _ 1.2
merge 0.3
reheap 03

Everything else is less than 0.15%,

The 1/0 times are truly remarkable. As we have said before, and will say
again, Fortran character 1/0 pays heavily for its generality. You can certainly
improve these limes by using specialized routines. But even so, for any likely
improvement, 1/O wil still dominate. Since you can’t avoid copying the data in and
out, you have to find an algorithm that reduces intermediare 1/0.

Exercise 4-11: When there are at most MERGEORDER intermediate files left,
one complete pass over the data can be avoided by merging direclly onto the
final output file instead of onto an intermediate file. And as a special case, if the
original input fits entirely into memory, there is no need for any merging or any
intermediate files. Modify sort to handle these situations efficiently. According
to the-measurements above, how much faster will these changes make sort? O

The rufmming time of sort is strongly affected by the number of passes made
over the input daia, which in. turn depends on the length of the runs created in the
initial pass. You can always get longer runs with more memory, but you can't
always get more memory.

Exercise 4-12: One possibility is 10 make better use of the memory you have, for
example by placing more than one character into an integer. Modify sort to
pack several characters into one integer upon input and unpack them upon out-
put. How much code must be changed and in what routines? How much speed
improvement is obtained for a given amount of memory? 0]

A particularly elegant way 1o create long initial runs is “replacement selec-
tion.” A memory-load is sorted as before. But then, as ptext outputs a line, a fresh
line is immediately read in to replace it. If this fresh line is greater than or equal 10
the line that it replaced it can form part of the run that is currently going out! If
i's smaller, it can’t go out in this run and must be held until the next one.

The payoff from this organization is significant. For files with random con-
tents, it turns out that the expected run length is twice the memory size, SO we can
save one full pass over the data. And of course the effect is even stronger on files
that are already partly sorted.

Replacement selection needs careful sigrage management if the lines are not
all the same length. More important, it also requires an algorithm for quickly
finding the right position for a replacement among the already-soried elements in
memory. [t is 100 slow 1o search*through all the current lines to find the right place.
The solution is 10 use a data structure like a heap, where the right position can be
found in logarithmic time instead of linear. We will not g0 into this here; the topic
is discussed in considerable detail in Knuth's The Arr of Compuier Programming;
Volume 3: Sorting and Searching.
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What can you do if zyour system won't let you create a lot of files? One
method of getting by with™few files is the “‘balanced two-way merge.” Suppose you
are allowed four intermediates. During the first phase runs are placed alternately on
files 1 and 2 until the input is exhausied. Then the runs on files | and 2 are
merged, with the output runs (half as many, each (wice as big) going alternately
onto files 3 and 4. Then the runs on 3 and 4 are merged back onio | and 2, making
runs of length four umes the original. The process continues until all the data is
merged onic one completely sorted file which can then be copied 10 the outpul.
Since the length of the runs is doubled on each pass and the number of runs cut by
a factor of two, there are [Iogzr'] passes made, where ris the number of runs created
in the initial phase,

The balanced two-way merge can be generalized to any number (3 or more)
of imermediate files. The available files are divided into two groups as nearly
equally as possible and merging is done back and forth between the two groups.

Exercise 4-13: Implement a balanced two-way merge sort. The main complica-
tion you will have to worry about is keeping track of the end of each run on
each file. Compare the complexity and the running time of the balanced merge
program with sort. O '

Let us turn to functional enhancements. We already said that a particularly
useful way to package sort is as a filler. But it is also likely to be used in more con-
ventional ways.

Exercise 4-14: By default, sort reads from the standard input. Modify sort so
that if it is called with file-name arguments, it will instead take its input from the
named files:

sort filel file? ...

will sort the data on the files named. Reading either from a set of named files,
or from the standard input if none are named, is an exceedingly useful design
for many programs: you should always consider it. [J

Exercise 4-15. Add an option to let the output file be specified by name, instea._
of just the standard oulput. Ensure that the outpul can be the same as one of
the inputs. Do you want the final merge done directly onto it? I

Exercise 4-16: Add an option —m (0 merge already-soried files:
sort —m filel file2 ..

merges the data (presumed sorted) on the files onto the standagd output. The
f
command

sort —m

without file names is silly. Does your version do something intelligent anyway?
]

Exercise 4-17: Provide a sort option —r 10 reverse the direction of sorting. If
you did the earlier exercise on this topic, did you have to change your decision
about where 1o put the direction-changing code? [



124 SOFTWARE TOOLS : CHAPTER 4

Excrcise 4-18: Add a —d optlion so sort sorts by dictionary order: upper and
lower case letters should sort together, so that ‘a" and ‘A’ appear together, not
separated by an enlire case of the alphabet. Is it sufficient to define
a<A<b<B..? Should dictionary order be the default behavior? What should
be done about special characters like periods, commas, and so on? What about
digits? O

Exercise 4-19: Add the —n option: an initial numeric string with optional sign is
sorted by arithmetic value while the rest of the line is sorted normally. All-
numeric lines are a special case of this kind of input. Does your routine work
regardiess of the size of the numbers? O

Exercise 4-20: Add options so sorting can be done on fields within lines. You
will need a way lo specify the beginning and end of each field, and you will
probably also want to allow fields (o be independently numeric, dictionary order,
reversed, etc. The challenge here is not so much the bookkeeping needed (o
make the program work as it is designing the options so they are easy for users
to specify. Remember that specifying a field by character position is hard 10 do,
particularly if the input doesn’t come in neat columns. O

By now you are near the complexily provided by some commercial sort pack-
ages. but at least you got there in modest increments, and you always had a useful
tool al each step. By default, though, sort still puts text lines into order, laking its
input from the standard input and writing on the standard output. It is still an
casy-to-use service for people who just want 1o sort text. The most frequent and
casy operations should be easy (o remember and 1o specify; you shouldn’t always
need a reference manual.

Exercise 4-21: Some systems provide a powerful but complicated sort generator
that creates efficient sorts for big production jobs. If your system has one of
these, design and implement a language that makes it easier for casual users 10
creale the sorting process they want. O

4.7 Separation of Function: unique

One common reason for sorting is lo bring together all occurrences of a partic-
ular item, so they can be treated as a group. Somelimes we do this just to discard
all but one occurrence in a group, as for instance when we make a list of all the
words in a document. It's certainly easy to add an option 1o sort which discards
multiple occurrences of an input line. (Where should this code be inserted?) But
should this code be part of sort at all?

This question rouches on an area of fundamental importance in designing
good ools — proper separation of function. What should be included in a pro-
gram? What should be a separate program” It happens (o be “more efficient” 10
put this particular function into the sort program — we can save a pass over the
data. More important, the decision whether two lines are “‘the same™ depends on
the comparison function being used, which is of course determined by the sorting
options specified. If sorting and casting oul duplicates are combined, we are assured
that the comparison is done consistently and efficiently.

Why should there be two separate programs when a Sir1gle slightly more com-
pheated one will do? One good reason is that someone might want one function
without the other. By separating the function of stripping duplicates from that of
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sorting, we can do things that are not possible when they are combined. You might
really like to know which lines are nor duplicated, or which lines are duplicated, or
you might like to couwni adjacent duplicates. If sorting, duplicate-stripping and
counting are all combined, the sort program is more complicated; and of course it’s
conceivable that you don't want the input sorted before you strip the duplicates!

Combining functions (oo early is a mistake. In its early stages, at least, a pro-
gram should implement a single function. Sure, it may eventually have lots of
options, but the things it does should be closely related. Then when users come
along with new ways to combine programs, you will not have precluded some useful
operation by your assumptions about what they are likely to do. Our own experi-
ence is instructive here. For years, sorting and duplicate stripping were separate
programs. Finally efficiency began to be a major factor, and they were integrated:
an option was added to sort which specifies the stripping of adjacent duplicates
(although of course the old duplicate-stripper remained avaiiable and often used).
But no one knew at the start that this was a good combination. The lesson: keep
functions separate until you know /iow to combine them.

Here is unique, for stripping adjacent duplicates. It is most often used with
sort, but is sufficiently useful in its own right to be worth a separate program.

# unique — strip adjacent duplicate lines
character buf 1((IMAXLINE), buf2(MAXLINE)
integer equal, getlin
integer t

t = getlin(buf1, STDIN)
while (t ~= EOF) {
call putlin(buf1, STDOUT) _
for (t = getlin(buf2, STDIN); t ~= EOF: t
if (equal(buf1, buf2) == NO)
break
it (t == EOF)
break
call puttin(buf2, STDOUT)
for {t = getlin(buf1, STDIN); t ~= EOF; t = getlin(buf1, STDIN))
if (equal(buf1, buf2) == NO)
break

getlin(buf2, STDIN))

stop
end

What are boundaries that should be tested to be confident that unique works
correctly. O

Exercise 4-22: Our version of unique uses the control structure to distinguish
which buffer currently holds the line being compared against. Rewrite it with a
single inner loop and a switch to interchange the roles of the two buffers.
Rewrite it to simply copy a line from buf2 to buf1 whenever a comparison fails.
Which of the three versions do you prefer? O
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Exercise 4-23: Add the option —n to unique, to prefix each line with the number
of occurrences of the line in the original input. The command

unigue —n

with the input

a

a

b
produces

2 ' a

1 b

Why should the count precede the. line? O

Exercise 4-24: Combine translit, sort, and unique (with the —n option) into a
pip€line that produces a word frequency list for a document, sorted into order of
decreasing frequency. O '

Exercise 4-25: Combine translit, sort (with the —d option) and unique into a
pipeline that checks a program for occurrences of names in both upper and
lower case, like SIZE and size. O

Exercise 4-26: Write the program common, for comparing lines in two sorted
text files. :

common filel file?

produces a three-column output: lines which appeas only in filel, lines only in
file2, and lines in both files. common allows the optional arguments —1, —2
and -3, which specify the printing of only the corresponding column. Thus

common —3 filel file2
prints only the lines common to both files, and
common —1 filel file2

prints lines which are in the first file but not in the second. If there is only one
file argument, file2 refers to the standard input. OJ

What good is common? Suppose we have available a dictionary of English.
Then consider this pipeline:

concat filel file2 file3 ... |
tranglit A—2Z a—z |
translit ~a—z @n |

sort |

unique |

common —2 dictionary

This collects a set of files together (coricat), converts them to a single case
(translit), discards punctuation and spaces and puts each word on a line by itself
(translit), sorts them (sort), casts out duplicates (unique), and then selects those
words which appear in the original files but not in the dictionary (common).
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What's a word that appears in a document but not in a dictionary? Right —
it’s a plausible contender for being a spelling mistakg. This pipeline is a first draft
of a program for finding spelling mistakes. It won't do a perfect job by any means,
but on the other hand it can be made out of spare parts in a few minutes, and it
forms an excellent base for a more sophisticated process. That is what tools are all
about.

Exercise 4-27: What improvements would you make to the spelling-mistake
finder? What experiments would you perform before undertaking “‘improve-
ments”? [J

Exercise 4-28: The output from the spelling mistake finder often consists mostly
of technical jargon, words like byte and translit. Once you have eliminated the
true errors from this output, you now have a glossary of special words for a
document. How would you modify the pipeline to eliminate glossary words
from subsequent checks for spelling errors? O

48 Permuted Index

Once a flexible sorting program is available, other programs can use it as a
component. In this section we will describe one such application, a program for
creating a permuted index (often called a keyword-in-context or “KWIC” index). A
permuted index lists each word (or some similar useful roken) in its original context,
but sorted by word and rearranged so the keywords line up. For example, this sen-
tence would produce this output:

output: For example, this sentence would produce this
this cutput: For example, this sentence would produce
sentence would produce this output: For example, this
. example, this sentence would produce this output: For
For example, this sentence would produce this output:
this sentence would produce this output: For example,
For example, this sentence would produce this output:
For example, this sentence would produce this output:

One program organization is like this.

for each input line
for each token in the line |
rotate line so token is at front
;Jutput onto temporary file
sort temporary file
for each line in temporary file |
re-rotate to center first token
print line

' J
This process can be viewed as a pipeline-of three independent programs:
create rotations | sort | unrotate and print

but how it should be implemented on any particular system depends on what
mechanisms are available. The advantage of a pipeline is that we already have sort
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nicely packaged, and the other two pieces are easy.

A second way to write kwic is to invoké sort as a self-contained program from
within a program thal does the rotating and unrotating as normal subroutines. This
method assumes that the operating system provides a way to run any program from
within a running program, and regain control when it is done. We can indicate the
structure as

do rotations onto temp 1
run("sort <temp1 >temp2")
unrotate from temp2

sort remains a black box, yet the overall process is effectively confined to one pro-
gram.

However the program is eventually organized, it is important to observe that
the original design should always be like this. We want to keep the pieces of the
solution as uncoupled as possible, no matter what, so we pretend from the start that
the most restrictive implementation possible (such as a pipeline) will be the one
chosen. That way, we are less likely to let our guard down and admit sneak paths
for communication between modules. Decisions about actual packaging should be
postponed as late as possible, to maximize alternatives.

We leave the particular organization up to you, and show the routines for
rotating and unrotating, written for use in a pipeline. Here is the rotation part.

# kwic — make keyword in context index
character buf(MAXLINE)
integer getlin

while (getlin(buf, STDIN) ~= EOF)
call putrot(buf, STDOUT)

stop

end

The work is done in putrot, which finds the keywords in each line. A key-
word is a string of letters or digits, but excludes punctuation like parentheses, com-
mas and so on. These must be excluded so that words which appear adjacent (0
them will be properly lined up in columns when the output is printed. putrot finds
the beginning of each token, that is, the t alphanumeric character, and calls
rotate (o output a line with that character rotated to the front. '
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# putrot — create lines with keyword at front
subroutine putrot(buf, outfil)
character type
character buf(ARB), t
integer i, outfil

for (i = 1; buf(i) ~= NEWLINE; i = i + 1) {

t = type(buf(i))

if (t == LETTER| t == DIGIT) { # alpha
call rotate(buf, i, outfil) # token starts at "i"
t = type(buf(i+ 1)) '
for(;t == LETTER| t == DIGIT; t = type(buf(i+ 1)))

i=1i+ 1

}

)

return
end

# rotate — output rotated line
subroutine rotate(buf, n, outfil)
character buf(ARB)
integer i, n, outfil

for (i = n; buf(i) ~= NEWLINE; i = i + 1)
call putch(but(i), outfil)

call putch(FOLD, outfil)

fori=1i<mi=i+1)
call putch(buf(i), outfil)

call putch(NEWLINE, outfil)

retumn

end

rotate marks the end of the original line (the place where the line has been folded)
by adding a FOLD character — some character unlikely to occur in normal text.
FOLD will be used by the unrotating program to position the permuted lines
correctly. Thus if we use $ as the fold character, the input line

now is the time
will yield the four output lines

now is the time$

is the time$now
- the time$now is

time$now is the

The function type determines whether a particular character is a letter, a digit.
or something else; it returns LETTER, DIGIT or the character itself.
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# type — determine type of character
character function type(c)
character c
integer index :
string digits "0123456789"
string lowalf "abcdefghijkimnopgrstuvwxyz"
string upalf "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

if (index(lowalf; ¢) > 0)
type = LETTER

else if (index(upalf, c) > 0)
type = LETTER

else if (index(digits, c) > 0)

type = DIGIT
else

type = ¢
retum
end

Recall that index finds the position of a character in a string, returning zero if it
doesn’t find it.

Although you can write type more efficiently than we have if you také advan-
tage of the numeric properties of a particular character set, the version here has the
merit of being independent of character set, and thus it can be transported between
machines without change.

The other end of the pipeline is unrot, which unrotates and prints the rotated
lines, lined up on column MIDDLE. [t copies the first half of the line, beginning at
position MIDDLE + 1 and wraps around at the end if necessary. It then copies the
second half of the line, working backwards from MIDDLE — 1. Finally it deletes
trailing blanks.
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# unrot — unrotate lines rotated by kwic
character inbuf(MAXLINE), outbuf(MAXOUT)
integer getlin, index
integer i, j

while (getlin(inbuf, STDIN) ~= EOF) {

for(i= 1,i < MAXOUT;i=i+ 1) # blank line
outbuf(i) = BLANK

j = MIDDLE .

for (i = 1; inbuf(i) ~= FOLD & inbuf(i) ~= NEWLINE; i = i + 1) {
=i+ # copy up to FOLD

if (j >= MAXOUT — 1)
j=1
outbuf(j) = inbuf(i)

if (inbuf(i) == FOLD) { # copy second half,
" j = MIDDLE # working backwards
for (i = index(inbuf, NEWLINE) — 1;i > 0Q;i=i — 1) {

if (inbuf(i) == FOLD)
break

i=]—1

if(j <=0).

' j = MAXOUT — 2

outbuf(j) = inbuf(i)
l

}

for (i =MAXOUT — 2;i>0i=i— 1)

if (outbuf(i) ~= BLANK)  # delete trailing blanks

’ break .
outbuf(i+ 1) = NEWLINE # terminate line properly

outbuf(i+2) = EOS
call putlin(outbuf, STDOUT)
}

stop
end

You should verify that unrot stays sane even on input that has no FOLD character,
because it tests for both NEWALINE and FOLD. This is an another example of
defensive programming — writing the program so it can cope with small disasters.
Of course disasters come in many sizes, and you should avoid paranoia, but in this
specific instance the insurance is cheap.

Exercise 4-29: Why did we write

for (i = index(inbuf, NEWLINE) - 1;i > 0;i =i — 1) {
if (inbuf(i) == FOLD) :
break

instead of
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for (i = index(inbuf, NEWLINE) — 1;i > O & inbuf(i) ~= FOLD;i =i — 1) {

(Hint: see compress in Chapter 2.) O

Exercise 4-30: kwic and unrot don’t properly handle text containing tab charac-
ters or backspaces. They also ignore the possibility that the text contains FOLD
characters. Fix them. O

Exercise 4-31: Modify kwic so it will not split a word on output. O

Exercise 4-32: You will quickly find that you don’t want words like a, the, and,
o/, and so on in your index. Conversely you might want lists that contain onlv
certain words. Add the capability to specify either or both of an “omit™ file —
words that are not to be indexed — or an "include” file — words that must be
indexed. (Chapter 8 discusses some rudimentary table handling procedures.) O

Exercise 4-33: Modify kwic to handle multiple files as an alternative 1o the stan-
dard input, just as print does. In a large document consisting of several input
files, it is useful 10 know precisely where in the input a particular line was
found. Add an option —t to tag output lines with some identification of their
source position, like file name and line number. Should this be the default
mode? O

One use we have made of our kwic program is as a quick (and dirty) way (0
check that all variables in our programs were declared. (An undeclared variable is
usually a spelling mistake.) This still requires manual effort, however, and so is not
as good a solution as it could be.

Exercise 4-34: 1f your compiler doesn’t do 1t for you, build a program that
checks your programs to see thal a// variables are declared. [J

Exercise 4-35: Build a program that forms a cross-reference listing of a docu-
ment (the document often, though not always, being a program). That is, for
each token, list the numbers of all lines that contain a reference to that token.
]
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CHAPTER S

TEXT PATTERNS

Remember the format finder we discussed in the Introduction? That job
needed a program (o look for the word format anywhere in an input line and to
print all such lines found.

But no one wants a program that will only find a particular Fortran statement,
nor one limited to looking at Fortran programs, nor even one restricted to looking at
programs. format is a specific rext paitern; we want a program find lhal accepts the
pattern to be looked for as an argument, so we can say

find partern

o print each input line that contains an occurrence of the specified pattern. For
instance, to find format statements, we just say

find format

Some people might argue that what is really needed here is a ‘text editor lhat’
can search for text patterns. Indeed we do want such an editor, and in the next
chapter we will build one. But we still want find besides. The reason is that an edi-
tor is too general for some purposes. We have 1o invoke the editor, tell it one at a
time which files we wish to process, then repeat the search command for each file.
There is simply too much setup. find, on the other hand, does exactly what is
wanted, and it does so with a minimum of fuss.

Hardly a working day goes by that we do not make extensive use of find. The
most obvious application is to answer questions such as, “When did we first men-
tion the break statement?” or, “Where are all the references to that varlable‘?“ But
it is also a filter to selecr from more voluminous output, as in a pipeline hke

program | find error

to print only messages containing the word “error.” (This is much harder with a
text editor.)

We even use find to improve our writing style. You may have noticed that
the word “simple” and its derivatives occur frequently in the book. This is under-
standable, for simplicity in programs is a virtue. Bul overuse robs the word of
force, so periodically we scanned through the text with

135
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find simpl

(which also catches “simply” and “simplicity”), then replaced some occurrences by
appropriate synonyms. We even counted them once, with

find simpi | finecount

5.1 Text Patterns

There is no point to making fidd capable of recognizing all conceivable text
patterns. We could be perverse, for instance, and insist on a program that could
look for all legal ways of writing a format statement in Fortran — with imbedded
blanks in the keyword, multiple continuation lines, and so forth. We could further
insist that on/y format statements be printed — omitting lines with character strings
that contain the string format, and lines that use format as a variable name. But by
the time we are able to handle an assignment statement as tricky as

10 format(x5h) =b(i)

we have written most of the recognizer for a Fortran compiler!

Our find program will not handle all these pathological cases, lo be sure, but
how often do they occur? When was the last time you wrote format as for mat?
When did you last use it as-an identifier? So long as all the lines you want to see
are printed, it doesn’t hurt much if a few extra also appear. And if you don’t plan
to be perfectly precise, you may as well draw the line al a reasonable place. We
accept a few shoricomings in any one application in trade for a much broader spec-
trum of uses. Most users of a tool are willing 1o meet you haifway; if you do ninety
percent of the job, they will be ecstatic.

We will confine ourselves 10 a simple notation that has been used in a number
of conversational text editors and other pattern maliching programs. For all its

economy, the notation is surprisingly versatile. We will suggest some useful exten-
Sions as exercises.

A text pattern can be a simple thing, like the letter a, or a more elaborate con-
struct built up from simple things, like the string format. To build arbitrary text
patierns, you need remember only a handful of rules.

Any literal character, like a, is a lext pattern that matches that same character
in the text being scanned. A sequence of litetal characters, like 123 or format, is.a

pattern that matches any occurrence of that sequence of characters in a line of the
inpul. ;

A pattern is said to march part of a text line if the text line contains an
occurrence of the pattern. For example, the pattern aa matches the line aabc once
at position 1, the line aabcaabc in two places, and the line aaaaaa in five (overlap-
ping) places. Matching is done on a line-by-line basis: no pattern can match across
a line boundary. Text patterns may be concatenared: a text pattern followed by
another text pattern forms a new text pattern that matches anything matched by
the first, followed immediately by anything matched by the second. A sequence of
literal characters is an example of concatenated patterns.

Although it is an easy task 10 write a program that looks only for literal strings
of characters (and it is a useful first step), you will soon find it restrictive.
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Accordingly, we will add some more capabilities (o find — the ability 10 search for
patterns that match classes of characters, that match patierns only al particular posi-
lions on a line, or that maich text of indefinite length. :

To be able to express these more general patlerns. we need 10 preempt some
characters to represent other types of lext patierns, or 1o delimit them. For exam-
ple, we will use the charactler ? as a text pallern that maiches any single character
excepl a newline. The pattern x?y matches x+y, xay, x?y and similar strings.

The ? and other reserved characters are often called meracharacters. We try to
choose characters which will not appear with high frequency in normal text, but
still there are occasions when we want 10 look for a literal occurrence of a meta-
character. Thus the special meaning of any metacharacier can be wurned off by
preceding it with the escape character @, as in lhe character translator translit of
Chapter 2. Thus @? matches a literal question mark, and @@ matches a literal at-
sign. _

The meltacharacter [ signals that the characiers following, up 10 the nexi ],
form a characier class, that is, a text pattern that matches any single character from
the bracketed list. Character classes use lhe same notation that was used to specify
from strings in translit: [aA] maiches a or A, [a—2z] malches any lower case letter,
[~a] matches any character except an a, and so forth. The one difference is that, for
convenience, we will say that negated character classes, such as the last example,
will never match a newline. The escape convention can also be used inside charac-
ter classes if the character class is 10 contain = or — or @ or J. :

Two other metacharacters do not match literal characters but rather malich
positions on the input line. % maitches the beginning of a line: %abc is a patiern
that matches abc only if it occurs as the first three characters of an input line.
Analogously, $ matches the newline at the end of a line: abc$ matches abc only if
it is the last thing on a line, before the newline. Of course these can work together:
%abc$ matches a line that contains only abc; and %$ matches only empty lines
(lines containing only a newline).

Any of the text patterns above thal malch a single character (everything but
% and $) can be followed by the character * 1o make a text pattern which maiches
zero or more successive occurrences of the single character pattern. The resukting
pattern is called a closure. For example, a* maiches zero or more a’'s; aa™ maiches
one or more a's; [a—z]* matches any string of zero or more lower case letters.

Since a closure matches zero or more instances of the pdtiern, which do we
pick if there's a choice? find itself only needs 10 know whelther at least one maich
occurs in a line, bul later we will want 1o use the matched substring. It turns out to
‘be most convenient if find maiches the longess possible string even when a null-
string match would be equally valid. Thus [a—zA—-2Z]* maiches an entire word
(which may be a null string), la—zA—2Z)la—zA —Z]* maiches an entire word (one
or more letters but not a null string), and ?* maiches a whole line (which may be a
null string). Any ambiguity in deciding which part of a line maiches a pattern will
be resolved by choosing the maich beginning with the /lefimos: character, then
choosing the longest possible match at that point. So la—z)la—2z0—9J* maiches the
leftmost Fortran identifier on a line, (?*) maiches anything between parentheses,
and ??* matches an entire line of one or more characters (but not a line containing
only a newline).
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Finally, no patiern will match across a line boundary. This is often most
naturai and useful, and it prevents an unwise ?* from eating up an entire input.

Technically. our text patierns are a subclass of the class of patierns calied reg-
utur expressions, which have been extensively studied. General regular expressions
typically include a wi to specify aliernates and the ability 10 parenthesize patterns,
so for example x(albc)y matches either xay or xbcy. (The parentheses and bar
become metacharacters.) These more general patierns add power at the price of
complexity. For our purposes the complexity outweighs the power, but we will dis-
cuss some of the issues ‘nvolved as we proceed.

Exercrse 3-1; Wrile a text pattern that matches only those words that contain the
six vowels aeiouy in order, hike abstemiously or facetiously. Wrile a text pat-
tern that matches the words that can be made with the letters vou can create by
holding a pocket calculator upside down. (The letters are usually BEhILOS,
from the digits 83417051 1
Exercise 3-2: Write text patterns that match PL/I identifiers, Cobol identifiers,
identifiers accepted by vour local assembly language. How would you use
translit, sort. unique, and find 1o list all identifiers and keywords used in a pro-
gram? IS there any easy way to eliminate the keywords? (Hint: look at the pro-
grams for checking spelling mistakes, in Chapter 4.) Is it worth it? O
Exercise 5-3: Most languages actually insist that identifiers have some maximum
length: Fortran, for instance, permits at most six characters. Given text patterns
s defined above, can vou write one that matches Fortran identifiers of at most
six characters? O
Exercise 3-4: Can you use find 10 remove all the blank lines from text? To
remove all comment cards from a Fortran program? To count them” To
remove all comments from a PL/I program? Can you use il to remove all lines
after an end statement? [
Exercise 3-5: Do any of the following patterns make sense, according o the
definitions given above” i not, why not? If so. what do they mean?

gee

aa*

a%b%c

%*a

[~ @tl* @t

%$

D/o

-

@@t
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5.2 Implementation

Now that we know the sort of patterns we want to look for, we can start lay-
ing out the program. Without going into any detail, we can foresee the need for an
array. pat (1o hold the pattern, and a top-ievel organization like:

# find — find patterns in text
character arg(MAXARG), lin(MAXLINE), pal(Mg\XPAT)
integer getarg, getlin, getpat, match

if (getarg(1, arg, MAXARG) == EOF)
call error("usage: find pattemn.”)
if tgetpat(arg, pat} == ERR)
call error("illegal pattern.”)
while (getlin{lin, STDIN) ~= EQF)
if (matchllin, pat) == YES)
call putiin(lin, STDOUT)
stop
end

getpat uses the argument to put the scan pattern into pat. match looks for an
occurrence of the pattern anywhere in the input line lin and returns a YES/NO
answer '

Often it is possible not only to write cotje, without knowing entirely where
you're going, but also to test it. That’s what we did with find. By using dummy
versions of getpat and match, we were able to verify that lines of text are properly. -
read and written — which means that EOF is detected at the correct time and that
the internal-representation in lin is consistently treated, at least by gettin and putiin.
A minor variation of getpat exercised the error message. And an idiot match,
which could detect only a leading a, verified that lines could be printed selectively.

All this may seem pretty elementary, but it's surprising how many bugs are
caught early this way. It is often true in large software projects that the majority of
bugs arise because the pieces of the system do not go together as they were
expected to, despite detailed interface specifications known to everyone {rom the
start. And many other bugs survive elaborate checks on individual routines, surfac-
ing only when the routine first interacts with the rest of the code.

It seems only natural, then, to test at the highest, most integrated ievel first —
since that's where most bugs are detected anyway — and to start testing as soon as
possible, even before most of the actual working code is written. This approach is
referred 10 as rop-down resting, a natural extepsion of top-down design and rop-down
coding. The dummy programs are referred to as program stubs. We built and tested
find that way, a piece at a time, and it paid off. Despite a number of stupid mistakes
(some of which we will admit), the program was written and debugged in short
order.

Since a match can occur anywhere on a line, it seems easiest to factor the
matching into two pieces. match looks for a maich anywhere bn a line, by repeat-
edly calling amatch to look for a match that begins at position i — an anchored
match. This separates checking for a match from deciding what match to 1ry next.
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# match — find match anywhere on line
integer function match(lin, pat)
character lin{MAXLINE), pat(MAXPAT)
integer amatch
integer i

for (i = 1;1lin{i) ~= EOS; i =i+ 1)
if (amatch(lin, i, pat) > 0) {

match = YES
return
}

match = NO

return

end

amatch will return some indication of where the matched string is, or zero if there
was no match. Although later programs wili eventually need to know what part of
the text maiched the patiern, all find cares about is whether or not there was a
malch,

Leaving aside all metacharacters for the moment, amatch has to compare .he
pattern with the input, character by character, until it either finds a mismatch (in
which case it returns zero), or until it gets to the end of the pattern successfully (in
which case it can return the next position of the input, which is guaranteed not to
be zero). Then the most basic version of amatch might be

# amatch with no metacharacters
integer function amatchllin, from, pat)
character lin(MAXLINE), pat(MAXPAT)
integer from, i, j

i = from
for (j = 1; pat(j) ~= EOS;j = j + 1) {
if (lin(i) ~= pat(j)) (

amatch = Q
return # with no match
)
i=i+1
. }
'~ amatch = i
T retumn ' # successfully

end

Here the pﬁltern Characters are stored in successive elements of pat. -

The metacharacters ?, % and $ add only minor complications. Character
classes, however, bring up a question of representation. Clearly we don't want to
have o interpret shorthand like fa—z] for every character position within every line
of input. It looks as if text patterns are sufficiently complicated to warrant encoding.
That way, we can go over the pattern once, carefully check it for illegal
specifications, expand shorthand, and rewrite it in a more convenient form. We
anticipate looking through rather large files with find, so we would like to detect a
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match or mismaich reasonably quickly. Encoding the pattern is a specific exampie
of a rather general principle — the more time you're willing to spend preprocessing
your data, the faster you can use it later.

In our patterns, each text pattern type is represented in pat by a special code.
Literal characters are represented by two entries — the indicator CHAR in position j
and the character itself in position j+1. The metacharaciers %, $ and ? are
represented by the single entries BOL, EOL and ANY respectively. Character
classes are represented as either CCL (for [...]) or NCCL (for [-...]), followed by a
count of the number of characters in the class and the characters themselves, after
any shorthand has been expanded. We will ignore closures for a while yet, until the
easier part is under control. Thus the patiern

%l~x]?2[0—-9]x$
is encoded as
BOL NCCL1x ANY CCLI00123456789 CHJ_ARX EOL

(The first 1 and the 10 are numbers in the encoding, not characters.) Conversion of .
an input pattern to this encoded form is done by getpat and its subordinates, to
which we shall return.

Given this much complexilty in the representation of ;a_pattern, it's also
worthwhile 10 pul the testing and maltching of single characters into a separate rou-
line, 10 keep amatch down 10 manageable size. omatch will test whether a single
input character matches the current pattern position, and advénce the input position
by the right amount if it does. amatch can then concentrdlé on walking through
the pattern in proper synchronization with the text to be matched. Now we can
write another version of amatch:

# amatch with some metacharacters
integer function amatch(lin, from, pat)
character lin(MAXLINE), pat(MAXPAT)
integer omatch, patsiz
integer from, i, | -

i = from
for (j = 1; pat(j) ~= EOS; j = | + patsiz(pat, j)) .
if (omatch(lin, i, pat, j) == NO) |

amatch = 0
return # with no match
}
amatch = i
return # successfully
end

omatch handies everything but closures. patsiz returns the length of an entry in
pat, so that it can be skipped over. We will get back 1o both of these routines once
we deal with closures.

Closures cause all of the difficulty. In"the text changing program near the end
of this chapter and in the editor of Chapter 6, we are going (o write code (hat
replaces the maiched text by something else. For that purpose, the most useful



142  SOFTWARE TOOLS CHAPTER 3

behavior is 10 maich the longest possible pattern if there is a choice, so encounter-
ing a * should cause a loop on the patiern to be replicated, eating up as many
occurrences as possible, until the match fails. Scanning then resumes from the
point of failure by trying to match the rest of the pattern against the rest of the
input line.

But what if the rest of the patiern fails? It does nor necessarily mean that
there is no maich. The patiern b*b, for instance, does match the line bb, but only
if the b* part is confined (o the first b (or to the null string before the first b).
What this means is, every time a match fails, we have 10 go back to the last closure,
shorten it by one and try maiching the rest of the pattern once more. Only when
the pattern fails with the closure matching a null string can we give up.

And we're siill not done, for there may be more than one closure in a pattern.
{(Remember, we said go back to the /asr closure.) So to handle patterns correctly, we
must backtrack systematically through all possible closure matches, until we either
find a match or fail utterly.

One way to manage the backtracking is by a recursive procedure. The advan-
tage of recursion is that the compiler generates code to handle many of the book-

keeping details that complicate a non-recursive program. For example, we could
write amatch like this:

# amatch — a recursive version to handle closures {(pseudo-code)
integer function amatch(lin, from, pat)

offset = from # next unexamined input character
for (j = 1; pat(j) ~= EOS; j = j + patsiz(pat, j))
if (pat(j) == CLOSURE) { # a closure entry
j = lindex of pattern to be repeated)
for (i = offset; lin(i) ~= EOS; i = i + 1) # match as many
if (omatchllin, I, pat, j) == NO) . # as possible
break
# i now points to character that made us fail
# try to match rest of pattern against rest of input
# shrink the closure by 1 after each failure
tar (j=[pattern to repeat}; i > = offset; i = i — 1) |
k = amatch(lin, i, pat(j))
if(k > 0) _# successtul match of rest of pattern

break
offset = k # if k==0, failure; if k>0, success
break
}
eise if (omatch(lin, offset, pat, j) == NO) | # non-closure
amatch = 0
retumn # failure on non-closure

) ;
# else omatch succeeded
amatch = offset
retumn
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The recursion occurs in the line
k = amatch(lin, i, pat(j)

We can implement this version in PL/I by giving the procedure amatch the attri-
bute recursive, but in Fortran the recursion must be handled explicitly. That
means amatch needs a stack 10 keep track of where it is on each level.

In this particular case, the stack need only be as deep as the number of clo-
sures in an expression, so it is reasonable 1o leave room in each closure entry in pat
to hold all of the information about this closure. The stack is implemented as a
linked list, with each entry pointing back to the previous one; the necessasy links
are constructed as the pattern is being built by getpat and its subordinates. This is
the structure of a closure entry in pat:

pat(i + 0) {type] holds CLOSURE for closure

pat(i -+ 1) COUNT repeat count for matches

pat(i + 2) PREVCL  index of previous closure in pattern
pat(i + 3) START index in input line where match starts

The symbolic constants COUNT, PREVCL, and START represent the offsets, and
CLOSIZE is the size of a closure entry, which happens to be 4.

Whenever a closure pattern is encoume?ed, its entry in pat is made the
current stack frame. The patiern to be repeated is assumed to JSollow the closure
enlry in pat, so that when pat is scanned the closure indicator will be encountered
before the pattern itself; we will have to arrange this order when we build the pat-
tern array. The pattern is matched as many times as possible, then the repeat count
and starting text index are saved in the current frame and we g0 on to try the next
pattern enfry.

If a pattern entry fails, and if the last closure match can still be made shorter,
amatch shortens it by one match and retries from there. Otherwise, it goes back (0
the previous closure and tries to shorten that one. Only when it exhausts all alter-
natives does it report failure. And of course if it fails before tha first closure, there
are no alternatives.

The final, non-recursive amatch becomes



144  SOFTWARE TOOLS CHAPTER §

# amatch (non-recursive) — look for match starting at lin{from)
integer function amatch(lin, from, pat)
character lin(MAXLINE), pat(MAXPAT)
integer omatch, patsiz
integer from, i, j, offset, stack

stack = Q
offset = from ' # next unexamined input character
for (j = 1; pat(j) ~= EOS; j =3 + patsiz(pat, j))
if (pat(j) = = CLOSURE) | # a closure entry
stack = | )
i = j + CLOSIZE # step over CLOSURE
for (i = offset; Jin(l) ~= EOS;) # match as many as
if (omatch(lin, i, pat, j) == NO) # possible
break
pat(stack+COUNT) = i — offset
pat(stack +START) = offset
' flfset = j # character that made us fail
else if (omatch(lin, offset, pat, j) == NO) | # non-closure
for (; stack > O; stack = pat(stack +PREVCL))
if (pat{stack + COUNT) > 0)

break
if (stack <= Q) | # stack is empty
amatch = O # retum failure
retumn : '

)
pat(stack +COUNT) = pat(stack + COUNT) — 1
j = stack + CLOSIZE
;:Jﬂset = pat(stack+START) + pat(stack+ COUNT)

# else omatch succeeded
amatch = offset
retum # sSuccess
end

The accompanying routines patsiz and omatch can 1 w be spelted out:
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# patsiz — returns size of pattern entry at pat(n)
integer function patsiz(pat, n}
character pat(MAXPAT)
integer n

if (pat(n) == CHAR}
patsiz = 2 -

else if (pat(n) == BOL | pat(n) == EOL | pat(n) == ANY)
patsiz = 1

else if (pat(n) == CCL | pat(n) == NCCL)
patsiz = pat(n + 1) + 2

else if (pat(n) == CLOSURE) # optional
patsiz = CLOSIZE

else
call error("in patsiz: can’t happen.")

return

end

The entry in patsiz that checks for closures is labeled “‘optional” because pat-
8iz is never called to report the length of such a pattern. It was originally put in
during the early design stages as insurance, in case we changed our minds, then was
left in to appease a gnawing sense of insecurity. A function should do what its
name savs, even if it doesn’t have to, because some day a programmer modifying
find may make a change that calls on the function in a new way. Programmers
have the right to be ignorant of many details of your code and still make reasonable
changes.
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# omatch — try to match a single pattern at pat(j)
integer tunction omatchllin, i, pat, j)
character lin(MAXLINE), pat(MAXPAT)
integer locate
integer bump, i, j -

omatch = NO
if (tlinli) == EOS)
return
bump = —1
if (pat(j) == CHAR) {
if (lin(i) == pat(j + 1))
bump = 1
}

alse if (pat(j) == BOL) {
if(i == 1)
bump = 0
}

elge if (pat(j) == ANY) {
if (lin{i) ~== NEWLINE)

bump = 1
}

else if (pat(j) == EOL) |
if (tin(i) == NEWLINE)
} bump = 0

else if (pat(j) == CCL) {
if (locate(lin(i), pat, j + 1) == YES)

bump = 1,
)

else if (pat(j) == NCCL) | .
if (lin(i) ~= NEWLINE & locate(lin(i), pat, j + 1) == NO)
bump = 1
}

call error("in onatch: can't happen.”)
if (bump > = 0) {

i =i+ bump

?match = YES
return
end

bump is the amount to advance the input position if omatch finds a match. This is
zero for patterns that match null strings and one otherwise.

locate looks for a character in a character class.

else
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# locate — look for c in char class at pat(offset)
integer function locatel(c, pat, offset)
character c, pat(MAXPAT)
integer i, offset
# size of class is at pat(ofiset), characters follow

for (i = offset + pat(oftset); i > offset; i = i — 1)
if (¢ == pat(i)) |
locate = YES
}relum
locate = NO
return
end

The last alternatives in patsiz and in omatch are interesting. Since the pro-
gram builds its own patterns, we know precisely what sorts of entries can be
encountered. Once we have eliminated all but one possibility (with the else if
~ chain) there is no need to,verify that the patiern is indeed the last possibility. Or is
there?

pat is- a hodgepodge. What we really want is a linear list whose elements are a
variety of structures:

BOL, EOL, ANY  identifying code

CHAR identifying code,
character to match
CLOSURE identifying code,

repeat count,
pointer (o previous closure,
pointer to first matched character

CCL,NCCL identifying code,
size of class,
list of characters in class

Each structure also contains, in principle, a pointer to the next list element. But
since we cannot describe arbitrary structures in Fortran, since we cannot alocate
storage from a language-maintained pool, since we cannot even talk about pointers,
we have 10 cheal. We represent diverse data types all as integers, we do our own
storage allocation from an integer array, we use indexes as pointers, and we sidestep
the use of pointers as much as possible by knowing where things are in the array.
Such trickery permits us to do many things in Fortran that were not originally
intended, but at the cost of readability and some validity checks.

We can expect problems, therefore, and should prepare for them. There are
many common coding and design errors that will botch what gets put into pat. If
we blindly assume that all is well, patsiz and omatch will treat garbage as a valid
paitern and act on it. In a sequence of tests, we tend to save the more elaborate
alternatives for last, and in omatch negated character classes (NCCL) are at the end
of the line. Garbage is bad enough, but garbage which is expected to contain a
count 1o tell you how long it is can be much worse. So we test explicitly for the last
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possible condition and print “can’t happen” when the impossible occurs.

The first time we ran this code, it said “‘can’t happen.” We got that message
pashaps a hundred times in the process of adding the rest of the code and shaking it
dswn. This experience speaks for itself: if you're going 1o walk a high-wire, use a
net. You might meditate upon how much harder it would have been to debug a
program that merely goes crazy whenever it's run. 1

Even afier the initial development period, various pieces of find were modified,
sometlimes quite dramatically. Whenever a change was made with more enthusiasm
than caution, “‘can’t happen™ brought us back on the track again. We finally
decided 1o leave the messages in for all time instead of pretending to be perfect.
Removing the error messages “‘now thatl the program is working” is like wearing a
parachute on the ground, but taking it off once you're in the air,

We can test the new code extensively by writing getpat stubs that make
predetermined patterns. First we try an a as before, only this time with a full work-
ing match. Then we turn on one new feature at a time, until we eventually have
arbitrary mixes of patterns working with multiple closures.

Exercise 5-6: Estimate or measure how much execution time is added by leaving
the debugging tesis in patsiz and omatch. What fraction of the total time spent
by the program does this constitute? How is it affected by the frequency with
which different patterns occur in everyday use? How many extra slorage loca-
tions are added by the extra code? What fraction of the total size of the pro-
gram is (v O

Exercise 5-7: Write and debug match and its sub-modules, using various stubs 1o
introduce patierns via getpat. List, in order of increasing difficulty, ten text pat-
terns you should try. (Hint: What kinds of patlerns do you have (o write 10 visit
every parl of the code?) Try them. O

5.3 Building Patterns

Now that we have most of a working pattern finder, let's concentrate on read-
ing and encoding the pattern. Although find is always concerned with a pattern that
begins al position one and terminates with an EQS, we would still prefer a more
general pattern builder — one which lerminates on an arbitrary delimiter and which
tells you where 10 continue scanning if you want. (We prefer it partly on general
principles and partly because we know where we are going in this chapter and the

next.) So getpat is a trivial routine that interfaces between find and makpat, which
does the real work. '

# getpat - convert argument into pattern
integer function getpat(arg, pat)
character arg(MAXARG), pat(MAXPAT)
integer makpat

getpat = makpat(arg, 1, EOS, pat)
return
end
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As we were writing makpat, it became clear that we could modify it 10 make
find easier to use. If a % is not at the beginning of a pattern, it loses its special
meaning, as does a $ not at the end, or a * at the very beginning. In many cases
this eliminates the need to escape these characlers when we are looking for literal
occurrences of them. (It also eliminates the need for an error message, which is
nice.) A * which does not occur at the beginning of the line is checked to make
sure il never calls for repetition of anything that can match a null string, since the
rest of the program is not prepared to handle that situation. In this case, however,
the * is not taken literally; instead the pattern is abandoned and a diagnostic
results. This seems to be the safer course in practice.

We emphasize that these “features” are ad hoc decisions made as we imple-
mented the pattern builder. A number of curious situations turned out to be
unspecified, as is often the case, and had to be resolved during coding. We chose 10
complete the specification in what appeared to be the most convenient way for the
user.

There is no question, however, that 0o much of this sort of thing is bad. Qur
goal is always to write to ciear, unambiguous functional specifications that are easy
to remember, as opposed to writing routines any old way and trying 1o live with
them. Too many exceptions, 100 much ad hoc-ery can lead to programs that are
hard to get right and hard to use. As always, it is necessary (o strike a careful bal-
ance.

Here is makpat, which converts the patiern argument into its encoded form in

the array pat. makpat does the easy cases itself, and leaves the complicated ones 10
subroutines.
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# makpat — make pattern from arg(from), terminate at delim
integer function makpat(arg, from, delim, pat)
character esc
character arg(MAXARG), delim, pat(MAXPAT)
integer addset, getccl, stclos
integer from, i, j, junk, lastcl, lastj, |j

=1 # pat index
lastj = 1
lastcl = O
for (i = from; arg(i) ~= delim & arg(i) ~= EOS;i =i + 1) {
Q=i .
if (arg(i) == ANY)
junk = addset(ANY, pat, j, MAXPAT)
else if (arg(i) == BOL & i == from)
junk = addset(BOL, pat, j, MAXPAT)
eise if (arg(i) == EOL & argli + 1) == delim)
junk = addset(EOL, pat, j, MAXPAT)
else if (argli) == CCL) {
if (getcciiarg, i, pat, j) == ERR)
break
)

else if (arg(i) === CLOSURE & i > from) {
Ij = lastj
if (pat(lj) = =BOL | pat(lj)= =EOL | pat{lj)= =CLOSURE)
break
lastct = stclos(pat, j, lastj, lastcl)

eise { -
junk = addset(CHAR, pat, j, MAXPATY
junk = addset(esc(arg, i), pat, j, MAXPAT)
)

lastj = |j

if (arg(i) ~= delim) # terminated early
makpat = ERR

else if (addset(EOS, pat, j, MAXPAT) == NO) # no room
makpat = ERR

else
makpat = |

retum

end

All entries into the pat array are made via calls to addset. This is the same
routine used in translit to check for overwrites, store an entry, and update the store
index. (esc is also from translit; it handles an escape character if one should be
present.)
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Rather than test each call to addset to see if there was room for the new
character, we ignore the-status return (by assigning it to junk, as in Chapter 2),
since addset will never write beyond the specified limit. If there is room for the
EOS that terminates the pattern, all is well; if not, something went wrong and mak-
pat returns ERR. '

Character classes are encoded by getccl. We have organized getccl so that it
uses filset (and all its sub-modules) to build character class entries as in translit.
That way, we avoid writing a lot of new code, we have some assurance that the
code is correct, and we know find and translit apply the same rules for specifying
character classes.

# getccl — expand char class at arg(i) into pat(j)
integer function getccl(arg, i, pat, j)
character arg(MAXARG), patiMAXPAT)
integer addset
integer i, j, jstart, junk

i=i+1 # skip over [
if (arg(i) == NOT) {
junk = addset(NCCL, pat, j, MAXPAT)

P&+ 1
}
else
junk = addset(CCL, pat, j, MAXPAT)
jstart = j
junk = addset(0, pat, j, MAXPAT) # leave room for count

call filset(CCLEND, arg, i, Fat, i» MAXPAT)
pat(jstart) = j — jstart —
it (arg(i) == CCLEND)

getcel = OK
else

getccl = ERR
returmn
end

CCLEND is, of course, a ].

Since closure entries are moderately involved, makpat uses a separate routine
stclos to build each such entry and link it to previous entries (making the stack).
The value it returns is saved in lastcl for later linking. When a * is encountered,
we have 10 move the previous pattern over far enough that we can stick in a closure
entry, since it has 1o be seen firss when amatch scans. stclos also does this, being
careful not to move anything off the end of pat inadvertently.
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# stclos — insert closure entry at pat(j)

integer function stclod(pat, j, lastj, lastcl)
character pat(MAXPAT)

integer addset

integer j, jp, jt, junk, lastcl, lastj

for(jp=j~ tijp >=1last;jp=jp — 1) { # make a hole
jt = jp + CLOSIZE '
junk = addset(pat(jp), pat, jt, MAXPAT)
Fo

i =]+ CLOSIZE

stclos = lastj

junk = addset(CLOSURE, pat, lastj, MAXPAT) # put closure in it

junk = addset(0, pat, lastj, MAXPAT) # COUNT
junk = addset(lastcl, pat, lastj, MAXPAT) # PREVCL
junk = addset(0, pat, lastj, MAXPAT) # START

return

end

When we built find, the identifying codes stored in pat were the actual charac-
ters from the argument, wherever possible. (This may not have been entirely obvi-
ous because we use symbolic constants like EOL and CLOSURE instead of DOL-
LAR and STAR, in case you wanl 1o replace them with characters of your own
choosing.) We always try to use printable internal codes, so we can insert debugging

lines like

call putlin(pat, ERROUT)

and get out something more or less readable. As a matter of fact, we defined CHAR
to be the letter a and NCCL 10 be n. Counts and indexes come out funny, but most
patterns tend to be readable.

We only mentioned three testing plateaus in the process of building find, but
actually there were many more. As we designed the mechanism for handling each.
type of pattern, we stuck it in and tried it out with the exisling skeleton. Since we
are presenting you with a finished design, however, it would have been artificial to
g0 through the several false starts we discarded. When you build your own designs
top-down, plan on more than three tests!

Getting closures right was the hardest part, for the logic involved in handling
them constitutes about half the code. Most of the errors were made, as expected, in
the pat array. Either an entry was built wrong or it was not read as it should have
been. In either event the program responded by saying ‘“‘can’t happen” when we
tried a new feature. That made it easy to locate and correct mistakes.

[t is interesting 10 note that nearly all the design difficulties arose in our
atlempl to simulate structures, dynamic storage allocation, and recursion. The fact
that Fortran and many other languages lack these features is a legitimate complaint.
When we have 1o spend time doing things that the language does not do for us, it
dilutes our efforts and takes time away from our original goal. The lesson once
again is clear — it should not just be possible 10 do commonplace things, it must also

be convenient.
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find is not a big program, only about 225 lines, excluding the contribution of
translit, but it is big enough to warrant a diagram of the relationship among the
subroutines and functions, just as we did with archive in Chapter 3.

find
getpat
makpat
getccl
filset
stclos
match
amatch
omatch
locate
patsiz

This picture excludes utility routines like getlin, putlin and addset, and of course
filset calls several routines developed for translit in Chapter 2.

Notice how both major branches on the hierarchy, getpat and match, progress
frem the abstract to the specific as you get further from the root of the tree. This is
a natural result of the way we wrole find. We took an abstract problem, to find all
the occurrences of a pattern in the input, and refined it intd two steps:

get the pattern
match input lines against the patlern

Each of these was refined in turn (although we atlacked the second one first), until
all of the details were filled in a1 the lowesl levels. At each stage, if the operation 1o
be performed was simple enough, it was coded directly. If not, part of it was coded
in terms of calls on lower routines, which were expanded later on. -

Starting at the top and working towards the bottom by filling in details is often
called “successive refinement.” It is a valuable approach for programs of exen mod-
est size. At no point does the design bog down in details, for they are deferred to
later stages of refinement. Testing can begin early, because the “‘unrefined” parts
of the design can be replaced by temporary stubs that implement very limited func-
tions. (We did that in find) And revisions are easier because different aspects of
the implementation tend to appear at separate levels. The important thing is to
recognize the appropriate level of abstraction at each stage and to avoid mixing in
lower-level details.

Exercise 5-8: Write the rest of the routines for find and debug them. Use the
same series of tests you used-before. Can you think of any others that will
better test makpat? (Once again: Have you visited a// parts of the code?) [

Exercise 5-9: Now that you have a working find, add multiple file capabilities, so
that

- tind paitern filel file2 ...

will read the specified files in order or, if no file arguments are given, read the
standard input. You should print the file name before each maiched line if
there is more than one file argument. Would you ever want to turn this extra
printout off? O

;f'r o S
’

o
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Exercise 5-10: Modify find.so

find -patiern

will print al// those lines that do not match-the pattern. To what routine should
the test be added? How do you specify a pattern beginning with a literal ~? O
Exercise 5-11: Add 1o find the metacharacter +, which stands for *one or more
occurrences” of a paitern in the same way that * stands for zero or more. ]
Exercise 5-12: Invent a syntax for specifying an arbitrary bit string in a pattern;
modify find o scan for such patterns. (See the discussion of esc in Chapter 2.)
O

5.4 Some Measurements _

We ran find with a number of patterns on a input of 225 lines and 3540 char-~
acters (a Ratfor program). Here are some CPU times as measured on a Honeywell
6070,

pattern: % (start 1 character 3-letter ?%*x
of line) {not present) word x not present

total time 2.3 sec 2.4 sec. 2.4 sec. 15.0 sec.
getlin 78.4% 76.5% 76.8% 12.0%
putlin 19.5 0.1 20 0.0

match 0.3 5.2 45 0.8
amatch 0.6 10.0 92 38.1
omatch 0.5 1.3 6.6 336

patsiz 0.3 0.0 0.1 154

As is often the case, the CPU time for simple patterns is dominated by /O
processing. (Our getlin merely invokes a Fortran read statement for character
input; putlin uses a write. Thus we have no control over their CPU time.) The pat-
tern ?*x, where X is a character not present in the input, is a bad case, since find
must backirack through each character position on each line before deciding that
the character doesn’t occur. Of course a patiern like 2*?*x would be even worse.

To decide whether find is efficient enough, you have to weight its performance
on different patterns by the frequency with which they occur and by the size of the
inputs being .searched. If the workload consists entirely of nasty patterns and large
texts, then clearly find needs a better algorithm. As written, find can not be readily
improved because it would require a complete backirack through ali matches to
guarantee finding the leftmost and longest one. It is possible, however, (o recognize
any regular expression with no backtracking whatsoever. The most efficient
methods convert the regular expression into a “machins” that looks for all possible
matches in parallel as it reads the input, and signals whenever one is found. The
construction of such a machine is of course a more time-consuming encoding than
the one we used, but has a correspondingly greater payoff in running time. For
more details, see Chapter 9 of The Design and Analysis of Computer Algorithms, refer-
enced at the end of this chapter.
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Fortunately the combination of difficult pattern and large inpul seems to be
infrequent in practice. Much more common is a search for a particular word, for
which find is acceptably efficient.

5.5 Changing Text

Now that we know how to identify patterns in text, let’s consider a useful tool
for making selective changes. Change usually implies one of three different opera-
tions. When we discard what we found, we call it a deletion; when we put some-
thing new in its place, we call it a replacement; and when we leave what we found
intact and stick something before or afier, we call it an inserrion. Many “‘update”
utilities make quite a thing out of preserving these distinctions, but the differences
are irrelevant.

There is a simple notation that lets us express all these operations plus a few
additional interesting alternatives. The program change lets us say

change fmm_ 0

to look for all occurrences of text patterns that match from and replace each with
the substitution string 0. The substitution string can be just a string of replace-
ment characters:

change mispell misspeli
Or it can be null, to effect a deletion:

change "very, "
change " *$"

Or it can include the special “d_'iuo“ character & to put back the matched stuff and
(hus effect an insertion: -

change active in&

The last example changes all instances of active to inactive.

The ditto character can appear at either end:

change able &-bodied
in the middle:
change a+b (&)
or more than once;
change very "&, &"
It can also be used literally with the help of an escape:
change and @&

For change, it is important to know not only what line matches a pattern but
also what substring of the line caused the match to succeed. The task is 10 make the
specified changes in that substring, then look for additional matches on the
remainder of the line. find finds the lefimost longest match; once that match is

located, we can resume scanning the input at the first character after the matched
substring and so pick up all disjoint instances of a given pattern in a text file. 'We
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never rescan replacement text; this avoids any possibility of looping.

Very little code need be added to what was written for find in order to imple-
ment change. From the stari we were careful to specify exactly how text patterns
malch pattern strings, so the size of the maltch string is well defined; and we wrote
- amatch so that it returns the index of the first character past the end of the match.
Here is the top level.

# change — change "from" into "to"
character lin(MAXLINE), new(MAXLINE), pattMAXPAT), sub(MAXPAT)
character arg(MAXARG) ’
integer addset, amatch, getarg, getlin, getpat, getsub
integer i, junk, k, lastm, m

if (getarg(1, arg, MAXARG) == EOF)
call error("usage: change from to.")
if (getpat(arg, pat) == ERR)
call error("illegal from pattern.”)
if (getarg(2, arg, MAXARG) == EOF)
arg(1) = EOS
if (getsublarg, sub) == ERR)
call error("illegal to.")
while (getlin(lin, STDIN) ~= EOF) {
k=1
tastm = O
for (i =1; lin(i) ~= EOS; ) {
m = amatch(lin, i, pat)
if (m > O & lastm ~= m) { # replace matched text
call catsub(lin, i, m, sub, new, k, MAXLINE)

lastm = m
}

ifm==0|m==i{ # nomatch or null match
junk = addset(lin(i), new, k, MAXLINE)
i=i+1
)

else # skip matched text
i=m

}

if (addset(EOS, new, k, MAXLINE) = = NO) {
k = MAXLINE
junk = addset(EOS, new, k, MAXLINE)
call remark("line truncated:.")
call putlin(new, ERROUT)
call putch[N_EWLfNE, ERROUT)

call putlin(new, STDOUT)
)

stop

end
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Arguments are analyzed and converted fnto the appropriate forms by getpat,
which we wrote for find, and getsub, to whi¢h we will return shortly.

amatch is attempted for every starting position on each line. If there is a
match {m > 0) and if it is not the same match as the last time (lastm -= m),
catsub concatenates the expanded substitution pattern onto the new line being
built, at position k, and the entire matched string is skipped over. If there is no
match (m==0) or the maich was to a null string {(m==1), one character is copied
to the output and skipped over on input.

The main problem is what 1o do with null string matches, because unless one

is careful, there can be unexpected null strings. We have arranged change so there

“are never (wo adjacent null strings. This ensures that the patiern a* matches Lhe

line xy at three points — before x, between x and y, and afler y. We are also care-

ful that a®* matches xay at only three places as well; this is the least astonishing
behavior.

A second complication is error checking, which adds a lot of code. Although
we could avoid the problem of output line overflow by calling put® directly from
catsub, this would destroy the generality of a module that we plan to u3e later. The
warning message seems a better organization.

getsub, like getpat, divides the work of building the substitution pattern into
two pieces, one specific and one more general.

# getsub — get substitution pattern into sub
integer function getsublarg, sub)
character arg(MAXARG), sub(MAXPAT)
integer maksub

getsub =='maksub(arg, 1, EOS, sub)
retum
end

maksub copies the substitution pattern into sub until it finds an occurrence of
the delimiter, in ithis case an EOS. Any instances of the dittc characler & are
replaced by a specia!l code.
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# maksub — make substitution string in sub
integer function maksub(arg, from, detim, sub)
character esc
character arg(MAXARG), dellm, sub(MAXPAT)
integer addset
integer from, i, j, junk

j=1
for (i = from; arg(i) ~= delim & arg(i) ~= EOS;i =i + 1)
if (arg(i) == AND)
junk = addset(DITTO, sub, j, MAXPAT)
else
junk = addset(asclarg, i), sub, j, MAXPAT)
if (arg(i) -~= delim) # missing delimiter
maksub = ERR .
else if (addset(EQS, sub, j, MAXPAT) == NO) # no room
maksub = ERR
eise
maksub = |

retum
i end

DITTO is a code distinguishable from all representable characters; like EOF and
EOS, it is best given a small negative value.

All that remains is catsub, which is straightforward:

# catsub — add replacement text to end of new
subroutine catsub(lin, from, to, sub, new, k, maxnew)
integer addset
integer from, i, j, junk, k, maxnew, to
character lin(MAXLINE), new(maxnew), sub(MAXPAT)

for (i = 1; subli} -= EOS:i =i + 1)
if (sub(i) == DITTO)
for(j = from;j < to;j=j + 1)
junk = addset(lin(j), new, k, maxnew)
else

junk = addset({subl(i), new, k, maxnew)
return
end

Exercise 5-13: What does
change active in&

do 1o inactive, attractive, and radioactive? What procedures would you estab-

lish for verifying that “small” changes to a document actually have the desired
effect? 0O
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Exercise 5-14: What happens if you try to change something into a newline?
What happens if you try to remove the newline at the end of a line? O

Exercise 5-13: 1s there anything you can do with translit that you can’t do with
change? O

Exercise 5-16: Extend change 1o perform multiple changes; for example,

change a b ¢ d

changes all a’s 10 b’s, then changes all ¢'s 1o d’s on the resuiting line. Is this
equivalent 10

change a b | change ¢ d

for all possible patierns and substitution strings? 1]

Exercise 5-17: Consider a file, each line of which consists of two fields separated
by a tab. Write a pipeline to produce a new file with the fields interchanged on
edach line. ie..

1234 5678
becomes
5678 1234

(Hint: Try duplicating the contents of each line, with a separator between the
two instances.) [J
Often useful is the ability to 1ag parts of a text patiern so that the pieces of a
malched string can be put back selectively or rearranged. Suppose we invenl two
metacharacters { and | in a text pattern 10 “remember” the substring matched by
that part of the pattern. For example in the paltern

%{?277){ 7%}

the first pair of braces will remember the three characters at the beginning of the
line, whatever they are: the second braces remember the rest of the line. Now we
need a notation 1o recall the saved substrings. Suppose that @n refers to the string
remembered by t(he nth pair of braces, where # is a single digii. Then we can move
a three-character seqguence number from the beginning of a line to the end like
this:

change %(???}{?*} @2@1
As a harder-1o-read example,
change ([~@atl*)@t{?*] @2e@t@ 1

reverses (wo tab-separated fields, as you did by brute force in the previous exercise,

Exercise 5-18: Rewrile the pattern-finding code 1o remember tagged patterns as
cleanly as possible, then alter change 1o insert them on demand in. the substitu-
tion string. Does your code handie nested braces? You might consider using
@( and @) in place of { and }, particularly if your machine has a restricted char-
acter set. Why is this a better convention than making ordinary parentheses
into metacharacters? O
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Exercise 5-19: Given pattern tagging, how would you specify that only the left-
most integer in a line of integers is to be changed 1o zero? Only the rightmost?
The second one from the left? O

Exercise 5-20: Add an Eplion ~n 10 find, 10 print the line number, followed by .a
space, before each line that matches. This is useful for subsequently identifying
the maiched lines. What is the effect of

find —n % | sort ~n —r | change "%[0—9]* "

(Recall that sort —n —r calls for a reverse sort with a numeric field at the start of
a line.) How hard would it be 10 write a special program to do this particular job
for all file sizes? Would it be worth it? O

Exercise 5-21: A problem suggested by D. E. Knuth is 10 find the largest set of
eight-letier words that have the same middle four letters. Assuming you have a
machine-readable dictionary (with one word per line), how would you solve this
problem with find, change, sort and unique? Do you need anything else? [

5.6 Summary

We have introduced a lot of machinery 10 handle text patterns, and a Jot of
notation to go with it. Here is a brief summary of the things you can specify.

A lext patlern consists of the following elemenis:

¢ literal character

? any character excepl newline

% beginning of line

$ end of line (null siring before newline)

[..] character class (any one of these characters)

b d negated characler class (all but these characlers)

* closure (zero or more occurrences of previous patiern)
@c escaped characler (eg, @%, @[ @*)

Any special meaning of characters in a text pattern is lost when escaped, inside [...),
or for:

% not at beginning
$ nol at end
* al beginning

A characler class consists of zero or more of the following elements, surrounded by
[and ]:

o literal character, including [
a—c range of characters (digits, lower or upper case)
= negated character class if at beginning
@c escaped character (@~ @— @@ @)

Special meaning of characters in a character class is lost when escaped or for

- not at beginning
3 al beginning or end
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A substitution pattern consisis of zero or more of the following elements:

i literal character
& ditto, i.e., whatever was matched
@c escaped characler (@§&)

An escape sequence consists of the character @ followed by a single character:

@n newling
@t tab
@c ¢ (including @ @)

Bibliographic Notes

For a comprehensive discussion of how o recognize the broader class of text
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1974). You might also read J. F. Gimpel's “A theory of discrete patierns and their
implementation in Snobol4,” C4CM, February, 1973). Snobol is of course a widely
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sions and print) by K. L. Thompson.






CHAPTER 6

EDITING

Now that we have some pattern matching and changing code handy, we are
ready 10 lackle the more general problem of text editing — crealing and modifying
textual information like programs, data, documents, what have you. All interactive
computing systems (and some baich sysiems) have some form of .editing facility,
bui it is often primitive. The reason most users don’t complain is that they don’t
know what they're missing. The ability 10 do context searches with text patterns,
muke global changes, or do arbitrary file I/0O is often left out of even the more
“advanced” editors. ‘Those that include these features often have a command syn-
lax so cumbersome that it is largely unused.

The editor we prescnt here is modeled closely after the latest in a long family
of conversational text editors that have achieved wide acceptance. Concern for
human engineering dominates the design — edit tries to be concise, regular and
powerful. Because edit is primarily intended for interactive use, it is streamlined
and terse, but easy 10 use. This is especially important for a text editor: for most
users it is the primary interface to the system. (On our UNIX system, the editor
accounts for fifteen percent of all commands executed, more than three times the
nearest competitor.) edit is nor confined 1o conversational editing, however. It can
be driven from prepared scripts and from other programs. It is frequently used to
select results from programs or to prepare input 1o still other programs. It is a tool.

Error recovery is a second major influence on the design of the editor. Like
the archive program of Chapter 3, edit maintains precious files, so it must be cau-
tious. Not only that, but when it is used #nteractively it cannot just throw up iis
hands and quit when a user enters an erroneous command. It must recover grace-
fully, for otherwise some trifling mistake could cause the loss of valuable informa-
ton.

Finally, since the editor is inherently a big program, it must be well organized,
or it will get utterly out of hand (and thus probably fail 10 achieve its goals of good
human engineering and reliability). Accordingly we will design the edifor top-down,
and push 1o the lowest possible level any information about how files are handled
or how text is represented. As much 'as possible, details of implementation will be
hidden from routines that don’t need to know about them. so they can be changcd i
or improved without upsetting the bulk of the program. '

163
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6.1 What the User Sees

Although it is generally wise to start small and evolve, an editor, like a pro-
gramming language, is so heavily used that it should be really good, s0 that you
don’t spend all your time fighting i1s deficiencies. Accordingly, edit provides a rela-
tively rich set of facilities, much more than the bare minimum.

This section contains a synopsis of edit, enough to give you a feeling for what
design decisions were made and why, and for what commands are available. We
will expand upon individual commands as we come to them during implemer tation.

To get started, you type
edit
or
edit file

In the latter case, if file already exists, it's assumed you want 1o access ils contents,
so they are copied into an internal buffer, whose implementation is left unspecified
for now. “in any case, text is modified in the buffer and perhaps eventually written
back to some external file. Files are never modified except by explicit command.
This proves to be a safer procedure than working on a file in place, for if you botch
an edit you can aiways read in a fresh copy and start anew.

edit\is basically “line oriented,” in that most editing commands operate on
groups of one or more lines in the buffer. This is a natural organization, since text
intrinsically comes in lines. Other units might be selected — characters, words, sen-
lences, or arbitrary strings — but lines seem to be most suitable for a wide variety
of applications. It is certainly possible to access parts of lines as well; we'll get to
that in 2 moment.

We should emphasize that the editor imposes no structure on lines. It doesn’t
know that columns 6 and 73 are especially significant in a Fortran program, for
instance, nor does it know about any other special format. In our experience, edi-
tors that presume to know too much about what you're doing are more hindrance
than help.

As wé said, edit tries 10 be concise and regular. A/ editing commands consist
of a single letter, which may be optionally preceded by one or two “line numbers,”
which specify the inclusive range of lines in the buffer over which the command is
to act. Thus the command

1p
calls for the printing of the first line, and
1.3p

prints lines 1, 2, and 3. Only one command per line is permitted, since this reduces
the possibility that erroneous input will cause serious damage.

The delete command d is analogous to p; it deletes the lines in the specified
range:

L 1,3d ,

deletes the first three lines from the buffer. It is always an error to refer 10 a line
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that doesn’t exist. edit complains when you do.

Line numbers are refative 10 the beginning of the buffer. After the first three
lines have been deleted, the first remaining line (the old line 4) becomes the new
line 1, and all other lines are renumbered correspondingly. This behavior may be
unfamiliar if vou're used 10 an editor where ‘‘line numbers” have a physical
existence as part of exi lines themselves. Qur line numbers are not part of the file,
and indeed have no physical representation anywhere; they are just the relative
positions of the lines in the buffer. As you will see shortly, this organization gives
invaluable flexibility in specifying and rearranging lines.

Although 1118 possible 10 edit entirely i terras of line numbers, be they rela-
tive or absolute, 1t’s often an unwieldy nuisance, so edit lets you specify the lines in
which you're interesied in several other ways. For instance, the editor always keeps
track of the current i, typically the most recent line affected by the previous com-
mand. The current linc is specified by the character . (period or “dot™), which you
can use anywhere: you would have used an integer line number. The /ast line in the
buffer is also known: it is calied $. So

- $p

would print the currem line and any subsequent lines through to the end of the
buffer;

1.%p

prints everything; and
1,8d

deietes everything.

Dot is altered by many commands. In particular, it is set to the last line
printed after a p command and to the next undeleted line after d, except that it
never moves past $. Thus a single

d

deletes the current line, and leaves dot pointing 1o the next line, while

%
p

deletes all lines from here to the end, and prints the new last line.

The purpose of . and $ is 1o reduce the need for specific line numbers. This
is further helped by the ability to do line number arithmetic. To print the last few
lines of the file (perhaps to see how far you got in a previous editing session), say

$-10, $p
Or you can say
.~5,.+5p
to print a group of lines around where you're working.

Even when augmented by .. $ and arithmetic, line number editing is still
clumsy. When you're editing, you want 1o be able 1o say, “Find me an occurrence
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of this string,” so you can work on it without having to know precisely where it
occurs. In edit you can do a contexi search to find a line, simply by writing a pattern
between slashes.

/abc/

means: Starting with the next line after the current line, scan forward until you find
a line which matches the patiern abc. The patiern is of course anything of the sort
that we described in Chapter 5; we will use the same pattern matching code to
ensure this. The search wraps around from line $ to line 17if necessary. Thus

/abc/,$p

would locate the next line (after the current line) that matches abc, and print from
there to the end of the buffer. (If a context search proceeds forward around the
ring back to the current line without finding a match, an error is signatled.)

Similarly, you can scan backwards by wriling a paitern between backslashes.
\def\ means: Starting with the line right before the current line, scan backward
until you find a line which matches the specified pattern (def). Again, the search
wraps around from line 1 to line $, and if no line satisfies the search, an error is sig-
nalled. Editing a Ratfor program, for instance, you might say

\subroutine\, /end/p

to print the subroutine in which the current line is imbedded.

A line number standing by itsell (ie., followed only by a newline) is taken as
a request to print that line, so

$
prints the last line, and the common case of “Find me the next line with an abc” is
- [abc/

It finds the line, prints it, and sets dot to that line so you can begin to work there.
As a special case, a newline all by itself is a request 10 print the next line, to make it
easy to step through the buffer a line at a time.

It is hard to overstate the importance of context searching. Most of the time
you use context searches to get 10 the next place where you want to do some edit-
ing. Even when you know the source line numbers, it's often better to scan. If
you've used an identifier two different ways, for instance, you might overlook an
-instance or two while correcting the listing. A context search, however, will lead
you in turn to every place in the source where the offending identifier is referenced.

Placing line numbers before the command instead of after may seem unna-
tural at first, but one adapts rapidly. This choice lets individual commands use
different syntaxes for optional information afier the command letter without des-
troying the regularity with which a range of lines is specified.

The most important of the commands which take further information is the
substiture command 8, used for changing characlers within a line.

s/ofrmat/format/
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changes the first occurrence of ofrmat to format on the current line. If there should
be more than one on that line (we hope not), you can say

s/ofrmat/tormat/g

to do it globally (ie., everywhere) on the line. Of course the left side of an 8 com-
mand can be any legal pattern, since the same pattern-matching code is used 1or
context searches and substitutions. The right hand sille can include the ditto char-
acter & as shorthand for whatever was matched by the left hand side, as in the
change program of Chapter 5.

An s command, with or without g, can be followed by a p to print the last
affected line, 10 verify that the desired substitution was made. Printout is not
automatic for any of the commands, so edit is only as chaity as you wanl to make
it. {You can also follow a deiete command by a p; the first undeleted line is.
printed.) An s command can be preceded by one or two line numbers, to indicate
that the substitution is to be done on a range of lines:

.+ 1s/ofrmat/format/
fixes the mistake on the next line, and
1, $s/ofrmat/format/g

does it everywhere on ali lines. (This is handy for consistent misspellers.) Dot is
left pointing to the last line which was changed.

$ is probably the most useful command in the editor, since it permits you to
specify changes in a line or lines succinctly. It is frequently used to add text to the
end of a line

s/$/ new end/
or the .beginning

s/%/new beginning /
or the middle

s/and/& fdrthermore/p

The character that delimits the pieces of a substitute command need not be &
slash; any character will do, so -

s:/:i:g .
deletes all slashes in a line. Of course you could achieve the same effect by ‘“‘escap-
ing” the slash, as in

s/@///g

but this can be confusing.

The last pattern used in a context search or substitute is remembered, and can
be specified by a null patiern like /#or \\. If you say /format/ to find a format state-
ment, and it’s not the one you want, you can say // to get to the next one, of \\ to
g0 back to the previous one. The remembered pattern eliminates a lot ofm

gnd error-prone re-typing. A typical use of remembered patterns while subﬂiunlﬂ
is
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/ofrmat/s//format/p
//s//tformat/p
//s//tormat/p

10 walk (slowly) through a document, picking up the misspellings one by one. You
know you have them all when a search fails. You can change them all at once with

1, $s/ofrmat/format/gp

but this form prints only the last one for verification.

We return now 1o operations that affect whole lines of text. Most imporiant is
the append command &, to add new lines of -text 10 the buffer. It is the basic
mechanisam for adding text (o a file, or for making a file to begin with. This entire
book and all the programs that go with it were al one time or another appended 10
the buffer of a text editor very similar to the one we are presenting he.e.

Since it is used so much, the append mechanism tries (o be as unobirusive as
possible. Once it encounters the command a, the editor enters a special append
mode where everything following is tucked away in the appropriate part”of the
buffer.. Escapes and all other characters lose their special meaning, until a line is
encountered that contains only a period at the beginning. This signal, which is easy
to type and pretty unlikely to appear in ordinary text, marks the end of append
mode and is not itself copied into the buffer. Subsequent lines are interpreted as
commands once again.

So to add text to the buffer, you specify where you want to put it and do an
append. To tack stuff on to the end, for instance,

$a

anything you want to 1ype
except a line containing only a .
as in the following line

This adds three lines to the buffer, then resumes looking for commands. It was not
necessary to escape the period at the end of the second line, since that character is
magic only when it stands alone al the beginning of a line. To add something at the
beginning of the buffer, you can use the line number zero, as in Qa. If no line
number is specified, the text is appended afier the current Imp (dot). '

The insert command i is identical 10 &, except that it inserts lines before the
line named, instead of after it. The change command ¢ replaces one or more lines
with a fresh.group of zero or more lines:

linel, line2 ¢

stuff

replaces line! through fine2 with whatever lines follow the ¢. If no line numbers are
given, dot is used by both i and c.



- ¢
CHAPTER 6 EDITING - 169

Clearly if you have a and d, you don’t need either ¢ or i. The extra flexibility
appears 10 be worthwhile, however, and the amount of additional code turns-out to
be insignificant.

Dot is left at the last line of text appended, changed or inserted, so you can
" correct errors as you go, as in this sequence. (The annotauons in italics are to clar-
ify what is going on.)

a append some text

10 ofrmat(...) oops!

: siop appending

s/ofr/for/ fix it _

a resume appending right after corrected line
.. more text ...

botched line oops again

. stop appending

c Just replace it entirely

.. corrected stuff ... and continue typing

The behavior of dot and the default line numbers may seem like a minor concern,
but in fact proper choices are crucial for smooth editing. The example above works
naturally, without any explicit line numbers, because dot and the default line
numbers are “‘right” each time. We have tried (o take similar care with other com-
mands.

The move command m lets you move a block of one or more lines to any place
in the buffer, and thus provides for “cut and paste” editing. The command

linel, line2 m line3

moves /ine/ through /ine2 inclusive to after lined. Thus
+1m$

moves the current line and the one following to the end of the buﬁ'er and
$mO

moves the last line to the beginning (“after line zero”). If no linel or line2 is
present, line dot is moved. Dot is left pointing to the last line moved.

You can add the contents of any file to the buffer with the read command r:
r file

reads file, places its contents right afler line dot, and sets dot to the last line read in.
Lines already in the buffer are not altered. If a line is specified with the r com-
mand, the text is read in afler that line.

Any part of the buffer can be writien onto any file with the write command w;
\subroutine\, /end/w test

wriles the current subroutine on test. If no lines are given, a w.command writes
out the entire conterits of the buffer, and if you leave out the file name (a bare w
command), it writes on the file name used in the original edit file command. w
does not change dot, nor does it alter the buffer.
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Finally, the guit command q lets you leave the editor gracgfuily. The file you
were working on is nor saved automatically — if you want it saved, you have to
issue an appropriate w command before the q.

Any editor command excep! a, ¢, i and g can be_preceded by a global prefix:
a/patiernf command

specifies that command is to be performed for each line in the buffer that contains
an instance of paitern. g, like w, has a default range of all lines, but a smaller range
can be given. A common use of the global prefix is to print all lines containing an
interesting pattern:

g/interesting/p
(which is what the program find does), or to delete all lines with an undesrrable pal-
tern:

g/undesirable/d

For example,

g9/% *$/d
deletes empty lines and lines that contain only blanks. You could use

g/ofrmat/s//format/gp

to find all ofrmat’s, fix them, and print each corrected line as a check. Since the
command that follows a global prefix can have a range of lines, we can even print
all lines near ones that contain an interesting pattern:

g/interesting/.—1,.+ 1p
The g prefix is definitely an advanced feature, not the concern of a first-time user,
but it's worth learning.
There is also a x command which is identical to g except that it operates only
on those lines that do nor contain the pattern (x is for “exclude™):
T *$/p
grints onfy non-blank lines.

That pretty much covers the commands, but before we get into the code, here
are a few more notes on line numbers, since much of editing is concerrmed with
specifying the lines you want to do things to.

A semicolon may be used 1o separate line numbers just as a comma does, but
H has the additional effect of setting dot 1o the latest line number before evaluating
the nex1 argument.

/abc/; .+ 1p
scans forward 10 the next line containing abc, then prints that line and the one fol-
lowing it (.+1). :

A line number expression may be arbitrarily complex, so long as its  value lies
between 0 and §, inclusive. And there can be any number of expressions, so long
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as the last one or two are legal for the particular command. Thus

\function\; \\

finds the second previous function declaration, and

#1101 e
prints from the third succeeding line containing # to the fourth, inclusive.

You can do a lot of editing without global prefixes, semi.olons and multiple
context searches, and indeed there is seldom call for anything as elaborate as the
last example. Bul as you gain familiarity with the editor, more and more of these
things become natural. And when you write scripts to perform complex editing
sequences on a series of files, these facilities are invaluable.

Exercise 6-1: Compare the external characteristics of edit with the editing facili-
ties available on your system. O

6.2 Implementation

A warning: edit is a big program; at 900 lines (excluding contributions from
translit, find and change), it is fiftly percent bigger than anything else in this book.
Although we have done our best to write it well and to present it well, it will take
study to assimilate fully. Bear with us as you read and be willing 10 take a couple of
passes over difficult parts. '

Input to the editor is a series of command lines, each of which looks like
linel, line2 command stuff

where linel, line2 and stuff are all typically optional. Thus the main loop of the edi-
tor is

while (getlin(lin, STDIN) ~= EOF) {
get list of line numbers from lin
if (status is OK)
do command
}

We observed earlier that edit is among those programs that musr be absolutely
reliable and robust. It can’t just exit, even when the most ghastly errors happen,
because giving up might cost the user whatever work has been accomplished so far.
An editor that dies without a struggle will not be much used.

Accordingly, nearly all parts of edit pass back stalus, sometimes as both the
value of the function and in the argument status. There are three status values:
OK if all is well, ERR if not, and EOF if any sub-module has consumed the last of
the input (or if the result was neither OK nor ERR).

“Doing the command” is a multi-way decision with one entry for each com-
mand. Most commands validate line numbers, sel up defaults if appropriate, then
act, usually by calling further subroutines. Underpinning all of this are routines
that maintain the text in the buffer.

Let us begin with the code for obtaining line numbers for a command. This is
a clearly isolated piece which we can understand and get working before doing
much else. That way, when the time comes 10 start checking editing functions, we
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can use it to poke around in the lines of text at will.

The command line is held in the array lin, with lin{i) the next character 1o be
examined. The top level for handling line numbers is getlist, which gets whatever
line numbers there are on the input line, updates i so il points one position beyond
the last number, and returns status (OK or ERR) both as the value of the function
and in status.

getist reads a whole list of line numbers by repeatedly calling on getone, and
remembers the last two in line1 and line2. It ensures that if no lines were
specified, line1 and line2 are both set to curin, the current line (dot). If one line is
given, line1 and line2 are both set to it. getlst also records in nlines the number of
actual line numbers (zero, one, or two) and updates curln whenever a semicolon is
encountered.

There are too many control variables 10 pass around on each call (although
that is often the preferred way of making data known to sub-modules), so we define
common blocks 1o hold related groups. As we mentioned before, this is the nearest
we can come in Fortran to specifying a siruciure, ie., an aggregate of related vari-
ables, perhaps of different types, which can be referenced by one name. All the
declarations for each group are held in a file which is included as need be'in each
routine. We have consistently given the files the same names as the common
blocks. Line number control, for instance, is in clines:

common /clines/ line1, line2, nlines, curin, lastin

integer line 1 " # tirst line number

integer line2 # second line number

integer nlines # number of line numbers specified
integer curin # current line: value of dot

integer lastin # last line: value of $

Here is getist, which obtains the line numbers that precede a command.
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# getlist — collect line numbers (if any) at lin(i), increment i
integer function getist(lin, i, status)
character lin(MAXLINE)
integer getone, min
integer i, num, status
include clines

line2 = 0
for (nlines = O; getone(lin, i, num, status) == OK; ) |
line1 = line2
line2 = num
nlines = nlines + 1
if (lin(i) ~= COMMA & lin(i) ~= SEMICOL)

break
if (lin(i) == SEMICOL)
curln = num
i=1i4+ 1

}
nlines = min(nlines, 2)
if {(nlines == 0)
line2 = curin
if (nlines <= 1)
linet = line2
if (status ~= ERR)
status = OK
getist = status
retum
end

All the arithmetie and general validity checking for line numbers occurs in
getone, which returns OK for a valid number, ERR for error conditions, and even-
tually EOF when it sees something that is not a line number.

Why do we divide up the code this way? For much the same reason we
separated out the functions of match in Chapter 5 — each level is preoccupied with
a rather different aspect of control; mixing different aspects in one module only
serves to confuse. Here, getist has quite enough to do keeping track of how many
line numbers have been seen and whether a semicolon has been encountered.
Reading the code at this level, we couldn’t care less how an individual line number
15 obtained, so we defer that to getone.

And it is clear that obtaining a line number is not all that easy either, for
getone in turn passes on some of the work 10 a subordinate getnum, which collects
a single term of a line number expression. First, here is getone.
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# getone — evaluate one line number expression
integer function getonellin, i, num, status)
character lin(MAXLINE)
integer getnum
integer i, istart, mul, num, pnum, status

include clines

istart = i

num = 0

call skipbi(lin, i) .

it (getnumllin, i, num, status) == OK)  # first term _
repeat | # + or — terms

call skipbl(lin, i)
if (lin(i) ~= PLUS & fin(i) ~= MINUS) {
status = EOF
?reak
if (lin(i) == PLUS)
mul = +1
else
mul = —1
i=i+1
call skipbl(tin, i)
it (getnum(lin, i, pnum, status) == OK)
num = num + mul * pnum
if (status == EQOF)
status = ERR
} until (status ~= OK)
if (hum < O] num > lastin)
' status = ERR

if (status == ERR)
getone = ERR

else if (i <= istart)
getone = EOF

else

getone = OK
status = getone
return
end

skipbl merely skips blanks and tabs: it is used in getone to permit spaces beiween
terms of a line number expression. We could have used it in ctoi (Chapter 2) and

getwrd (Chapter 3), for it performs a common operation. It will be used regularly
from now on. . .
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# skipbl ~ skip blanks and tabs at lin(i)...
~ subroutine skipbl(lin, i)
character linARB)
integer i

while (lin{i) == BLANK | lin{i) == TAB)
=i+ 1

return

end

getnum evaluates one term of a line number expression, where a term is
either an integer, . (dot), $, or a context search.

# getnum — convert one term to (ine number
integer tunction getnum{ln, i, pnum, status)
character lin(MAXLINE)
integer ctoi, index, optpat, ptscan
integer i, pnum, status
include clines
include cpat
string digits "0123456789"

getnum = OK
if (index(digits, lin(i)) > 0) {
pnum = ctoi(lin, i)
i=i—1 # move back; to be advanced at the end
}
else if (lin(i} == CURLINE)
pnum = curin
eise if (lin(i) == LASTLINE)
pnum = lastin
else if (lin(i) == SCAN | lin(i) == BACKSCAN) {
if (optpat(lin, ) == ERR) # build the pattem
getnum = ERR
else if (lin(i) == SCAN)
getnum = ptscan(FORWARD, pnum)
else
getnum = ptscan(BACKWARD, pnum)

else
getnum = EOF
if (getnum == OK)
i=i4 1 # point at next character to be examined
status = getnum ’
return
end

ctoi, which we wrote in Chapter 2, converis a character string into an integer.
index, also from Chapter 2, returns the position of a character in a string, or zero if
it doesn't occur.
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optpat builds a scan pattern; if the pattern in lin is empty, the previous pat-
tern will be used. ptscan performs the actual context search. ’

# optpat — make pattern if specified at lin(i)
integer function optpat(lin, i)
character lin(MAXLINE)
integer makpat
integer i
include cpat

if (lin(i) == EOS)

i = ERR

eise if (lin(i + 1) == EOS)
i = ERR

else if (lin(i + 1) == lin(i)) # repeated delimiter
i=i+1 # leave existing pattern alone

else

i = makpat(lin, i + 1, lin(i), pat)
if (pat(1) == EOS)

i = ERR
if (i == ERR) {

pat(1) = EOS

?ptpal = ERR

else

optpat = OK
return
end

The chain of elseif’'s ensures that the tests are performed in exactly the right order.
(We don’t want 1o look at lin(i + 1) if fin(i) is EOS.) The chain of tests is superior, in
this regard, to the case stalement in some languages, because the tesls can be
much more general and the order of evaluation controlied.

makpat and its supporting routines were defined in Chapter 5. At that lime
we wrote makpat to use an arbitrary delimiter to stop the scan. optpat is the first
place which uses the facility; here the delimiter is the character at lini), which is
either \ or / for context searches.

ptscan starts at .+1 or .—1, depending on direction, and scans around the
buffer until it either finds a match or gets back to curln_ Searching begins one line
away from the current line because presumably we just did something 0 the
Current line and we'd like to get on with the next one. Testing for a pattern match
is done by match and its subordinates, which we also wrote in Chapter 5.
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# ptscan — scan for next occurrence of pattern
integer function ptscan(way, num)
integer gettxt, match, nextin, previn
integer k, num, way
include clines
include cpat
include ctxt

num = curin
repeat |
if (way == FORWARD)
num = nextin(num)
else
num = previn(num)
% = gettxt(num)
if (match(txt, pat) == YES) |
ptscan = OK
]return
} until (num == curin)
ptscan = ERR
return
end

optpat and ptscan must know about the patiern array pat, contained in the
common block cpat: '

common /cpat/ pat(MAXPAT)
character pat # pattern

In addition. ptscan must be able to obtain actual lines of text for match. It does SO
by invoking gettxt, which returns the line in the common block ctxt:

common /ctxt/ txt(MAXLINE)
character txt # text line for matching and output

It also maps the line number into an index for use by routines that rearrange lines.
Since ptscan does not use this information, we will discuss implementation at this
level later. ’

previn and nextin are functions for walking around the buffer, one line at a
time. It turns out to be convenient to have in the buffer at all times a “line zero™
that contains nothing, so nothing will match it, which can serve as a iegal line
number for commands like &, m and r, which must be able 1o put things before the
first line. Line zero is an instance of a useful technique — simplifying a program by
adding a dummy element 1o a data structure. 10 make the boundary conditions
easier to work with.
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# nextin — get line after "line"
integer function nextin(line)
integer line
include clines

nextin = line + 1

if (nextin > lastin)
nextin = 0

retum

end

# previn — get line before "line"
integer function previn(line)
integer line
include clines

previn = line — 1
if (previn < 0)
previn = lastin
retum
end

To summarize the line number code, here is the tree of calls for the major
subroutines and functions so far.

edit
getist
getone
getnum

optpat
makpat

ptscan
gettxt, match, nextin, previn

"Once again the progression is from the general (getist) 1o the specific (optpat,
ptscan) in several stages. Each level of the hierarchy handles a progressively
smaller part of the whole problem, eliminating the need to know many details at
any level.

makpat and match in turn call upon additional routines that we wrote in

Chapters 2 and 5. Of course this saves us a fair amount of coding, but much more

important is consistency. transiit, find, change and edit all use the sam® rules and

~ conventions for patierns; there is no need to learn and remember separate rules for

each. This reduces the burden on users and encourages those who know one pro-
gram to try the others. :

Exercise 6-2: Write a main routine to read command lines and call getist. Write
a dummy gettxt and define buf so you can gain access to two or three
predefined text lines. Exercise getist and its subordinates with this minimum
test harness. O
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6.3 Control Program

Let’s go back to the top now, and specify command handling in detail. Basi-
cally, the editor is a loop, reading command lines, decoding them and carrying them
oul. We will want to ensure that as much as possible each command line is com-
pletely sensible before carrying out any irreversible action, for otherwise a small slip
could cause us to destroy a whole file of text. This means that, like expand in
Chapter 2, the control structure of edit will mostly reflect error checking.

edit will accept only one command per line, although that command may
optionally be preceded by a global prefix. We will fill in 1he details of global pro-
cessing later, after learning more about what can be done with the basic commands.
For now, we can write the main processing loop of edit as

while (getlin(lin, STDIN) ~= EOF) {
i=1
cursav = curin
if (getist(lin, i, status) == OK) |
it (ckglob(lin, i, status) == OK)
status = doglob(lin, i, cursav, status)
else if (status -= ERR)
status = docmd(lin, i, NO, status)
}# else error, do nothing
if (status == ERR) {
call remark("?.")
;:urln = cursav
else if (status == EOF)
break
;ﬂ else OK, loop

stop

ckglob looks for g/.../ or x/.../; if either is found, ckglob marks the lines for
processing by doglob, which does the desired command on each marked line. We
will get back to these later; for now we can assume a dummy ckglob that returns
EOF (no global command seen). If no global prefix is found, and if there was no
error, docmd executes the command for the range of lines found by getist. The
NO argument to docmd says that it is not being called from within a global prefix.

The main routine must restore curln on an error, since it is changed with each
semicolon found by getist and may be altered by commands done by doglob and
docmd.

Because the editor is streamlined for conversational use, ils response to all
errors is a terse ?. This brevity is appropriate because the error is almost always
obvious, usually a slip in typing or a search that failed. .In such cases an error mes-
sage impedes getling on with the job. However, edit is structured so that wordier
error messages could readily be inseried; one of the exercises is concerned with
filling in the details.
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Most of the code in docmd is in a long if ... elseif ... eiseif to identify which
command is to be performed; each case is followed by a few lines to perform the
task, most often by subroutine call.

The entry for print (p), for example, is

eise if (lin(i) == PRINT) {
if (lini + 1) == NEWLINE)
andif (defalt(curin, curln, status) == OK)
status = doprnt(line1, dine2)
J

This checks for a valid command format, verifies that the line numbers are reason-
able, then performs the appropriate routine. andif is a synonym for if, used here 10
emphasize that a sequence of tests must be performed in the given order. As we dis-
cussed in Chapter 2, Fortran, like many languages, does not guarantee any particu-
lar order for evaluation of logical expressions (or any other expressions, for that
matter), nor does it guarantee that evaluation of a logical expression will terminate
as soon as the truth value is known. We cannot use

if (lin(i + 1) == NEWLINE & defalt(curln, curin, status) == OK)

because we do not want a call (o defalt 10 set status 10 OK afier we have estab-
lished that lin(i+1) is not a NEWLINE. There is never a balancing else for an
andif; consequently we must be careful always to surround an if... andif sequence
with braces.

The p command expects two line numbers. If only one is given, it is used for
both line numbers (i.e., print only one line). If none are given, the current line is
used for both line numbers. Our notation for this is (., .)p, the parentheses indicat-
ing that line numbers are optional, and the two dots showing the default values.
defalt sets defaulted line numbers to the specified values.

# defalt — set defaulted line numbers
integer function defalt(def1, def2, status)
integer def1, def2, status
include clines

if (nlines == 0) |
line1 = def1
line2 = def2

if (linet1 > line2| line1 <= Q)
status = ERR

else

status — OK
defalt = status
return
end

In no case is it permissible to print line zero or wrap around the end of the buffer,
so defalt flags this as an error. Notice also that defalt tests whether line1< =0,
even though getone ensures that it can't be negative. This is again defensive
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programming — guarding against an error from somewhere else in the program.
The actual printing is straightforward:

# doprnt — print lines from through to
integer function doprnt(from, to)
integer gettxt
integer from, i, |, to
include clines
include ctxt

if (from <= 0)
doprnt = ERR
else | '
for (i = from;i <=to;i=i+ 1) {
j = gettxt(i) _
call putlin(txt, STDOUT)
)
curin = to
?oprnt = OK
return
end

doprnt is called from several places in docmd, so it is necessary 1o check for line
zero here as well as in defalt. We use the same mechanism as in ptscan to locate
actual text, by calling on gettxt 1o get the line we want to print. Once again the
index returned by gettxt is not needed.

Note that there is no printing of gratuitous noise like “end of file” when line $
is printed. Indeed edit is quiet in most ways. Just because a program is used
interactively, it does not mean that you should be forced 1o listen to it babble. One
trouble with chatty programs is that you can't turn them off when you want 10 use
them with other programs. Thus printing occurs only when you specify it, so that
commands can work silently. But it is called for often enough o0 warrant some
extra notation and shorthand. s, m and d commands can be followed by a p, 10
print the (iast) line affected. And a command line containing only line numbers
(no command) causes the last line specified to be printed. Most commonly, this
will be a single line, as in 1 or $ or /abc/—2, but it also could be many:

/abel; /] 1] 1/

will print only the fourth occurrence of abc, not the third through the fourth as
when the trailing p is present. And finally, a completely empty command line
(newline only) is taken as .+ 1p, so you can walk through the buffer by typing
newlines. ; '

docmd is the first routine in this book which is longer than one page.
Although it is foolish to set arbitrary limits, it does seem wise to keep individual
routines shorter than a page, for the shorter a program is, the easier it is to grasp.
(And once a page boundary is crossed, it’s hard to keep track of indentation.) The
median size of our routines is 20 lines; the mean is 15 lines. Even our bigger-
than-a-page subroutines are carefully designed to be easy to understand — each is
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just a chain of elseif’s that chooses among a large set of alternatives; each alterna-
tive is readily comprehended. docmd is shown in its entirety later in this chapter;
for now, the part that controls printing is

# docmd — handle all commands except globals (incomplete)
integer function docmd(lin, i, glob, status)

pflag = NO # may be setbyd, m, s
status = ERR
if (lin(j) == APPENDCOM) {

do append command

# and so on for other commands
else if (lin(i) == PRINT) |
it (lini + 1) == NEWLINE)
andif (defalt(curin, curin, status) == OK)
status = doprnt(line1, line2)
J

else if (lin(i) == NEWLINE) {
if (nlines == Q)
line2 = nextin{curin)
status = doprnt{line2, line?)
}
else if (lin(i) == QUIT) {
if (lin(i + 1) == NEWLINE & nlines == 0 & glob == NO) _
status = EOF
}

# else status is ERR

if (status == OK & pflag == YES)
status = doprnt(curin, curin)

docmd = status

return

end

This also shows the code for the quit command q. which is called for by a
command line containing only q. It causes the editor to exit, just as if it had
encountered an EOF while reading commands. Nothing is printed, for the same
reasons that most commands are silent. ’

Furthermore, nothing is written onto any file afler a Q command. You might
ask whether it would be better to write out the editing buffer automatically, or at
least to ask the user for confirmation before exiting. It is hard to decide how much
l0 protect users from their own behavior, but in our experience, it is generally
wisest 10 keep oul of people’s way: assume they know whal they are doing and let
them do it with as few prohibitions and warnings as you can manage. For instance,
one common use of edit is 10 examine and perhaps alter a file in the buffer without
any intention of rewriting it. An editor that rewrites anyway is a poor design,
because it severely constrains this sort of editing. Even a request for verification is .
intrusive, and it may well interfere with a pre-defined script.
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You may recall that the archive program of Chapter 3 refused to delete all the
files in an archive when that was implicitly requested. Are we being inconsistent?
The difference is that archive is a rather specialized tool for long-lterm storage of
precious information, and probably not used daily by the average person. Thus it is
cautious in everything it does. edit, on the other hand, is the primary interface (0 a
system, used constantly, and a general purpose tool. It can more confidently take
users’ rommands at face value.

6.4 Buffer Represemati(;ns

The oth:r command we hinted at in docmd is append, which adds text 1o the
buffer. The iines to be appended are placed in the buffer right afier the line
specified, or right after the current line if no line number is provided. Our short-
hand for this discipline is (.)a. It should be clear why we want to be particular
about what is acceplable as a command. If you forget to enter append mode before
typing text, you don’t want arbitrary letters in a word 1o cause changes in the text.
Instead a ? will bring you up short afier just one line of nonsense.

The actual code in docmd that calls append is

if (lin(i) == APPENDCOM) {
if (lin(i + 1) == NEWLINE)
status = append(line2, global)
)

and append itself is

# append — append lines after "line"
integer function append(line, glob)
character lin{(MAXLINE)
integer getlin, inject
integer line, glob
include clines

if (glob == YES)
append = ERR
_else {
curin = line
for (append = NOSTATUS; append == NOSTATUS: )
if (getlin(lin, STDIN) == EOF)
append = EOF
else if (lin(1) == PERIOD & lin(2) == NEWLINE)
append = OK
else if (inject(lin) == ERR)
| append = ERR

return
end

NOSTATUS must have a value different from OK, ERR, and EOF. Appending text.
under control of a global prefix can lead to difficulties, which we choose to avoid for
now, since you can achieve the same effect with an r command. This version of
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append outlaws global appends, but the possibility of special treatment for them
later is left open.

The actual work of inserting each new line (and updating curln to point at it)
is done by the routine inject. To see how it works, we must learn a little more
about how the buffer is organized.

We want to be able to rearrange lines freely, and to scan in either direction
efficiently. We could have a single array of pointers to text lines and rearrange the
pointers as lines are deleted or moved, as we did for sort in Chapter 4. sz since
appending, deleting, and reading all change the number of lines, some bookkeeping
will be needed to keep the pointers in a compact set. So the next thing to consider
is a rwo-way linked list of text lines where each line entry contains pointers to the
previous line and 1o the next line. (We use links in both directions so operations
like scanning backwards do not pay a time penalty) That way, we can rewrite
pointer information 10 move lines around as needed. Appending and deleting entire
sections are also easy.

Where should the lines be stored? The easiest thing is to hold everything in
memory, but that can put a severe limit on the size of file we can deal with. We
could compromise and put the text out on some working file, keeping the links in
memory along with enough information to locate each text line in the file. That
limits the total number of lines we can handle, but allows for many more characters
of text. Or we could keep the entire linked list on a file, and access only what we
need through a fixed size “window.”

However we choose to do it, the important thing is (o isolate the actual impfie-
mentation as much as possible from the program as a whole. That way we can
oplimize a given implementation, even charige the entire Strategy, just by altering a
handful of low-level buffer management routines.

In this particular case, we can implement any of the possibilities men ioned
above by writing six functions:

setbuf initializes the buffer to contain only a valid line zero, and creates a
scratch file if necessary.

clrbut discards a scratch file, if one is used.

inject(lin} copies the text in lin into the buffer immediately after the current
line, beginning a new line as necessary after each newline, and sets curln to
the lasi line injected. .

getind(n) maps line number n into a uniqgue index that can be used to access
all the information about that line. :

gettxt(n) does the same mapping as getind, but also copies the contents of the
line into the array txt in common block Gtxt.

relink(k 1, k2, k3, k4) does a re-linking, by making the k2 entry point back 1o
k1 and k3 point forward to k4, where the ki are obtained from calls on getind
or gettxt. '

The k indices are needed, in addition 1o line numbers, to keep track of actual lines

of text during rearrangements, when the meaning of a line number can change
several times.
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It is not necessary to know (and there is no way of knowing) whether the text
resides in memory, or the links do, or anything. So long as one line of text and the
last four links located with getind and gettxt calls are available, we can do every-
thing we have to in the way of editing. That means that the buffer in memory can
conlain all the data, or it can be a fixed size window on a much larger world. The
" point is, we can do many things once we have a working text editor because the
interface to the buffer manager is well specified and the code for it is isolated.

We should stress that we didn’t start with these six routines right at the begin-
ning. Instead we “discovered” them as we wrote the editor from top to botiom. By
seeing al each stage what operations we wanted to perform on the text, we were
able to abstract this handful of basic functions. It also helped that we wanted 1o
put off deciding the actual implemeniation as long as possible — that goal steered us
away from a number of more restrictive designs. Given this set of basic operations,
and measurements showing where the editor spends its time, we can improve edit’s
efficiency as it becomes necessary, without touching the bulk of the code.

But the first order of business is 10 gel a working editor. So we pick the easi-
est form of buffer management o implement, keeping everything in memory in the
array buf. The structure of a list element is

buf(k + 0) PREV index of previous line
buf(k + 1) NEXT index of next line

buflk + 2) MARK used by global modifier
buf(k + 3) TEXT first character of text string
buf(k + 4) .. second character, elc.

Each text string is terminated by an EOS. The common block cbuf contains:

common /cbuf/ buf(MAXBUF), lastbf
character buf # buffer for pointers plus text
integer lastbf # last element used in buf

Lines of text are copied as needed into the buffer txt, kept in the ¢ommon
block ctxt. We showed you ctxt in conjunction with ptscan, and it was also used
with doprnt. Here it is again for completeness:

common /ctxt/ txt(MAXLINE)
character txt # text line for matching and output

We can now write in-memory versions of the buffer management routines.
clrbuf is easiest, when there is no scraich file.

# cirbuf (in memory) — initialize for new file
subroutine cirbuf

return # nothing to do
end

getind and gettxt find the specified line by following the linked list from the
beginning. getind finds the index only; gettxt uses getind 1o locate the line. then
returns the text as well. They are separale functions because many edilor com-
mands can operate quile nicely on line indexes, without looking at the line contents.
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When we later use a scratch file 1o hold texi, this separation will keep us from

accessing the file uniess we need 10.

# getind — locate line index in buffer
integer function getind(line)
integer |, k, line
include cbuf

K = LINEO

for(j=0;j<line;j=j+ 1)
k = buf(k + NEXT)

getind = k

return

end

LINEO is, of course, | in this implementation.

# gettxt (in memory) — locate text for line and make available

integer function gettxt(line)
integer getind

integer line

include cbuf

include ctxt

gettxt = getind(line)

call scopy(buf, gettxt + TEXT, txt, 1)
return

end

gettxt uses scopy, which we wrote in Chapler 3, o copy the line into txt.

relink only modifies two links; for many tasks il must be called more than

once, but there are situations where the limited function is necessary.

# relink — rewrite two half links
“Subroutine relink(a, x, y, b)
integera, b, x,y

include cbuf

buf(x + PREV) = a
bufly + NEXT) = b
return

end

setbuf sets up the buffer initially, by creating line zero and linking it to itself.
Line zero contains only an EQS. so nothing will match it, but its presence regular-
izes the code — so that appending afier line zero is not a special case, for instance.
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# setbuf (in memory) — initialize line storage buffer
subroutine setbuf
integer addset
integer junk
include cbuf
include clines

call relink(LINEO, LINEO, LINEO, LINEO)
lastbf = LINEO + TEXT

junk = addset(EOS, buf, lastbf, MAXBUF)
curin =0 :

lastin = 0

return

end

inject is complicated mainly by its ability 10 handle a line containing imbed
ded newlines. We haven't yet mentioned these, but if you think back to the code
for change in Chapter 5, you will realize that there is no reason why you can’t
change something in the middle of a line into a newline. To preserve this useful
property for the s command, inject must split a “line” with imbedded newlines into
separate lines and add them to the buffer one at a time. inject also updates curin
and lastin appropriately.
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# inject (in memory) — put text from lin after curln
integer function inject(lin)
character lin(MAXLINE)
integer addset, getind, nextin
integer i, junk, k1, k2, k3
include cbuf
include clines

for (i = 1; tin(i) ~= EOS; ) {

k3 = lastbf

lastbf = lasthf + TEXT

while (lin(i) ~= EOS) |
junk = addset(lin(i), buf, lastbf, MAXBUF)
i=i+1 -
if (lin(i — 1) == NEWLINE)

break

} .
if (addset(EOS, buf, lastbf, MAXBUF) = = NO) {
inject = ERR
;)reak
= getind(curin)
k2 = getind(nextin(curin))
call relink(k 1, k3, k3, k2)
- call relink(k3, k2, k1, k3)
curin = curin + 1
lastin = lastin + 1
inject = OK

return
end

We can now show some more of the subroutine hierarchy, 10 help you keep
track of who calls whom,

edit
setbuf
relink
getist
docmd
append
getlin
inject
getind, nextin, relink
defalt
doprnt
gettxt, putlin
clrbut

Most of the growth will be in docmd as we add more cases.
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Exercise 6-3: Implement the text editor with these buffer management routines
and the piece of edit we have shown so far and test it. You will need stubs for
ckglob and doglob. What should they do? You should be able to append text,
print various lines, do context searches, and quit. Make sure you visit all the
crannies of the code. O

Exercise 6-4: How would you get a line containing only a dot into the buffer? O

Exercise 6-5: What happens to the current line when you append nothing, that
is, when you write the command sequence

a

Is this a reasonable thing to happen? O

Exercise 6-6: 1s there any circumstance under which a context search could
maltch line zero? O

6.5 More Commands: Delete, Insert, Change, Print line number, Move

Another important capability besides appending is making unwanted text EO
away. This is done with the delete command (.,.)d. In docmd we add:

else if (lin(i) == DELCOM) {
if (ckp(lin, i + 1, pfiag, status) == OK)
andif (defalt{curin, curln, status) == QK)
andif (delete(line 1, line2, status) == OK)
andif {nextin(curin) ~= 0)
} curin = nextin(curin)

The delete command removes the line or lines specified and leaves curln pointing at
the next line after the swuff removed, uniess that would be off the end of the buffer,

in which case curln is set (o lastin. The optional P, to print this line as a check, is
checked and recorded in pflag by ckp:
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# ckp — check for "p" after command
integer functidn ckpllin, i, pflag, status)
character lin(MAXLINE) ~
integer i, j, pfiag, status

=i

if (lin() == PRINT) |
i=j+1
pflag = YES
] .

pflag = NO
if (lin{j) == NEWLINE)
status = OK

else

else
status = ERR
ckp = status
retumn
end

The actual work is done in the function delete, which leaves curin pointing lo
the line just before the lines removed, and resets lastin 10 the new last line.

# delete — delete linas from through to
integer function deletelfrom, to, status)
integer getind, nextin, previn
integer from, k1, k2, status, to
include clines

if (from <= Q)
status = ERR
else
k1 = getind(previn{from))
k2 = getind(nextin(to))
lastin = lastin — (to — from + 1)
curin = previn(tfrom)
call relink(k 1, k2, k1, k2)
status = OK

delete = status
returmn
end

Three other commands are easily implemented using existing routines. [fuser
or (.)i injects text immediately before the specified line number.
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else if (lin(i) == INSERT) (
it (lini + 1) == NEWLINE)
status = append(previn{line2), global)
}

Change or (., .)c deletes the lines in the specified range, then injects text in
their place.

else if (lin(i) == CHANGE) (
if (lin(i + 1) == NEWLINE)
andif (defalt(curln, curin, status) == OK)
andif (delete(line 1, line2, status) == OK)
status = append(previn(line 1), glob)
}

And (.)= is used to print the value of a line number-expression (or of the
current line number), so you can see where some line is. It is most often used as
$= 10 tell how many lines are in the buffer.

else if (lin(i) == PRINTCUR) {
if (ckpllin, i + 1, pflag, status) == OK) |
call putdec(line2, 1)
call putc(NEWLINE)
}

}

The move command m rearranges lines of text:
(.,~)m line3

causes 1he specified line or lines to be taken from wherever they currently reside
and placed immediately after line3. Since getone is used 10 obtain line3, any valid
expression can be used, such as

/format/ m/end/— 1p

which moves the next line containing format to immediately before the next line
containing end. curln is left pointing at the last line moved, which would contain
format in this case. The optional trailing p prints this line. The code in docmd is

else if (lin(i) == MOVECOM) !

=i+ 1
if (getonellin, i, line3, status) = = EOF)
status = ERR

if (status == OK)
andif (ckp(lin, i, pflag, status) == OK)
andit (defalt(curin, curin, status) == OK)
| status = move(line3) '

and the work is done in move:
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# move — move line1 through line2 after line3
integer function move(line3)
integer getind, nextin, previn
integer kO, k1, k2, k3, k4, k5, line3
inciude clines

if (line1 <= 0] (line1 <= line3 & line3 <= line2))
move = ERR
else { _
kO = getind(previn(line 1))
k3 = getind{nextin{line2))
k1= getind(line1)
k2 = getind(line2)
call relink(k0, k3, kO, k3)
it (line3 > line1) |
curln = line3
line3 = line3 — (line2 — line1 + 1)
}
eise
curin = line3 + (line2 — line1 + 1)
k4 = getind(line3)
kS = getind(nextin(line3))
call relink(k4, k1, k2, k5)
call relink(k2, k5, k4, k1)
move = OK
}
return
end

Exercise 6-7: Why are the calls to getind and relink made in such a curious
order in move? What can happen if you do all the getind calls first, then all the
relink calls? What can happen if k3 is computed afier k1 and k2? Why didn’t
we make the first relink call immediately after obtaining k3? O

Exercise 6-8: Add the code for these commands to your skeleton editor and test
them. Pay particular attention to behavior at the “boundaries,” such as Oi,
-m.""l, aﬂd 1.“- D

Exercise 6-9: No attempt is made 10 reclaim storage used by deleted lines. What
problems can this cause? How would you implement a garbage collection
~scheme, modifying delete as little as possible? (delete is the only subroutine
where space is thrown away; it is called for ¢, d and 8§ commands.) Is it better to
recycle collected garbage as soon as possible or only when necessary? What
measurements would you make to justify your prejudice? O '

-Exercise 6-10: Implement a copy command k
(., )k line3 p

which makes a copy of a block of lines after line3, instead of moving them.
(The mnemonic k for “copy” is strained but we’re running out of letters, and it
seems worthwhile to retain the single-letter convention for command names.) (J
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6.6 The Substitute Command

So far we have dealt with entire lines of text, which is all that many editors
will let you talk about. But we have the change program of Chapter 5 (0 draw
‘upon, so we can easily add a substirure command S that selectively replaces text
matched by a text pattern. This proves (o be superior, from a human engineering
standpoint, to always replacing entire lines, or to specifying character positions by
column number. It also seems to be easier to work in terms of lines most of the
time (using context to identify them, of course) and descend to the character level
only for substitutions.

The format of a subsiitute command is

(., .) s/pariernfnew/g

where the delimiter / can actually be any character other than newline. The g
suffix is used when you want 1o alter a// maiching subsirings, as in change; if the g
is absent only the leftmost match is aliered. '

The code in docmd that checks for substituie is

else if (lin(i) == SUBSTITUTE) {
i=i+1
if (optpat(lin, i) == OK)
andif (getrhs(lin, i, sub, gflag) == OK)"
andif (ckp(lin, i + 1, pflag, status) = = OK)
andif (defalt(curln, curin, status) == OK)
: status = subst(sub, gfiag)

It uses optpat, as does getnum, 10 encode the pattern, then calls on getrhs to
encode the replacement string and look for a g. getrhs in wurn relies on maksub,
which we wrote for change, to do most of the work. Both makpat and maksub
were writlen so the delimiter can be any character. This permits substitute com-
mands to be delimited by any convenien! character, not necessarily the slashes we
have used in most of our examples. (This is handy when you want 10 substitute
instances of / and don’t feel like escaping il every time.) ckp again checks for the
optional trailing p that prints the resulnng line, and defalt sets the default line
numbers if necessary.
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# getrhs — get substitution string for "s" command
integer function getrhs(lin, i, sub, gflag)
character linfMAXLINE), sub{MAXPAT)
integer maksub
integer gfiag, i

getrhs = ERR
if (lin(i) == EOS)
retum
if (lin{i + 1) == EOS)
return
i = maksub(lin, i + 1, lin(i), sub)
if i == ERR)
return
if Jin{i + 1) == GLOBAL) {
i=i+1
gflag = YES
}
else
gfiag = NO
getrhs = OK
return
end

All that remains is the code for subst, which is modeled afier the main rou-
tine of change in Chapter S.,
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i # subst — substitute "sub" for occurrences of pattern
, integer function subst(sub, gflag)

character new{MAXLINE), sub(MAXPAT)
integer addset, amatch, gettxt, inject
integer gfiag, j, junk, k, lastm, line, m, status, subbed
include clines
include cpat
include ctxt

subst = ERR
if (line1 <= Q)
return
for (line = line1; line <= line2; line = line + 1) |
=1
subbed = NO
junk = gettxt(line)
lastm = 0
for (k = 1; txt(k) ~= EOS; ) |
if (gflag == YES | subbed == NO)
m = amatch(txt, k, pat)

else
m=20

if (m > 0 & lastm ~= m) { # replace matched text
subbed = YES
call catsub(txt, k, m, sub, new, j, MAXLINE)
lastm = m

)

iffm==0|m==k){ # no match or null match
junk = addset(txt(k), new, j, MAXLINE)
k=k+ 1
} :

else ' # skip matched text
Kk=m

}

if (subbed == YES) {
if (addset(EOS, new, j, MAXLINE) == NO) {
subst = ERR '
?reak
call delete(line, line, status) # remembers dot
subst = inject(new)
if (subst == ERR)
break
s}subst = 0K
}
return
end
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It is considered an error for a substilulte command to make no substitutions at gll,
since that often indicates that you didn’t type the right pattern, or that you applied
it to the wrong line.

Exercise 6-1/: What is the meaning of each occurrence of // in

/abe/; /f; 1/sl]/

What does the command do? O
Exercise 6-12: What happens when you delete all the characters on a line, as in

s/?*//
What if you then delete the newline, as in
s/@n//

What happens if you delete the newline at the end of a non-empty line? What
happens if you substitute additional newlines into existence? Express this
behavior in one or two concise rules. O3

Exercise 6-13: Implement the rransliterare command (., .)t, which maps one char-
acter set into another, as in the transiit program of Chapter 2. That is

1,$t/a—2/A-2/

would convert lower case letters to upper case on all lines. Why would you
want this facility in addition 1o translit? Why would you want translit in addi-
tion to this facility? (]

Exercise 6-14: How would you implement an undo command u, which would
undo the effect of the last substitute command (that is, replace the new line by
the old one)? Can you extend it to other commands? O

6.7 Input/Output

We could quit right about now and have a pretty comprehensive text editor.
By adding a littie more code, we could have a program we could invoke as

edit file

which reads file into its internal buffer for processing and, just before exiting, writes
il back.

Insiead, we are going 1o add a few more commands that will let us read and
write files explicitly, so we can selectively merge and split files or make multiple
copies without going outside the editor. These exira commands greally increase the
ease with which you can do “cut and paste” editing. For example, we used all of
them extensively while editing the manuscript of this book, 10 isolate programs for
testing, then to reinstall the revised versions.

The enter command e file clears the internal buffer and copies file into il
There is also a read command (.)r file which appends the contents of file right after
the specified line, as if they had been lyped after an a command, without altering
text already in the buffer. Files are created or rewritten with the write command
(1.8)w file, which copies the specified range of lines onto file, replacing its previous
contents. The default for this command is 1o write the entire buffer, if there are no
line numbers, or 1o write one line if there is but one line number. Dot is set to the
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last line read on e and r commands. The w command does not change dot or the
buffer contents, so you can write intermediate versions of the file without interfer-
ing with editing.

A filename is remembered from the argument in edit file, or from the first r or
w command that specifies one, or from the most recent € command. An l/O com-
mand with no file uses the remembered name, so an unadorned e, r or w command
refers 1o the file you began with. The filfename command f does nothing but print
the remembered name for inspection, or optionally set it if a name is given, as in
the command f file. We introduce another common block cfile, 10 hold the remem-
bered file name.

common /cfile/ savfil(MAXLINE)
character savfil # remembered file name

The remaining code for docmd is

else if (lin(i) == ENTER) {
if (nlines == Q)
andif (getfn(lin, i, file) == OK) (
call scopylfile, 1, savfil, 1)
call cirbuf
call setbuf
Ttatus = doread(0, file)
}
else if (lin(i} == PRINTFIL) {
if {(nlines == Q)
andif (getfn(lin, i, file) == OK) {
call scopyf(file, 1, savfil, 1)
call putlin(savfil, STDOUT)
call putc(NEWLINE)
status = OK
}
}
else if (lin(i) == READCOM) |
if (getfn(lin, i, file) == OK)
’ status = doread(line2, file)

else if (lin(i)) == WRITECOM) {
if (getfn(lin, i, file) == OK)
andif (defalt(1, lastin, status) == OK)
} status = dowrit(line 1, line2, file)

The (1,8) line number discipline for the w command is enforced by defalt,
described earlier.

Filenames are obtained and checked by getfn, which insists on at least one
space and a filename, or nothing at all.
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# getfn — get file name from lin(i...
integer function gettn(lin, i, file)
character lin(MAXLINE), file(MAXLINE)
integer i, j, k :
include cfile *

getin = ERR -
if (lin{i + 1) == BLANK) {
j=i+2 # get new file name
call skipbilin, j) - 4 _
for (k = 1;"lin(j) ~= NEWLINE; Ig =k + 1){
filafk) = iin(j)
i =)+ 1
file(k) = EQS
if(k > 1) g :
getfn_ = OK
|

else if (lin(l +71} == NEWLINE & savfil(1) ~= EOS) |
. call sCopy(savfil, 1, file, 1) # or old name
getfn = OK
) :
# else erroe
if (getin == OK & savfil(1) == EOS)
call scopylfile, 1, savfil, 1) # save if no old one
retum o
end

doread and dowrit both print the number of lines transmitted, as a check and
lo signal completion of the operation. This design is inconsistent with our earlier
lecture about programs that talk 100 much, buy it has been our experience that
users prefer some feedback for operations like r and w whi¢h involve a significant
change in the status of either local or exiernal file copy. The line count provides a
rough confirmation that you transmitted what you really wanted 10. A design prin-
ciple like “avoid excessive chatter” is a guideline 10 be applied intelligently, not an
absolute rule to be followed blindly.
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# doread — read "file" after "line"
integer function doread(line, file)
character file(MAXLINE), lin(MAXLINE)
integer getlin, inject, open
integer count, fd, line
include clines

fd = openlfile, READ)
if (fd == ERR)
Joread = ERR
else |
curin = line
doread = OK
for (count = O; getlin{lin, fd) ~= EOF; count = count &+ 1) |
doread = inject(lin)
if (doread = = ERR)
} break

call closelfd)

call putdec(count, 1)
call putc(NEWLINE)
}

return
end

# dowrit — write "from" through "to" into file
integer function dowrit(from, to, file)
character file(MAXLINE)
integer create, getixt
integer fd, from, k, line, to
include ctxt

fd = create(tile, WRITE)
if (fd == ERR)
dowrit = ERR
else {
for (line = from; line <= to; line = line + 1) {
k = gettxt(line)
call putiin(txt, fd)

call close(fd)
call putdec(to—from+1, 1)
call putc(NEWLINE)
dowrit = OK
}

return

end
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Exercise 6-15: Add the 1/0O commands to your editor and test them. If you can-
not specify files by name in your system, see Chapter 3 for a discussion of alter-
natives. O '

Exercise 6-16: Modify the r and w commands so they produce no confirming
line count. Experiment with both versions. Which do you prefer? O

Exercise 6-17: The sequence
1,8d
r file

differs from
e file

in at least two important respects. What are they? Is it worth modifying the d
command to gain some of the advantages of @? O

6.8 Global Commands

We have now specified everything in the editor except the details of the global
prefix g, which we recall has the format

(1,9) g/pattern/ command

Default line numbers are the same as for the w command: if none are given the
entire buffer is examined. For every line that matches partern the command will be
obeyed. But sometimes it is more convenient to specify a pattern that matches
those lines we want tp leave alone, so we define the complement of g 10 be x:

(1,9) x/partern/ command

does command on every line that does not contain patiern. (The mnemonic
significance of x is “‘exclude.” The code is written entirely in terms of symbolic con-
stants, however, only one of which needs to be changed to alter our selection if you
prefer something else.)

command can be any edit command except a, ¢ or i, whose operation in global
commands we have left as an exercise. Furthermore, it may be preceded by line
numbers with context searches and so on. For example,

9/%#/p

prints lines that begin with a #, such as the comment lines that introduce our sub-
routines. Then

9/%#/...+ 1p

prints both the comment line and the next line, which is usualily the subroutine or
function declaration.

Since we allow d, m and r after a global prefix, executing a command can
cause all sorts of rearrangements of the lines in the buffer, so we must be precise in
defining the order in which lines are examined and acted upon. We must also take

care that the editor does not get into infinite loops, yet still does more or less what
we wanl and expecl.
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The scheme we setiled on may not be perfect, but it works and is simple.
First we go through the entire range marking lines that match (g) or do not match
(x) the pattern. We also erase any leftover marks on all other lines. All this is
done in ckglob, the routine that picks off the global prefix if it exists.

# ckglob — if global prefix, mark lines to be affected
integer function ckglobllin, i, status)
character lin(MAXLINE)
integer defalt, getind, gettxt, match, nextin, optpat
integer gflag, i, k, line, status
include cbuf
inciude clines
include cpat
include ctxt

if (tin(i) ~= GLOBAL & lin{i}) ~= EXCLUDE)
status = EOF
else {
if {lin(i} == GLOBAL)
gflag = YES
else
gflag = NO
i=1i+1
if (optpatllin, i) == ERR | defalt(1, lastin, status) == ERR)
status = ERR
else |
i=i+1
for (line = line1; line <= line2; line = line + 1) |
k = gettxt(line)
if (match(txt, pat) == gflag)
buf(k + MARK) = YES
else

)

for (line = nextln(line2); line ~= line1; line = nextin(line))
k = getind(line)
?uf(k—l‘MARK) = NO

status = OK

}

}
ckglob = status

return
end

but(k + MARK) = NO

The rest of the work is done in doglob, which is called (from the main rou-
tine) if ckglob finds a valid global prefix. doglob begins examining lines for marks,
starting at line1. If one is found doglob erases it, sets curin, and obeys the com-
mand by calling docmd. Otherwise, it proceeds around the buffer, keeping careful
count of how many lines have been examined since the last success. When it
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makes a complete pass without seeing a mark '(COL_lnt > lastin) it is done.

# doglob — do command at lin(i) on all marked lines
integer function dogiob(lin,.i, cursav, status)
character lin(MAXLINE) .
integer docmd, getind, qetﬁat. nextin
integer count, cursav, |, istart, k, line, status
include cbuf : ’ v
include clines

status = OK

count = 0

line = line1

istart =.i

repeat |
k = getind(tine) _.
if (buf(k +MARK) == YES) {

buf{k + MARK) = NO

curln = line .
cursav = curin
i = istart

if (getist{lin, i, status) == OK)
andif (docmd(lin, i, YES, status) == OK)
count = 0 .
}

else {
line = nextin(line)
}coum = count + 1
| untit (count > lastin| status ~= OK)
doglob = status
retum
end

For each marked line, dot is set o that line, then the command is executed with
docmd. (The YES argument indicates that the command is being done under con-
trol of a global prefix. Only a, ¢, i and q worry about this.) The command itself can
modify dot, access multiple lines, and so forth. For example,

g/subroutine/ ., /[ @t]*endslﬁ

prints alt subroutines — each time a line containing subroutine is found, all lines”
from there 10 an end statement are printed.

As a more difficult example,
g/%/ mo

marks every line, then goes back and moves each line 10 the beginning of the buffer.
The effect is to reverse the order of the lines. Another example, based on the same
operation, is this one which we use from time 10 time:
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g/thing/ m0
0:\\=

which moves all lines with thing on them to the beginning, then finds the last one.
The net result is to count the thing’s, at the expense of scrambling the buffer. You
can also count thing's with

x/thing/ d
$==

if you don’t-mind deleting lines from the buffer.

Exercise 6-18: One operation that does not work properly is this attempt to
separate even and odd numbered lines in the buffer:

g/%/.+1m$

What does it actually do? How would you change move so this works right
{and no other useful operation gets messed up)? O

Exercise 6-19: Prove that doglob cannot loop forever. O

Exercise 6-20: How would you improve the efficiency of g processing? Is it
worth it? O

6.9 The Main Routine

We are now in a position to present the main routine for edit. Before we do,
however, here is the entire code for docmd, so you can see it all at once and refresh
your memory. As we said, though it is long, it is only a case statement that selects
one of many alternatives.

# docmd — handle all commands except globals
integer function docmd(iin, i, glob, status)
character file(MAXLINE), lin(MAXLINE), sub(MAXPAT)
Integer append, delete, dopmt, doread, dowrit, move, subst
integer ckp, defalt, gatfn, getone, getrhs, nextin, optpat, previn
integer gflag, glob, i, line3, pflag, status
include cfile
include clines
include cpat

continued on next iwo pages



SOFTWARE TOOLS CHAPTER

pflag = NO # may be setbyd, m, s
status = ERR
if (lin(i) == APPENDCOM) {
if (lin(i + 1) == NEWLINE)
status = append(line2, glob)
}

else if (lin(i) == CHANGE) {
if (linli + 1) == NEWLINE)
andif (defalt(curin, curln, status) == OK)
andif (deletel(line1, line2, status) == OK)
status = append(previn(line1), glob)
}

else if {lin{i) == DELCOM) {
it (ckp(lin, i + 1, pflag, status) == OK)
andif (defalt(curin, curin, status) == OK)
andif (delete(line 1, line2, status) == OK)
andif (nextin{curin) ~= 0)
curin = nextin{curin)
}

else if (lin(i) == INSERT) |
if {lin(i + 1) == NEWLINE)
status = append(previn(line2), glob)
)

else if (lin(i) == PRINTCUR) {
if (ckpllin, i + 1, pflag, status) == OK) |
call putdec(line2, 1)
call putc(NEWLINE)

} ;
J
else if (lin(i) == MOVECOM) {
=i+ 1
it (getoneliin, i, line3, status) == EQF)
status = ERR
if (status == OK)
andif (ckpllin, i, pflag, status) == OK)
andif (defalt(curln, curln, status) == OK)
| status = moveé(line3)

eise if (lin(i) == SUBSTITUTE) {
i=i+4+1
if (optpat(lin, i) == OK)
andif (getrhs(lin, i, sub, gflag) == OK)
andif (ckpllin, i + 1, pflag, status) == OK)
andif (defalt(curin, curin, status) == OK)
status = subst(sub, gflag)
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else if (lin(i) == ENTER) {
if (nlines == 0)
andif (getfn(lin, i, file) == OK) |
call scopyflfile, 1, savfil, 1)
call clrbut
call setbuf
status = doread(0, file)
}
}
else if (lin(i) == PRINTFIL) {
if (nlines == Q)
andif (getfn(lin, i, file) = = OK){
call scopyl(file, 1, savfil, 1)
call putlin(savfil, STDOUT)
call putc(NEWLINE)
status = OK
}
}
else if (lin(i) == READCOM) |
if (getn(lin, |, file) == OK)
_status = doread(line2, file)
}

else if (lin(j) == WRITECOM) {
if (getfn(lin, i, file) == OK)
andif (defalt(1, lastin, status) == 0OK)
status = dowrit(line1, line2, file)

“else if (lin(i) == PRINT) {

if {linli + 1) === NEWLINE)
andif (defalt(curln, curln, status) == OK)

status = dopmt(line1, line2)

] -

else if (lin(i) == NEWLINE) {
if (nlines == Q)

line2 = nextin(curin)

status = doprt(line2, line?2)

else if (lin(i) == QUIT) {
if (lin(i + 1) == NEWLINE & nlines == 0 & glob == NO)
status = EQF
}

# else status is ERR

if (status == OK & pflag == YES)
status = dopmt(curin, curin)

docmd = status

retum

end
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This is the main routine for edit, with its complete declarations. This code
also handles the optional file name in edit file. 8

# edit — main routine
character lin(MAXLINE)
integer ckglob, docmd, doglob, doread, getarg, getlin, getist
integer cursav, i, status
include cfile
include clines
include cpat

call setbuf
pat(1) = EOS
savfil(1) = EOS
if (getarg(1, savfil, MAXLINE) ~= EOF)
if (doread(0, savfil) == ERR)
call remark("?.")
while (getlin(lin, STDIN) ~= EOF) |
i=1
cursav = curln
it (getist(lin, i, status) == OK) (
if (ckglob(lin, i, status) == OK)
status = doglobl(lin, i, cursav, status)
else if (status ~= ERR)
status = docmd(lin, i, NO, status)
;f else error, do nothing
if (status = = ERR) {
cail remark("?.")
;:urln = cursav
else if (status == EOQF)
break
;f else OK, loop
call clrbuf
stop
end

Finally, here is an outline of the subroutine hierarchy for edit. As before, a

number of low level service routines have been omitted to keep it down to manage-
able size.
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setbuf
relink
doread
getist
getone -
getnum
optpat
makpat
ptscan
gettxt, match
ckglob
optpat, match, gettxt, getind, defalt
doglob
getist, docmd, getind
docmd
" append
inject
getind, relink
defalt
delete
getind, relink ,
ckp
getone
move
getind, relink
optpat
getrhs
maksub
subst
gettxt, amatch, delete, inject
getfn
doread
open, inject, close
dowrit
create, gettxt, putlin, close
dopmt
gettxt, putlin
clrbut

207

docmd knows about a large number of routines, but this is not as bad as it seems,
for on any call 10 docmd we need only concern ourselves with one case. In that
light, the hierarchy for edit is straightforward.

Exercise 6-21: Complete your editor and test it thoroughly. Do you think it
would be better if it told you more about what it is doing? If so, modify append
o print a prompting * before reading each line, and force a print after every
command. Try both versions for a while and see which you prefer. You might
consider an options command 0, that lets you run the editor in verbose mode
(ov) with prompts or in silent mode (08). In which state should the editor
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start? O

Exercise 6-22: Add a command to turn off the significance of metacharacters like
?. [1 and so on. If the metacharacters are turned off, it should be possible to
restore the special meaning temporarily by preceding the characler with an
escape cliaracter. Should metacharacters be on or off by default? O

Exercise 6-23: Implement a fist command |, which is idéntical to the print com-
mand p, except that it prints some- visible representation of otherwise invisible
characlers like backspaces, tabs and non-graphics. O

Exercise 6-24: Some people object to a bald ? as the 3ole diagnostic. Implement
a ? command that describes the most recent error. O

Exercise 6-25: How would you specify a global append, so that you only have to
enter the text to be appended (or changed or inserted) once? How would you
implement it? How would you allow an arbitrary number of commands to be
controlled by a global prefix? How would you implement nested globa!
prefixes? Would recursion simplify the job? O

Exercise 6-26: 1f your system requires or strongly encourages line numbers
semi-permanently attached to lines, or if you prefer them on esthetic grounds,
modify the editor to handle them. The “absolute” line numbers need to be
usable ‘with any command, generated somehow by a, ¢, and i, treated appropri-
ately by s and m, and dealt with by rand w. O

6.10 Scratch Files

Now that we have a working editor, we can concentrate on making it better.
Our first concern is the buffer storage, which is admittedly primitive in the current
version. We can gain considerable capacity by keeping only the linkage information
in memory and maintaining the bulkier text on a scrarch file.

The mair change is to separate the text of the lines from the pointer informa-
tion, because not all the text will be in memory at once. Most of it is off on a
scratch file, stored in a manner we haven’t yet described. What we must do is
organize the in-memory information so that (with the help of a couple of primi-
tives) we can treat the scratch file as an unlimited extension of memory, albeit with
a longer access time.

Consider a substitute command. The text of the line must be accessed, which
means it must be found on the scratch file, unless we're lucky and it’s already in
memory. The current version of the line ‘must be deleted from the scratch file,
which can be done by simply forgetting about it — the text remains on the scratch
file, but nothing points 10 it. Then the replacement line i§ injected, which is most
easily done by adding it to the end of the scratch file. Clearly to make all of this
work we still require pointer information such as we had with the in-memory ver-
sion so we can deduce what line follows what; we need to know where the current
version of a line is on the scratch file so it can be read; we have to be able to move
to that point on the scratch file to access it; and we have to be able to move to the
end to write out a new version.

- The array buf siill holds the PREV and NEXT pointers and the MARK. Since
getind and relink use only this information, they do not change with the new
organization. But we need two other things for each entry in buf: SEEKADR, the
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location of the beginning of the line on the scratch file, and LENG, the length of
the line.

Rather than restrict ourselves to some specific storage medium such as tape or
disk for the scraich file, we introduce two additional primitives to provide a standard
interface. One of these primitives is

seek(offset, fildes)

which positions the specified file for a subsequent read or write beginning at offset.
(The other is called readf; we will return to it shortly.) fildes is the internal name
returned by open or create. We maintain offset by summing all the line lengths as
we call putlin, so that a seek using offset after » calls to putlin will position the file
immediately after the m" line of 1ext written. This is clearly character oriented; in
a different environment, where lines become records, you might use the number of
records as the positioning information. Since seek depends very strongly on pecu-
liarities of individual systems, we will not present a version here.

In any case, seek does the necessary rewinds and skips (for a tape), or seeks
(for a disk file), to find its way back to a line of text written earlier or to find its way
forward to the end of the file. The program can thus view a file as a continuous
stream of characters, leaving it up to primitives (0 worry about things like records
and blocks. This is as it should be.

inject is much as before, except that we have pushed most of the dirty work
into a new sub-module maklin.

# inject (scratch file) — insert lin after curin, write scratch
integer function inject(lin)
character lin(MAXLINE)
integer getind, maklin, nextin
integer i, k1, k2, k3
include clines

for (i = 1; lin(i) ~= EOS; ) |
i = maklin(lin, i, k3)

if (i == ERR) |
inject = ERR
break
}

k1 = getind(curin)

il

k2 = getind(nextin{curin))
call relink(k 1, k3, k3, k2)
call relink(k3, k2, k1, k3)
curin = curln + 1
lastin = lastin + 1
i}nject = 0K

return

end
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maklin itself is where most of the interface to our new routines is concen-
trated.

# maklin (scratch file) — make new line entry, copy text to scratch
integer function maklin(lin, i, newind)
character lin(MAXLINE)
integer addset, length
integer i, j, junk, newind, txtend

inciude cbuf
include cscrat
include ctxt
maklin = ERR
if (lastbf + BUFENT > MAXBUF)
return # no room for new line entry
txtend = 1
for (j = i; lin(j) -= EOS; ) |
junk = addset(lin(j), txt, txtend, MAXLINE)
j=j+ 1
if (lin(j — 1) == NEWLINE)
break
}
if (addset(EOS, txt, txtend, MAXLINE) == NO)
return '
call seek(scrend, scr) # add line to end of scratch file

buf(lastbf + SEEKADR) = scrend

buf(lastbf + LENG) = lengthltxt)

call putlin(txt, scr)

scrend = scrend + buf(lastbf + LENG)

buf(lastbt + MARK) = NO

newind = lastbf

lastbt = lastbt + BUFENT

makRlin = j # next character to be examined in lin
return

end

scrend is the offset of the current end of the file, where all new 1ext is added: scr is

the internal name of the scrawch file, returned by create. These variables are
placed in the common block cscrat:

common /cscrat/ scr, scrend
integer scr # scratch file id
integer scrend  # end of info on scratch file

lastbf is the last slot used in buf: BUFENT is 5, the size of - line entry in buf. buf
and lastbf are collected in common block cbuf, which is unchanged from its previ-
ous version, although the structure of a line eniry is different.
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common /cbut/ buf(MAXBUF), lastbf
character buf # structure of pointers for all lines:

# buflk +0) PREV previous line

# buf(k+1) NEXT next line

# buflk +2) MARK mark for global commands

# buflk+3) SEEKADR where line is on scratch file.
# buflk+4) LENG length on scratch

integer lastbf # last pointer used in buf

gettxt again fetches a line of text; in our implementation, it must seek to the
proper place on the scratch file, then read the line into txt. Reading i$ done by cal-
ling the primitive

readf(buffer, count, fildes)

which reads count characters from fildes into buffer. This is the second of the two
additional primitives that we need to handle scratch files. (seek was the first)
readf is sufficiently system dependent that again we will not describe any imple-
mentation.

# gettxt (scratch file) — locate text for line, copy to txt
integer function gettxt(line)
integer getbuf, getind
integer |, k, line
include cbuf
include cscrat
include cixt

k = getind(line)

call seek(buf(k + SEEKADR), scr)
call readf(txt, buf(k + LENG), scr)
j = buflk + LENG) + 1

txt(j) = EOS
gettxt = k
return

end

Our scratch file scheme works with just one line of text in memory at any one
time, although this is not very efficient, and we could do much better by keeping
more lines around. One of the exercises is concerhed with making better use of
memaory.

Now that we know the steady state workings of the scraich file routines, we
can set up the initialization and termination routines. It is usually best to proceed
this way, saving initialization and termination to the last, for it is only then that you
have a proper appreciation for what has 1o be done.
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# setbuf (scratch file) — create scratch file, set up line 0
subroutine setbuf
integer create
integer k
include cbuf
include clines
include cscrat
string scrfil "scratch”
string null ™

scr = create(scrfil, READWRITE)
if (scr == ERR)
call cant(scriil)
scrend = 0
lastbf = LINEO
call maklin{nuli, 1, k) # create empty line O
call relink(k, k, k, k) # establish initial linked list
curln = Q
lastin = Q0
return
end

# clrbuf (scratch file) — dispose of scratch file
subrcutine cirbuf
inciude cscrat
string scrfil "scratch”

call close(scr)
call remove(scrfil)
retumn

end

Exercise 6-27: Replace the existing buffer control primitives with the scratch file
set (plus seek and readf) and debug them. Measure the mean line length of a
sampling of your files (what tools would you use to do this?) and use this data
to estimate the relative capacities of the two versions of the editor. [J

Exercise 6-28: Verify that if it is not permitted to delete the newline at the end
of a line, there is no need for the LENG entry in buf, and the primitive readf
can be replaced by getlin. O

Exercise 6-29: 1s it worthwhile to perform garbage collection on unused pointer
blocks in buf? Try it. How about reclaiming discarded text space in the scratch
file? O

Exercise 6-30: On most systems, edit can be made substantially faster by trying
1o anticipate the lines that will be used in the immediate future and reading
several lines at one time. Modify getixt or a subordinate 10 read a group of lines
when getixt is called, unless the line is already present in memory. The chal-
lenge is to organize things so that for common editing operations the line /s
already present with high probability. What are the common operations thal are
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worth improving? How much code has to be changed? How much will this
speed up various operations? [

Exercise 6-31: Verify that inject is an " procedure for adding » lines 10 the
buffer.  (That is, the work done is proportional to the square of the number of
lines.) Measure edit to see whether this matters. If so, what changes would you
make Lo convert it 10 a linear procedure? [J

Exercise 6-32: Magnetic lape has the property thal you can never réad informa-
tion_past the lalest stuff written (i.e., you dare not rewrite paiches in the middle).
Does our scratch file maintenance scheme work properly with ‘magnetic tape?’
Why would you want 1o be able 10 use tape with the 1ext editor? What are its
drawbacks? O ‘

Exercise 6-33: Another possible implementation of the storage management is (0
keep pointers to the text lines in a contiguous array, so that instead of linkage
information all the data aboul line # is always at the nth position of the array.
Re-design the siorage management along these lines. Whal operations are easier
than they are with a linked list? Which are harder? O

Exercise 6-34: How would you implement an editor that keeps all information
on a scratch file, including line linkages? Can you still use magnetic tape? Is
garbage collection worthwhile? O

Exercise 6-35: Run various editions of the editor against a standard script of
commands and compare response times. Use this information 10 determine how
elaborate your buffer mechanism should be. O

Exercise 6-36: If your system provides a run primitive that lets vou execute a
command from within a running program, implement an “escape” command @
that lets you type an operating sysiem command.from within the editor. For
instance,

@edit file

would invoke a fresh instance of edit on file; when that instance is finished.
execution resumes in the current editor. What modifications are necessarv in
setbuf and clrbuf if nested editors are to work correctly? O

One aspect of system environment we have not menuoned is handling signais
from the outside world, primarily inierrupss. In an editor it is desirable that the user
be able to stop the current command, for example, 1o terminate a long print com-
mand, without losing any information. In general, interrupts arrive at unpredictable
and probably inconvenient times, so the editor must be prepared 1o maintain its
integrity as it deals with them. For a print command, this is not much of a prob-
lem, but you can imagine the difficulties when an interrupt occurs in the middle of
a move command done under a global prefix. The challenge is 10 stop the current
action as soon as possible, yet remain sane so thal subsequent editing procceds
properly.

Exercise 6-37: 1 your system provides a primitive for catching interrupts, modify
edit so it handles them properly, without losing information or buffer con-
sistency. What can you do if there is no way 10 intercept an inerrupt? O
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Once a file gets too big, it may be t00 much trouble to provide some of the
nice features of edit, like global commands and reverse searching with \\. But it is
still vital to be able to perform most editing tasks on big files. One possibility is to
cannibalize edit to make a “stream editor,” which copies its standard input to its
standard output, making a somewhat restricted set of editing transformations on the
way. For example, any command that implies backwards or repeated scanning of
the file would be disallowed; this includes \\, some aspects of the global prefix, the
move command, and mirfus signs in line number arithmetic (no /abc/—3).

The command
/abc/, /det/ command

would be taken to mean, ‘“‘Attempt this command on the first line that matches the
first line number, and on all subsequent lines until you find one that maiches the
second, then begin watching for a match of the first line number again.” A single
line number would imply doing the command on each line that matched the pat-
tern; a missing line number would perform the command on every line. Multiple
commands should be allowed.

If you have a stream editor, find and change are special cases, respectively
sedit /pariem/p
and
sedit /paiiern/ 8//replacemeni/gp

~ §hould find and change be retained as separate programs nonetheless?

Exercise 6-38: Design and implement a stream editor along these general lines.
a

6.11 Summary

It is hard {o get a proper perspective on the design or code of anything as large
as g text editor, particularly without some experience using it.

One useful approach is to make a list of common editing tasks, then compare
how they are expressed in several editors. Here is one example of a tdsk which we
do regularly, yet which is far beyond the capabilities of many editors. The text for
this book is stored in more than one hundred files in the file system on our com-
puter. From time to time, we need to go through the entire book making some
change wherever it occurs in this set of files. Doing each file by hand would be
intolerably slow and error-prone, so instead we use edit, like this.

First we make a scripr — the set of commands that we want to do on each file.
(And of course we make it with edit!) One of our scripts, for instance, converied
the word ERROR to ERR globally, so we could avoid a case conflict with the word
error. The script was

f
“g/ERROR/ s//ERR/ gp
w

The f command echoes the name of the file we’re editing, in case something goes
wrong; the 8 command with global prefix makes the change and prints ail affected
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‘lines; and the w command writes the new version back on the file it came from.
Then we run a program listcat (“list catalog™) Lo prepare a list of all our files,
one file name per line:
listcat >filelist
places the file list in a file called filelist. (Recall that we discussed the > operation
in Chapter 3.) _
Next we edit filelist. :\ll of the files in our book contain the letters book as

part of their name, so we first delete all file names that are not part of the book with
an X command:
ok/d

Then we convert each file name t0 an @ command With a substitute:

1,$s/7*/e &/
This leaves each line in the buffer in the form

e filename
Then we read in a' copy of the script after each file name;

g/?/.r script
At this point each of the original book files has been converted into a group of edit-
ing commands consisting of e filename followed by whatever the script specifies.

We write the whole thing into a file called command: .
w command
‘q

Now the single command

edit <command
invokes the editor with its input coming from the set of editor commands in the file
command. Thus edit does the script, whatever it is, on each of the files in turn,

In practice, this goes far faster than we can describe it. And of course, if you
siop to think about it, you will realize that the editing operations 10 make the com-
mand file can be placed in another file, perhaps commandmaker, and this process
run ‘whenever a new file of commands is needed. It is a good test of an editing sys-
tem to see whether it can accomplish the same function with as litile fuss.

Here is a summary of the commands and facilities of edit. Text patlerns,
which are used for context searches, the 8 command, and the’' g and x prefixes, are
summarized at the end of Chapter 5. '

Line numbers are formed from the following components:

o
i
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17 a decimal number

" the current line

$ the last line

/pattern/ a forward context search
\parterm\ a backward context search

Components may be combined with + or —

41 sum of . and |
o1 difference of . and 1

Line numbers are separated by commas or semicolons; a semicolon sets the current
line to the most recent line number before proceeding.

Commands may be preceded by an arbitrary number of line numbers (except
for e, f and g which require that none be present). The last one or two are used as
needed. If two line numbers are needed and only one is specified, it is used for
both. If no line numbers are specified, a default rule is applied:

(.) use the current line

(.+1) use the next line

- use the current line for both line numbers
(1,9 use all lines

In alphabetical order, the commands and their default line numbers are:

() a append texi after line (text follows)
(...). ¢ change text (text follows)
(.,.) dp delete text
e file enter file, discard all prev:ous text,
remember file name
f file print file name, remember file name
(.) i insert text before line (text follows)
(...) mline3p move text to after line3
{t D print text
q quit
(.) r file read file, appending after line
(.,.) s/pai/new/gp substitute new for first occurrence of par
; (g implies repeatedly across line)
(1,%) w file write file (leaves current state unaltered)
(.) = print line number
{.+1) print one line

The trailing p, which is optional, causes the last affected line to be printed.

The global prefixes cause repeated execution of a command, once for each
line that matches. (g) or does not match (x) a specified text pattern:

(1,8) g/partern/ command
(1,8) x/pattern/ command

command can be anythmg but a, ¢, i or q, and may be preceded by line numbers as

usual. Dot is set to the matched line before command is done. "
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Bibliographic Notes

The earliest traceable version of the editor presented here is TECO, written for
the first PDP-1 timesharing system at MIT. It was subsequently implemented on
the SDS-940 as the “‘quick editor” QED by L. P. Deutsch and B. W. Lampson; see
“An online editor,” CACM. December, 1967. K. L. Thompson adapted QED for
CTSS on the IBM 7090 at MIT, and later D. M. Ritchie wrote a version for the GE-
635 (now HIS-6070) at Bell Labs. .

The latest version is ed, a simplified form of QED for the PDP-11: written by
Ritchie and Thompson. Our editor closely resembles ed, at least in outward appear-
ance.

The article “On-line text editing: a survey,” by A. van Dam and D. E. Rice
(Compuiing Surveys, September, 1971) discusses several other editors.






CHAPTER 7

FORMATTING

Our next task is to write a text formatter — a program for neatly formatting a
document on a suitable printer. Naturally the precise meanings of ‘‘neatly,” *‘for-
matting,” and “‘suitable” will vary according to your aspirations and your budget.
Our formatter provides a bare minimum of formatting controls, those which we
have observed people actually use when preparing documents. It produces output
for devices like terminals and line printers, with automatic right margin justification,
pagination (skipping over the fold in the paper), page numbering and titling, center-
ing, underlining, indenting, and multiple line spacing.

A formatter is an important tool for anyone who writes (including program-
mers describing their programs), because, once correct, material is never re-typed.
This has some obvious cost benefits, and helps ensure that the number of errors
decreases with time. Machine formatting eases the typing job, since margin align-
ment, centering, underlining and similar tedious operations are handled by the com-
puter, not by the typist. It also permits drastic format changes in a document
without altering any text. But perhaps most important, it seems to encourage writ-
ers to improve their product, since the overhead of making an improvement is small
and there is an esthetic satisfaction in always having a clean copy available.

Freedom from errors may sometimes be the primary concern. For instance,
this book was produced on a phototypesetter driven by a (very) sophisticated big
brother of the formatter we are going to write now. The programs are part of the
text. To test one, we isolate the code with an editor like the one in Chapter 6, com-
pile it and run it, untouched by human hands. We are fairly confident that what is
in the text is what was actually tested.

The format program described in this chapter is quite conventional. It accepts
text {0 be formatted, interspersed with formatting commands telling format what
the output is to look like. A command consists of a period, a two-ietter name, and
perhaps some optional information. Each command must appear at the beginning
of a line, with nothing on the line but the command and its arguments. For
instance, '

.ce

centers the next line of output, and

219
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sp 3

generates three spaces (blank lines).

Most of the time, however,' the format user should have to know little about
commands and argumeéntss — most formatting happens automaticaily. This is
merely good human engiheering. Ideally a document containing no commands
should be printed sengibly. Default parameter settings and formatting actions are
intended 1o be reasonable and free of surprises. For instance, words fill up output
lines as much as possible, regardless of the length of input lines. Blank lines cause
fresh paragraphs. Input is correctly spaced across page boundaries, with top and
bottom margins.

At the same time the desigh has to be sufficiently flexible that it can be aug-
mented with more advanced features for sophisticated use. Knowledgeable users
should of course be able 10 change parameter settings as desired. Ultimately it
should be possible for users to define new formatting operations in terms of those
already provided. We will explore these possibilities in the exercises at the end of
the chapter.

7.1 Commands

1

~As we said, all commands consist of a period at the begining of a line, which
is an unlikely combination in text, and have two-letter names. It has been our
experience that ‘users prefer concise commands in most languages, so this seems a
reasonable compromise between brevity and mnemonic value. In any case, the
code is written so that some other choice could be made with minimal changes.

By default format fills output lines, by packing as many input words as possi-
ble onto an output line before printing it. The lines are also Justified (right margins
made even) by inserting extra spaces into thé filled line before output. People nor-
mally want filled text, which is why we choose it as the default behavior. It can be
turned off, however, by the no-fill command

.nf

and thereafier lines will be copied from input (o output without any rearrangement.
Filling can be turned back on with the fi// command

B

When an .nf is encountered, there may be a partial line collected but not yet
output. The .nf will force this line out before anything else happens. The action of
forcing out a partia'ly collected Jine is called a break. The break concept pervades
format; many commands implicitly cause a break. To force a break explicitly, for
example to separate (wo paragraphs, use '

.br

Of course you may want to add an exirg blank line between paragraphs. The
space command

.Sp

causes a break, then produces a blank line. To get n blank lines, use
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sp n

(A space is always required beiween a command and its argument.) If the bottom
of a page is reached before all of the blank lines have been printed, the excess ones
are thrown away, so that all pages will normally start at the same first line.

By default output will be single spaced, bult the line spacing can be changed at
any time: P
s n

sets line spacing to n. (n=2 is double spacing.) The .Is command does not cause a
break. :

The begin page command .bp causes a skip to the top of a new page and also
causes a break. If you use

.bp n

the next output page will be numbered 7. A .bp that occurs at the bottom of a page
has no effect except perhaps to set the page number; no blank page is generated.
The current page length can be changed (without a break) with

pl! n

To center the next line of output,

.Ce :

»

line to be centered
The .ce command causes a break. You can center # lines with
.ce n
and, if you don’t like to count lines (or can’t cdum correctly), say

.ce 1000

lots of lines

to be centered
ce 0

The lines between the .ce commands will be centered. No filling is done on cen-
tered lines,

Underlining is much the s.me as cenlering:
ul n

causes the text on the next # lines 10 be underlined upon output. But .ul does nor
cause a break, so words in filled text may be underlined by

words and words and
.ul

tots more

words.

1o get

words and words and lots more words.
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Centering and underlining may be intermixed in any order:

.ce
ul
Title

gives a centered and underlined title.
The indent command controls the left margin:

n n

causes all subsequent output lines to be mdenied n positions. (Normally they are
indented by 0.) The command

m n

sets the right margin to n. The line length of filled lines is the difference between
right margin and indent values. .in and .rm do not cause a break.

The traditional paragraph indent is produced with remporary indent command:
i n
breaks and sets the indent to position n for one output line only. If nis less than
the current indent, the indent is backwards’(a “hanging indent”).
To put running header and footer titles on every page, use .he and .fo:

.he this becomes the top-of-page (header) title
fo this becomes the bottom-of-page (footer) title

The title begins with the first non-blank after the command, but a leading quote will
be discarded if present, so you can produce titles that begin with blanks. If a title
contains the character #, it will be replaced by the current page number each time
the title is actually printed. .he and .fo do not cause a break.

Since absolute numbers are often awkward, format allows relative values as
command arguments. All commands that allow a numeric argument » also allow
+n or —n instead, to signify a change in the current value. For instance,

.m —10
in +10

shrinks the right margin by 10 from its current value, and moves the indent 10 places
Jurther to the right. Thus

Jm 10
and
am +10

are quite different.

Relative values are particularly useful wnh i, to temporarily indent relative to
the current indent:

dn +5
Al +5
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;
produces a left margin indented by 5, with the first line indented by a further 5.
And’

n +58
ti -5

produces a hanging indent, as in a numbered paragraph:

1. Now is the time for all good people
to come to the party.

A line that begins with blanks is a special case. If there is no text at all, the
line causes a break and produces a number of blank lines equal to the current line
spacing. These lines are never discarded regardless of where they appear, so they
provide a way 1o get blank lines at the top of a page. If a line begins with » blanks
followed by text, it causes & break and a temporary indent of +n. These special
actions help ensure that a document thal contains no formatting commands will still
be reasonably formatied. .

In summary, then, we have the following commands. If a numeric argument
is preceded by a + or —, the previous value is changed by this amount; otherwise
the argument represents the new value. If no argument is given, the default value
is used. ;

command  break? default function
.bp » yes n=+1 begin page numbered »
.br yes cause break
.Ce n yes n=] center next » lines
i yes start filling
fo no empty footer title
.he no empty header title
dn n no =0 indent n spaces
s n no =] line spacing is »
.nf yes stop filling
pl n " no n=66 set page length to n
.m n no n=60 set right margin to n
Sp n yes =] space down » lines
i n yes n=0 temporary indent of »
ulon no =] underline words from next # lines

This is a reasonable set, but others will undoubtedly have occurred to you. We will
suggest further possibilities as we go along.

Exercise 7-1: Discuss criteria for which commands should cause a break and
which should not. An alternative design is to have two characters that introduce
commands, instead of one, so that .8p causes a break as before, while ,8p does
not. Discuss this design. [ .

Exercise 7-2: Write a pipeline to count the words but not the format commands
in a document. O
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7.2 Construction

There is a lot of merit in buildinga program incrementally — making the
minimum amount that will do something useful, and then, with this part opera-
tional, fleshing oul the skeleton a piece at a time. This divides a big job into smaller
and presumably more manageable pieces. Testing the first part is easier because it
is smaller. If the design is good, later pieces should not interact much with what
has gone before, so for the most part they may be tested independently. There is
also a morale boost in having somerhing working early.

On higger projects, friendly users can try out a partial program with limited
functions. Their reactions provide vital feedback to evaluate what already exists
and what is yel to come. Often you will learn that what the user wants is [ess
ornate than either of you thought at first, so some of the hard work can be post-
poned indefinitely. Or you may learn that whal the user wants is quite different
than you thought. Tt is foolish to build the whole thing in a closet before revealing
any part of it. (Innocent users are also marvelous at stumbling into bugs, because
they exercise programs in ways you never thought of.)

The text formatter is a case in point. Once a certain minimum capability has
been built, additions can be made without affecting previous code very much
(assuming sensibie design in the first place). We will sketch out how the construc-
tion might proceed, now that we know what facilities are 1o be provided. :

There are several choices for program organization, of which two seem
promising. One is to handie the input one word at a time, and assemble lines out of
~words for line-oriented tasks like no-fill and centering. Or we could input a line at a
time and break the line into words when filled text is being processed. Given the
number of formatting operations that are based on lines — no-fill mode, cenlering,
underlining, and commands themselves ~ the line-at-a-time structure seems 10 be
easier. It’s a good mental exercise to work out details of the word-at-a-time design,
however. You will find that neither organization is ideal — each has its awkward
parts.

7.3 Command Decoding

The main routine reads input a line at a time and separales it into text and
formatting commands. This much we can write before anything else.

# format — text formatter main program
character inbuf(INSIZE)
integer getlin :

call init _
while (getlin(inbuf, STDIN) ~= EOF)
if (inbuf(1) == COMMAND) # it's a command
call comand(inbuf)
else # it's text
call text(inbuf)
stop
end

COMMAND is the character period (.), unless you prefer something else. init sets
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all parameters to their default initial values; it is sufficiently uninteresting that we
will not show it.

We begin with comand, the routine that decides what kind of command has
appeared, since most of the command interpreting code can be written before any-
thing else is done. Temporarily text can be a stub which does nothing more than
copy text lines from inbuf 1o the standard output with putiin.

The structure of comand is a multi-way branch on the command type; we wnll
show it in stages rather than all at once, and explain details as we come to them.

# comand — perform formatting command
subroutine comand(buf)
character buf(MAXLINE)
integer comtyp, getval, max
integer argtyp, ct, spval, val
include cpage
include cparam

ct = comtyp/buf)
if (ct == UNKNOWN) # ignore unknown commands
return
val = getval(buf, argtyp)
it (ct ==F1) {
call brk
fill = YES
)
else if (ct == NF) {
call brk
fil = NO
}
eise if (ct == BR)
call brk
else if (ct == LS)
call set(lsval, val, argtyp, 1, 1, HUGE)
# ..
# etc.
# ..
return
end

Most commands just set the new value of a parameter, perhaps after causing a
break. If one is needed, brk is called to flush out partially filled lines. For the
moment we can write a dummy version which returns without doing anything;
since we are currently dealing only with unfilled text, there will rever be any par-
tially filled lines anyway.

The majority of the parameters are kept in a common block cparam since they
are néeded throughout the program and there are far too many to pass around as
arguments. The rest are in cpage, to which we shall return. :
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common /cparam/ filt, Isval, inval, rmval, tival, ceval, ulval

integer fill # fill it YES; init = YES

integer Isval # current line spacing; init_= 1

integer inval # current indent; > = O; init = O

integer rmval # current right margin; init = PAGEWIDTH = 60
integer tival # current temporary indent; init = 0

integer ceval # number of lines to center; init = 0

integer ulval # number of lines to underline; init = O

comand calls comtyp to decode the command name and getval to evaluate
any arguments 1o the command. comtyp is so repetitive that we will show only part
of it

# comtyp — decode command type
integer function comtyp(buf)
character buf(MAXLINE)

if (buf(2) == LETF & buf(3) == LETI)

comtyp = FI ;

else if (buf(2) == LETN & buf(3) == LETF)
comtyp = NF

else if (buf(2) == LETB & buf(3) == LETR)
comtyp = BR

# ...

# etc.

# ..

else
comtyp = UNKNOWN

retum

end

When there are relatively few commands, a direct search with a series of explicit
lests is certainly easiest and entirely adequate. Ultimately it might prove desirable
to replace the tests by a more general table lookup scheme.

Notice that comtyp does not check whether a command is exactly two letters
long, only that the first two letters match a known command. This permits users (o
write fill, .break, eic, if they prefer. The drawback is that any new commands
introduced must differ in their first two letters from all others, which can lead to
some strained mnemonics. You 'might therefore consider changing comtyp to
check entire command names.

Since nearly all commands allow a numeric argument with an optional sign, it
is best 10 wrile a separate routine 10 gel the argument and the sign. getval skips
over the command, records the presence or absence of a sign and digits in argtyp, -
and converls a numeric argument 1o an integer with ctoi.
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# getval — evaluate optional numeric argument
integer function getval(buf, argtyp)
character buf(MAXLINE)
integer ctoi
integer argtyp, i

i=1 # skip command name

white (buf{i) ~= BLANK & buf(i) ~= TAB & buf(i) ~= NEWLINE)
i=i+ 1

call skipbl(buf, i) # find argument

argtyp = buf(i)
if (argtyp == PLUS | argtyp == MINUS)

i=i+1
getval = ctoi(buf, i)
return
end .,

Even though at the moment all commands consist of a period and two letters,
getval is written to skip an arbitrary command terminated by a blank, tab or new-
line. (Recall that skipbl, written in Chapter 6, skips blanks and tabs.) Similarly, a
separate routine comtyp decodes the command type. These choices will make it
easier 10 change the program if it becomes necessary later. Few programs remain
slatic over their lifetime; it is wise (o plan ahead so the inevitable changes are not
Lraumatic.

Furthermore, getval is called for all commands, even those like .he and .fo
which never have a numeric argument. It just isn’t worth making a special case out
of them: the formatter may do a microscopic amount of extra work in such cases,
but the program is less complicated. -

set is a general routine for updating a parameter, relatively or absolutely or 10
a default value. It also ensures that the resulting value lies within specified bounds.
For instance, the line spacing is set with the code in comand that reads

else if (ct == LS)
call set(isval, val, argtyp, 1, 1, HUGE)

This call 10 set will set Isval to val if there was no sign with the .I8 command, as in
JIs 2, or to Isvaltval if there was; as in .Is —1, or to 1 if there was no argument at
all. In any case the result is forced 10 lie beiween the last two arguments, 1 and
HUGE (a large number).
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# set — set parameter and check range
subroutine set(param, val, argtyp, defval, minval, maxval)
integer max, min -
integer argtyp, defval, maxval, minval, param, vai

if (argtyp == NEWLINE) # defaulted
param = defval

else if (argtyp == PLUS) # relative +
param = param + val

else if (argtyp == MINUS) # relative —
param = param — val

else # absolute
param = val '

param = min{param, maxval)
param = max(param, minval)
return

end

We now have enough code to test command decoding, so we can use it and
not worry about it while working on the rest of the program.

Exercise 7-3: format .ignores unknown commands. Tt could just as well have
treated them as normal text to be printed, or as errors to be reported. Discuss
the merits of these alternatives. O

Exercisc 7-4: Commands begin with a period in column 1, because that occurs
infrequentiy in normal text. What are other plausible choices? How would you
arrange 10 print a line that begins with a period? Suppose you want 10 mix com-
mands and text on the same line. Is it a good idea? What is a syntax that is
easy (o type and edit? O

7.4 Page Layout

The next step is to subdivide text handling into reasonable increments.
Regardless of whether it fills or not, centers or not, underlines or not, format has to
get the right number of lines per page. So let us work on that, copying text lines
from input to output, but with proper line spacing, titles and page numbers. This
will almost dispose of no-fill mode. The code is similar to print in Chapter 3, so we
can adapt some of the lessons we learned there. The main one is the importance of
the boundaries — getting the right number of lines at the right places on each page,
and preventing unwanted pages.

The parameters that describe the vertical dimensions of a page are: the page
length pival; the 1op margins before and after the header line, mival and m2val
(m1tval includes the header): the corresponding bottom margins m3val and m4val;
and bottom, the last line upon which text may be placed. The following relation-
ship holds:

bottom = plval — m3val — mdval

F_Or 11 inch paper and standard six line per inch spacing, plval is 66. If each mar-
gin is two lines, there are 58 text lines per page and bottom is 62.
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lineno is the next line to be printed on the output page; a value of zero indi-
cates top of page, and a value greater than bottom indicates the end of a page.
When lineno exceeds bottom, it is time to flush the current page. curpag is lhe‘
number of the current page; newpag is the number that will go on the next page
All these values are kept in the common block cpage, which also holds the running
titles header and footer.

common /cpage/ curpag, newpag, lineno, plval, mival, m2val, m3val, m4val,
bottom, header(MAXLINE), footer(MAXLINE)
integer curpag  # current output page number; init = 0
integer newpag # next output page number; init = 1
integer lineno # next line to be printed; init = 0
integer pival # page length in lines; init = PAGELEN = 66

integer m1ival # margin before and including header
integer m2val # margin after header

integer m3val # margin after last text line

integer m4val # bottom margin, including footer

integer bottom  # last live line on page, = plval —m3val —m4val
character header # top of page titie; init = NEWLINE
character footer # bottom of page titie; init = NEWLINE

We no longer want to merely copy text lines 1o the standard output, so we
make a small change in text, so it calls a new routine put instead of putlin:

# text — process text lines (interim version 1)
subroutine text(inbuf)
character inbuf(INSIZE)

call put{inbuf)
retum
end

Except for header and footer titles, and blank lines produced by .8p commands,
every line of text that goes out is controlled by put. put and its subordinates look
after top and bottom margins, line spacing, setting the page number, and indenting,
which we will get to shortly. The outline of put is

i (at top or past bottom of page)
do top margins and top title
put out indent, if any
put out line
increment line number
if (past bottom)
do bottom margins and bottom title

and the code becomes
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# put — put out line with proper spacing and indenting
subroutine put(buf)
character buf(MAXLINE)
integer min '
integer i
include cpage
include cparam

if (lineno == 0| lineno > bottom)
call phead

for(i= t;i<=tivalii=i+ 1) # indenting
call putc(BLANK)

tival = inval

call putlin(buf, STDOUT)

call skip(min(lsval— 1, bottom— lineno))

lineno = lineno + Isval

if (lineno > bottom)
call pfoot

return

end

skip(n) produces n empty lines (NEWLINE only) if n is positive, and does nothing if
N is less than one. We wrote it for print in Chapter 3. We have also included the
code for mdenting in put; all it does is put out the right number of leading blanks
and reset any tlemporary indent, so ignore it for now.

put has 1o stay sane if handed bizarre parameters. In particular, the line spac-
ing Isval could conceivably be larger than the bottom margin values, so after a line
is produced, the skip that follows skips at most to bottom+ 1. (put skips lsval—1
because putlin has already produced one line.) Since each page starts at the top,
there will always be.at least one output line per page regardless of the line spacing,
and we are guaranteed thal format will always make some progress lhrcméh a docu-
ment no matter how strange the parameters.

phead and pfoot print the top and bottom margins. phead is responsible for
updating the current and new page numbers in curpag and newpag.
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# phead — put out page header
subroutine phead
include cpage

curpag = newpag
newpag = newpag + 1
if (mival > 0) {
call skip(mival—1)
call putti(header, curpag)
}
call skip(m2val)
linenc = mival + m2val + 1
return
end

# pfoot — put out page footer
subroutine pfoot
include cpage

call skip(m3val)

if {(maval > 0) {
call putti{footer, curpag)
call skip(m4vat—1)
J

return

end

The header title is the last line of the margin mival and the footer title is the first
line of mdval, so either title, and in fact all pagination, can be turned off by setting

the appropriale margins to zero. This is a minor point, but it eliminates what would
otherwise be a special case.

phead and pfoot call putt! to produce the top or bottom ltitle as a single line,
inserting the page number with putdec if called for.

# puttl — put out title line with optional page number
subroutine puttl(buf, pageno)
character buf(MAXLINE)
integer pageno
integer i
for (i = 1; buf(i) ~= EOS;i=i + 1)

it (buf(i) == PAGENUM)
call putdec(pageno, 1)
else
call putc(buf(i))
return
end

PAGENUM is whatever characler is 10 be replaced by the page number in titles; we
use a #, which has some mnemonic value. In the program it has a separate name
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to keep its function clear and to make it easier to change.
Titles are originally extracted by gettl, called from comand with

else if (ct = = HE)

call getti(buf, header)
else if (ct == FO)

call gettl(buf, footer)

and gettl itself is

# gettl — copy title from buf to ttl
subroutine getti(buf, ttl)
character buf(MAXLINE), tHMAXLINE)

integer i

i= 1 # skip command name

while (buf(i) ~= BLANK & buf(i} ~= TAB & buf(i) ~= NEWLINE)
i=i+1

call skipbl(buf, i} # find argument

- if (but(i) == SQUOTE | but(i) == DQUOTE) # strip quote if found

i=i+1

call scopy(buf, i, ttl, 1)

returmn -

end

The title is assumed to begin with the first non-blank chéracter. but a leading apos-
trophe or quote is stripped off, to permit a title to begin with blanks.

Notice that we wrote the calls to gettl as

call gettl(buf, header)
call gettl(buf, footer)

instead of passing the command type to gettl and Iéning it decide where to put the
title. The latter way requires gettl to know about the format of variables in cpage,
and increases the data connections in the program. Whenever possible, hide details
from routines that don't need them.

Space is called directly from comand when a .8p is seen; if no argument is
provided, a single blank line is produced. .8p O is perfectly legal; its only effect is to
cause a break. .

else if (ct == SP) |
call set(spval, val, argtyp, 1, 0, HUGE)
;:all space(spval)

space is also called for a .bp command, to get 1o the bottom of the current page.
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else if (ct == BP) {
if (lineno > 0)
call space{(HUGE)
call set(curpag, val, argtyp, curpag+ 1, —HUGE, HUGE)
newpag = curpag

The code for .bp has 10 be exceedingly careful or some unpleasant behavior
results. First we must have bp equivalent to .bp +1, since this is part of the
specification. A .bp at the bottom of a page (even the last page) should have no
effect except to cause the normal page number increment. You should also verify
that beginning a document with any one of .bp, .bp 1, .bp + 1, or plain text yields a
first page numbered 1. Finally, the .bp command allows negative page numbers,
nol because we think that anyone will ever use them, but because they can do no
conceivable harm. Arbitrary restrictions will someday impede someone.

Once put works, space is written by analogy. space(n} does nothing if it
occurs al the botiom of a page (lineno>bottom). Otherwise it skips n lines, or
enough lines to get to the bottom of the page, whichever is smaller. If the bottom
is reached, the bottom margins are produced. #

# space — space n lines or to bottom of page
subroutine space(n)
integer min
integer n
include cpage

call brk

if (lineno > bottom)
return

it (lineno == Q)
cail phead

call skip{min(n, bottom+ 1—lineno))

lineno = lineno + n

if {lineno > bottom)
call pfoot

return

end

It is quite important to distinguish between “bottom of the page” and “top of the
next page'’; they are not the same place. If a .sp occurs at the top of a page the
spaces are produced, but normally this can only occur at the beginning of a docu-
ment. Any blank lines left over at the end of a page are discarded, since this is
usually what is wanted. If spaces are actually needed at the top of a page they can
be obtained by all-blank lines, which we will treat shortly.

space and put are rather similar, and it would be possible to modify space to
call put. This would centralize the output in one place, a desirable goal. The main
problem is how to avoid getting Isval line spaces each time put is called from the
proposed new space. We certainly don't want to change Isval in space before cal-
ling put, then restore it after — this is the worst kind of pathological data
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connection because it is the least obvious. We don’t want to burden each call to
put with a line-spacing argument, nor do we wan! leading blanks on each blgrl_k line
produced by space when text is indented. In spite of the apparent repetition of
code, it’s preferable the way it is.

We now have enough skeleton to test all the permutations of line spacing,
blank lines, new pages, and so on. The .pl command is particularly useful for test-
ing, since you can shorten the page down o the point where it’s easy (o count out-
pul lines by hand. The code in comand for .pl is

else if (ct == PL) {
call set(plval, val, argtyp, PAGELEN,
m1vai+m2val +m3val +mdval + 1, HUGE)
bottom = pival — m3val — m4val

You might also find it convenient 10 modify skip temporarily 10 produce a visible
character on each skipped line; this makes it easier to interpret output.

What are particularly nasty boundary conditions that might go wrong? There
15 al least ope error — the last page of output is short, because there is no provisian
lo print the extra lines needed 1o get to the bottom. To repair il We ask for a large
number of blank lines in the main routine, after the end of the input has occurred;
in exactly the same way the .bp command does. Here is the revised version of for-
mat: _ :
# format — text formatter main program (final version)

character inbuf(INSIZE)

integer getlin

include cpage

call init
while (getlin(inbuf, STDIN) ~= EOF)
if (inbut(1) == COMMAND) # it's a command
call comand(inbuf) S

else # it's text -
call text{inbuf)
if (lineno > 0)
call space(HUGE) # flush last output
stop
end

This works (ie., does nothing) if we are already at the bottom of the last page,
because no further spaces will be produced there. It also works for the less com-

mon case that we are at the top of a page; in particular, if there i1s no input, it pro-
«duces no outpul.

We could have written special code (0 handle the end of the last page, byt it is
much better to use existing mechanisms like this wherever possible. Doing so
avoids having two slightly different ways of doing the same thing (one of which is
going to be overlooked when the other is improved) and ensures that the staridard
mechanism is well thought out at an important boundary.
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The, basic structure of format is now pretty well established, so we can show
the hierarchy as it currently stands:

format
init
getiin
comand
comtyp, getval, brk, set, gettl, space
text - .
put :
phead (pfoot)
skip
" putc
puttl
putc, putdec
putc
putfin
skip
space
brk, phead, pfoot, skip
space

phead and pfoot call on the same assortment of routines; the hierarchy is shown
once for both. Most new subroutines we are going to add will be called from text,

Exercise 7-5: Is it really necessary to have the two variables curpag and newpag
to keep track of page numbers? Try to rewrite the code with only one. Make
sure that .bp and .bp + 1 remain equivalent. J

7.5 Indenting _

The next step is 10 implement settable left and right margins, which are
required before we can do filled text properly. For each line of outpul, we need 10
know the indent inval, the right margin rmval, and the temporary indenti tival. tival
is the number of blanks to precede a line of output. The code in comand that han-
dles the .in, .rm and .ti commands is

else if {ct == IN) {
call set(inval, val, argtyp, O, O, rmval— 1)
tival = inval

else if (ct == RM)

call set(rmval, val, argtyp, PAGEWIDTH, tival+ 1, HUGE)
else if (ct == TI) {

call brk

call set(tival, val, argtyp, 0, 0, rmval)

Each line #roduced by put is preceded by tival blanks; after each li"nc of out-
put tival must be reset to inval so that only a single line is temporarily indented.
This is done by the code in put that reads
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for(i = 1;i <=tival;i =i+ 1) # indenting
call putc(BLANK)
tival = inval

Leading blanks and empty lines are special cases detected in text, where we
must add the test

if (inbuf(1) == BLANK | inbuf(1) == NEWLINE)
cail leadbl(inbuf) # move left, set tival

before the call 10 put. leadbl handles the leading blanks.

# leadbl — delete leading blanks, set tival
subroutine leadbi(buf)
character buf(MAXLINE)
integer max
integer i, |
include cparam

call brk
for (i = 1; buf(i) == BLANK: i = i + 1) # find 1st non-blank

if (buf(i) ~= NEWLINE)
tival =i — 1

for (j = 1, buf(i) ~= EOS;j=j + 1) { # move line to left
but(j) = buf(i)

i=1i+1
}
buf(j) = EOS
retumn
end

leadbl moves the entire line to the lefi so the first non-blank character is in posi-
tion 1. This ensures that leading blanks in no-fill mode don’t get twice as much
indent as they should, once from the temporary indent and once from the leading
blanks themselves.

7.6 Filled Text

Now that unfilled text and margins work, we can do filled text: that is what
will be wanted most of the time. How does it work? Two routines. getwrd and
putwrd, work together almost as co-routines. getwrd breaks an input line into
words and passes them to putwrd. putwrd packs them and periodically outputs a
filled line. Thus text becomes
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# text — process text lines (interim version 2)
subroutine text(inbuf)
character inbuf(INSIZE), wrdbuf(INSIZE)
integer getwrd
integer i
include cparam

if (inbuf(1) == BLANK | inbuf(1) == NEWLINE)
call leadbl(inbuf)  # move left, set tival
if (inbuf(1) == NEWLINE) # all blank line
call put(inbuf)
else if (fill == NO) # unfilled text
call put(inbuf) N
else # filled text
Tor (1= 1; getwrd(inbuf, i, wrdbuf) > 0;)
call putwrd(wrdbuf)
return
end

We wrote getwrd for the include program of Chapter 3. getwrd isolates
words, that is, strings of non-blank characters. It is called with the index in inbuf
where it is to start looking for a word; it returns with that index set just beyond the
word it found, so it is ready for the next call. getwrd returns zero at the end of a
line, and a positive word length in the middle. :

The other end of the chain is putwrd. If the new word does not fit on the
current line, putwrd flushes the line with a call to brk and resets for a fresh line. In
any case the new word is tucked onto the end of the line. putwrd also adds a blank
after the word, so the next word will be separated properly.

The call 10 space after EOF in the main routine now serves a double func-
tion. Since it causes a break, it will force out any partially completed line collecied
by putwrd before skipping to the bottom of the last page. This is an added benefit
of using the high-level function space instead of coding an explicit “last page" rou-
line.
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# putwrd — put a word in outbuf
subroutine putwrd(wrdbuf)
character wrdbuf(INSIZE)
integer length, width
integer last, lival, w
include cout
include cparam

w = width(wrdbuf)

last = length(wrdbuf) + outp + 1 # new end of outbut

llval = rmval — tival

if (outp > O & (outw+w > llval| last >= MAXOUT)) [ # too big
last = last — outp # remember end of wrdbuf
call brk # flush previous line
]

call scopy(wrdbuf, 1, outbuf, outp+ 1)

outp - last

outbu:.outp) = BLANK # blank between words
outw = outw - w + 1 # 1 for blank

outwcs = outwds + 1

return

end

The output linc s collecicu in outbuf. outp is the last character position, outw
the width of the lin., and outwds the word count. These are kept in a common
block cout, which is ::s0 used by brk.

common /cout/ outp. outw, outwds, oulbuf(MAXOUT)

integer o.ip # last char position in outbuf; init = 0
integer outw # width of text currently in outbuf; init = 0
integer outwds ~ # number of words in outbuf; init = 0
character outbut # lines to be filled collect here

The width.of the current line. outw, is not the same as outp, which points 1o -
the lasi character on the line. Why? What happens if a line typed by some inno-
cent user contains a backspace, perhaps to underline a character by backspacing
and underscoring? (We haven't built underlining yet, remember.) Clearly the
“width™ of : :

a BACKSPACE b

is 1 by any reasonable definition — it only occupies one column of output — but its
“length™ in aclual storage space is 3 (characters). The (wo measures are different.

_To handie this (and also looking ahead 10 underlining) we have separated
“width™ from *“number of characters™ and isolated the width computation in a
separate function. '
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# width — compute width of character string
integer function width(buf)
character buf(MAXLINE)

integer i

width = 0

for (i = 1, buf(i) ~= EOS;i=i+ 1)
if (buf(i) == BACKSPACE)

width = width — 1
else if (buf(i} == NEWLINE)
width = width + 1
retumn
end

width has two special characiers 10 worry about: BACKSPACE has width —1 and
NEWLINE has width zero. Everything else has width + 1.

We are now in a position to specify brk. Actually there isn't much 10 it — it
outpuls any text in outbuf with put, and resets the output pointer, width and word
count o zero.

# brk — end current filled line
subroutine brk
include cout

it (outp > 0) {
outbufloutp) = NEWLINE
outbuf(outp+ 1) = EOS
call put(outbuf)

outp = 0
outw = Q
outwds = 0
retum

end

Exercise 7-6: What characters besides backspaces and newlines have zero width
in your environment? Can you think of any characters whose width is not con-
stant? O

Exercise 7-7: If your character set doesn’t include a backspace, how would you
provide it for format users nonetheless? O

1.7 Right Margin Justification

The only remaining loose end is justifying output lines, that is, squaring up the
right margin. The best place is in putwrd, right before the call 10 brk — at that
point we have a full line, we know we're working on filled text, and we know how
many words are in the line and what its width is. Thus we modify putwrd by call-
ing a separale routine to spread out the line by adding extra spaces.
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# putwrd — put a word in outbuf; includes margin justification
subroutine putwrd{wrdbuf)
character wrdbuf(INSIZE)
integer length, width
integer last, lival, nextra, w
include cout
include cparam

w = width(wrdbuf)
last = length(wrdbuf) + outp + 1 # new end of outbuf
lival = rmval — tival '
if (outp > O & (outw+w > livai | last > = MAXOUT)) { # too big
last = last — outp # remember end of wrdbuf
nextra — lival — autw + 1
call spread(outbuf, outp, nextra, outwds)
if (nextra > O & outwds > 1)
outp == outp + nextra
call brk : # flush previous line
} .
call scopy({wrdbuf, 1, outbuf, outp+ 1)
outp = last " -
outbuf{outp) = BLANK # blank between words
outw = outw + w + 1 # 1 for blank
outwds = outwds + 1 '
return
end

spread moves the words on the line to the right, starting with the rightmost. Each
lime a word is moved, some of the extra blanks are parceled out, as uniformly as
possible, until none are left. nextra is the number of exira blanks needed to justify
the line. Care is necessary in case nextra should be negative because of a long
"input word, or in case there is only one word on the line.

As an esthetic matter, if the extra blanks do not distribute evenly, the surplus

ones are spread alternately from the right and from the left on successive lines, to
- avoid “rivers” of white space down one margin or the other. dir alternates between
zero and one, selecting the side which gets the extra blanks.
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# spread — spread words to justify right margin
subroutine spread(buf, outp, nextra, outwds)
character buf{(MAXOUT)
integer min
integer dir, i, }, nb, ne, nextra, hholes, outp, outwds

data dir /0/
If (nvara <= 0| outwds <= 1)
return
dir = 1 — dir # reverse previous direction
ne = nextra
nholes = outwds — 1
i=outp — 1
j = min(MAXOUT —2, i+ne) # leave room for NEWLINE, EOS
while (i < j) { :
buf(j) = buf(i) 3
if (buf(i) == BLANK) {
if (dir == Q)
nb = (ne—1) / nholes + 1
else

nb = ne / nholes
ne =ne —nb
nholes = nholes — 1
for(;nb > 0;nb = nb — 1) |
j=j=1
buf(j) = BLANK
}

i=i—1
f =]
b
return
end

This code is tricky (which is not a compliment), but it performs an elaborate
function and performs it correctly. The trickery lies in the computation of nb,
which parcels out the extra blanks as uniformly as possible, while distributing the
- extras from one end or the other. There is no chance of division by zero even
though nholes is continually decremented, because the code is executed only when
nextra>0 and outwds > 1, and the loop exits after nholes reaches 1.

By the way, we tested the condition
if (nextra <= 0| outwds <= 1)
in spread, then repeated the equivalént test
if (nextra > 0 & outwds > 1)
in putwrd. Why not instead write, in putwrd,
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if (nextra > O & outwds > 1) {
call spread(outbuf, outp, nextra, outwds)
outp = outp + nextra

)

and remove the redundant test from spread?

The reason we don’t is that this would require the calling program to know
about the constraints on the arguments of the called program. This is another form
.of secret dependency or coupling. From the standpoint of long-term maintenance it
is a dangerous practice, because sooner or later someone modifying the caller will
violate the constraints and perhaps introduce bugs. Thus we wrote spread to check
its own arguments instead of relying on putwrd. Of course this sort of thing can be
carried too far, but here the cost is insignificant, so it’s well worth doing.

Exercise 7-8: Demonstrate that spread works properly, whether placing extra
blanks on the, right or on the left. Prove that it does something sane even at the
extreme values of outwds, nextra and outp. How could you organize format
differently so as to make spread easier? O

Exercise 7-9: Add the commands .ju (justify) and .nj (no justify) so justification
can be turned on and off separately from filling. Should justification be permit-
ted for unfilled lines? O

7.8 Centering and Underlining

Now that we have most of the formatter formatting, we can start to add bells
and whistles.

Centering is a most useful addition, for it mechanizes a tedious and error-
prone task that no human should ever have to do. Luckily it's dead easy. When a
e command is seen, comand computes the number of lines and places it in ceval
with the code

else if (ct == CE) {
call brk
call set(ceval, val, argtyp, 1, 0, HUGE)

Each time a centered line is put oul, text counts ceval down by one; when il
reaches zero there is no more centering to be done. This code goes into text:

if (ceval > 0) | # centering
call center{inbuf)
call put(inbuf)
ceval = ceval — 1

) &,

Finally, the line itself must be centered before it goes out. This is done by setting a
temporary indent that moves the line 10 the right by the correct amount; when the
line is output it will be positioned properly. We put this in a separate routine even
though it is only a single line of code, because it seems 1o clutter up text less that
way, bul you can make a case for the other placement as well.
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# center — center a line by setting tival
subroutine center(buf)
character buf(ARB)
integer max, width
include cparam

tival = max{(rmval+tival—width{buf)}/2, 0)
return
end

Underlining is aiso tedious 10 do manually; like centering, it’s better mechan-
ized. The sequence of evenis for underlining is essentially the same as for center-
ing. comand sets ulval:

else if (ct == UL)
call set(ulval, val, argtyp, 0, 1, HUGE)

text decremenis ulval for each underlined input line:

if (ulval > 0) { # underlining
call underl(inbuf, wrdbuf, INSIZE)
ulval = ulval — 1

|

Finally, a separate routine underl prepares the words to be underlined by converting
each character which is not a blank, tab or backspace into

character BACKSPACE UNDERLINE

text will then center the line or put it out unfilled or eat it up a word at a time for
filling.

# underl — underline a line
subroutine underl(buf, tbuf, size)
integer i, |, size
character buf(size), tbuf(size)

i=1 # expand into tbuf
for (i = 1; buf(i) ~= NEWLINE & j < size—1;i =i+ 1) {
tbuf(j) = bufi)
j =]+ 1
if (buf(i) ~= BLANK & buf(i) ~= TAB & buf(i) ~= BACKSPACE) |
tbufij) = BACKSPACE
tbuf(j+ 1) = UNDERLINE
i=j+ 2
}
}
tbuf(j) = NEWLINE
tbut(j+ 1) = EOS
call scopy(tbuf, 1, buf, 1) # copy it back to buf
return
end
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Backspaces and underlines are inserted as the line is copied into a temporary array,
which is then cqpied back to the original place. You could also do it in place, but
the cale is-.much’less clear.

It is important to do all these functions in the proper order in text. Underlin-
ing and checking for leading blanks must be done first, since all other cases force
output, Centering must precede the test for a NEWLINE, so a centered blank line
will decrement ceval. Putting it all together in one place, we get the final version of
text:

# text — process text lines (final version)
subroutine text(inbuf)
character inbuf(INSIZE), wrdbuf(INSIZE)
integer getwrd
integer i
include cparam

if (inbuf(1) == BLANK | inbuf(1) == NEWLINE)
call leadbl(inbuf})  # move left, set tival
if (ulval > 0) { # underlining
call underl(inbuf, wrdbuf, INSIZE)
;ﬂval = ulval — 1
. if (ceval > 0) { # centering
call center(inbuf)
call put{inbuf)
}cevai'= ceval — 1
else if (inbuf(1) == NEWLINE) # all blank line
call put{inbuf)
else if (fill == NO) # unfilled text
call put(inbuf) _
else # filled text
tor (i = 1; getwrd(inbuf, i, wrdbuf) > 0: )
call putwrd(wrdbuf)
return
end

Here is the final subroutine tree of format, reflecting the additions we made.
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format
init
getlin
comand
comtyp
getval
set
gettl
space
brik
put
text
leadbl
brik
underi
center
width
put
phead (pfoot)
skip
putc
puttl
putc, putdec
putc
putlin
skip
getwrd
putwrd
width, spread, brk
space
brk, phead, pfoot, skip
space

Exercise 7-10: Investigate the behavior of format if a user underlines by back-
spacing and underscoring. What happens with backspacing across a blank in
filled text? What about underlining a word containing backspaces? (0

Exercise 7-11: Underlined punctuation characters are often hard to read. Modify:
underl 1o underline only letters and digits. O

Exercise 7-12: On some video terminals, underlining a character erases it, so it
would be better to print in the order

UNDERLINE BACKSPACE character

That way you at least gel to see the character, even if the underlining is erased.
Modify under! accordingly. O

Exercise 7-13: Underlining a character at a time is the worst thing we can do to
overstrike in Chapter 2. (It’s also a test to destruction of some terminals.)
Should we make underl more clever, or improve overstrike? O
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Exercise 7-14: Another way 1o do underlining is to surround each siring 10 be
underlined with magic “start underline” and “stop underline™ characters of zero
width. Discuss the merits and demerits of such an organization. O

7.9 Some Measurements

We ran format on some large documents, and measured where it spends its
time. Here are some measurements for formatting this chapter, which consisted at
that time of 2300 lines, or 9200 words, of which 640 lines were formatting com-
mands; it produced 27 pages of single-spaced line-printer outpul.

As always, most of the CPU time on the system where we did the timing (a
Honeywell 6070) was spent processing 1/0 requests: 70 percent was spent in getlin
and functions below it (mostly .in the latter), 17 percent in putlin and its subordi-
naies, and 2 percent in putch. These numbers so dominate the run time that until
they are improved no other part of the program matters at all. Let us assume, how-
ever, that they can be cut down to reasonable size by replacing standard Fortran
formatted 1/0 by routines tailored for efficient character input and output. Then
what parts of the program take the time?

The remaining significant routines are

getwrd 3.1%
putwrd 23
width 1.7
text 1.6
spread 1.0
put 04

After the 1/0 time has been removed, these routines account for essentially all the
time taken by the formatter. The lesson is the same as before, but it is worth
repeating. The best procedure for obtaining efficient code is to choose a good algo-
rithm, write a program that implements it as cleanly as possible, then measure it.
The measurements will lead you directly 10 the ohe or two routines that are worth
making as efficient as possible — if they are clearly written and if they hide their
information properly, they will be easy to change. Sacrificing readability for -
efficiency earlier than this, while the bulk of the code is being written, not only
results in wasted effort but also leads to code that is hard to improve because it is
hard 1o understand.

‘ 7.10 Extensions

As we said, this is not an elaborate formatter, and there are a lot of things that
could be added that would make it better without complicating it for unsophisti-
cated users. Extensions 1o make more parameters settable by users are so straight-
forward that they don't even qualify as exercises. More involved, but valuable, are
these functional enhancemenits. -

Multiple Files

To follow good design principles format should read either from a list of files
or, if none are specified, from its standard input, like the print program of Chapter

3. It should also be possible to include the contents of a file by a formatting com-
mand.

L]
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Exercise 7-15: Implement multiple files as arguments and a file inclusion com-
mand. You might use the name .80 for “'source™. the command
180 filename

‘will interpolate the contents of filename in the input at the point it is encoun-
tered. If you decided that the name would be better as .include, what changes
would be needed in comand and comtyp? Once .80 is installed, you can use
format for the same kind of formatting as was done by print in Chapter 3. Is it
worthwhile to keep print around nonetheless? O

Exercise 7-16: Add optional arguments +m and —» to allow output to begin
printing at page m and stop printing after page n Thus
format +10 —20

prints pages 10 through 20 inclusive. What is proper behavior if m or # is out-
side the range of pages in the document? J

Improved Running Titles
Our top and bottom running titles are sometimes awkward to use. The syntax

he / lefi / center / right /

means the heading (top of page ltitle) is to consist of the three parts separaled by
the (arbitrary) delimiter /. The fef7 part is (0 be left-justified, the right part right-
justified, and the center part centered. As before, any occurrence of the character #
in the title is to be replaced by the current page number.

Exercise 7-17: Implement the extended .he and .fo commands. What right mar-
gin and indent values determine placement of the pieces? What should happen
if the pieces overlap? How would you permit multi-line titles? Add the com-
mands

.eh ef .oh .of
to allow different titles on even numbered and odd numbered pages. O

Character Translation

It is often useful to have one character replaced by another upon output. Two
obvious cases: first, 10 have some characler translate into a blank, so words in filled
text can be kept together; second, to have some character translate into a period in
column 1, for writing a document about formatting.

Exercise 7-18: Implement the rransiiterate command .tr:
Ar ab cd

translates a into ¢, and b into d on output:
rr a—z A-2

translates lower case lo upper case:
Arox

translates x into a blank. What happens with variations of
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frab
frbec

in your program? Can you borrow any code or design from translit? O

‘Need’ Command

Sometimes it is desirable to force output like a table or a program to appear all
on one page; this was done for the programs in this book. Somehow a ‘begin page’
command must be simulated at the beginning of the table, but only if it would actu-
ally fall across a page boundary. The command

.ne n

says "l need # lines, if there aren’t that many on this page, skip (o a new page.”

Exercise 7-19: Implement the .ne command. How would you use .ne commands
for “widow™ suppression? (A widow is an isolated line left at the bottom or top
of a page.) [J

Exercise 7-20: Forcing people to count lines for a .ne command is obviously bad
human engineering. Design and implement a mechanism to keep a group of
lines together without requiring the user to count them. Extend it to the .ce
and .ul commands, which currently suffer the same deficiency. O

Extra Space afier Sentence

Most people prefer an extra space after the period that terminates a sentence;
it looks better.

Exercise 7-21: Implement this feature. Make sure it works when the period falls
al the end of a line. What other characters and sequences terminate sentences?
Is there a reasonable algorithm that doesn’t put extra space after people’s ini-
tials, abbreviations, and so on? [J

Automatic Capitalization

Some computer centers have line printers with upper and lower case, but few
upper and lower case terminals or keypunches. This need not discourage someone
who wants neatly formatted output.

Exercise 7-22: Modify format so it detects plausible forms of end of senternce,
like a period at the end of a line or followed by two or more spaces, and then
capitalizes the next letter. You will also need “escape” characters that override
the default action and force the next character to be explicitly lower or upper
case. If you are clever about recognizing sentences, however, these will prob-
ably be little used. What is the width of these characters? [

7.11 Bigger Things

The suggestions in this closing section are major undertakings if done well,
but they should suggest how the formatter may be substantially increased in power.
All of these facilities were available in some form in the formatter we used Lo
prepare this book.
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Hyphenation :

format fills lines by packing as many words onto a line as will fit. Hyphena-
tion increases this number on the average, and thus improves the appearance of the
output. The problem is to design a reasonably accurate scheme for hyphenating
English words by program.

First make up a list of suffixes that are potentially good hyphenation points,
like -tion, -ly, and so on. (Remember that English hyphenates between syliables, so
both suffix and prefix must contain a vowel.) Merely stripping these should provide
a useful capability. You might also experiment with prefix-stripping; our experi-
ence has been that this is less successful. Next, certain letter pairs (“digrams”)
should never be hyphenated — qu is the most obvious example — while others, like
double letters, are almost always good bets. Build a 26x26 array (single bits are
enough) whose entries show whether or not to hyphenate between particular pairs
of letters.

Experiment with these possibilities. Can you l'hink of any other approaches?
What programs would you write as tools to help you with this project? What tools
have we already written for you in this book?

This book was hyphenated by a more complicated version of the suggested
scheme. How many hyphenation gaffes can you find?

Macros

Although the next chapter will be devoted to macro processing, we should
mention the possibility of adding macros, even in limited form, to the formatter. As
the first step, you could allow a user to define shorthands for frequently occurring
sequences of commands. For example

.de pp
-8p
ti +5
.en

would define a new command .pp (for ‘“‘paragraph™). Thereafter, whenever the
“command”

-PP

occurs, it is replaced by its defining text, everything between the .de and the .en.
In this case, a space and a temporary indent result. And of course it should be pos-
Sible to redefine any of the built-in names like .sp.

This much is easy. The next step is to allow macros to have arguments, so

they can produce different results when called with different parameters. For exam-
ple, you might define a title macro with

.de tl
.he '‘Chapter $1'"
.en , -

The symbol $1 means that when the macro is invoked, the first argument is to
replace the $1. Thus you might say .
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| ¢

to create a page litle of “Chapter 7.”

This syntax limits you to nine arguments, which is probably adequate. As a
matler of good human enginegring, missing arguments should be replaced by null
strings; extra argumenis should be ignored. We will return to similar issues in
Chapter 8.

Conditionals

A 1ruly powerful formatter needs the ability to alter formatting actions
depending on conditions that develop during a run. One possibility is a command
like

.it {condition) things

so you can dynamically test some condition, and take appropriate action if it is true.
There is no limit to how complicated this can be made, but as a bare minimum, you
will want (o be able to test parameter values like output page number, line and-page
lengths, current posilion on the page, and whether or not you are in fill mode. You
will also need arithmeltic, text and arithmetic variables, and string comparison opera-
tions. For example, both the section headings and the exercises in this book were
numbered automatically by the formatter, using arithmetic variables and operations.

One of the best tests of whether you have enough tools in your formatter is
whether you can construct with them a general foolnote mechanism, where there
can be multiple footnotes per page, and where footnotes are carried forward onto as
many pages as are needed. Another test is whether you can do multi-celumn out-
put. If you can do these cases well, you have enough power for most formatting
Sstiuatons.

- These suggestions are intentionally vague, so that they will not bias you tno
strongly in any particular direction. As always, if you propose (o build something,
make sure il has some conceptual integrity — it should not be merely a collection
of unrelated “‘features.” And build it in increments, not all at once.

Bibliographic Notes

format is loosely based on J. Salizer’s Runoff program on CTSS. Runoff has
gone through numerous versions; ours is most closely related to Roff, by M. D.
Mcliroy. There are many formatting programs available commercially, often as part
of a “word processing system.” You might find il interesting to compare some of
these offerings with format.

This book was typeset by a program called Troff, written by J. F. Ossanna for
the UNIX system. A typeseiter has many more degrees of freedom than a line
printer — muliple fonts, several sizes of type. and a much larger character set. A
challenging problem is to design a language which permits access to these added
facilities without unduly complicating things for naive users. We made extensive
use of Troff's macro capabilities 10 conceal formatting details in macro commands
which could be easily changed as necessary without touching the text itself.
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MACRO PROCESSING

Macros are used to extend some underlying language — 1o perform a transla-
tion from one language to another. For example, many of our programs contain
lines like .

while (getlin(buf, infile) ~= EOF)

where EOF is some unspecified value (hat indicates end of file. “‘Symbolic con-
stants™ like EOF tell you what a number signifies in a way that the number iself
could never do: if we had writlten some magic value like —1 you would not know
what it meant without understanding the surrohnding contexl. Besides, the value of
EOF may well differ from machine to machine, and it is much easier and safer 1o
redefine the value of a symbolic constant in a single place than it is 10 go through
an entire program finding all the = 1’s that really mean end of file.

What we want, then, is a program that lets us define symbolic constants like
EOF so that subsequent occurrences of the name are replaced by the defining string
of characiers. Such a definition is called a macro, the replacement process is called
tacro expansion, and the program for doing it is called a macro processor. 1t reads the
source file and writes a new file with the macro definitions deleted and the macro
references expanded. This lets us use parameters even in places where a compiler
would insist on numbers, as in array size declarations.

Our first step in this chapter is a program define for replacement of one string
of text by another — the most elementary form of macro processing. This lets us
say, for inslance,

define(EQOF, 1)

and thereafter have all occurrences of EOF replaced by —1. Although this is not
much of a “language translation,” it does make programs easier 10 read and change.
This is the level of macro processing we have used for ali programs in this book,
and a bit more powerful than the “parameter” statement found in some dialects of
Fortran. We didn’t need much more than this, and we wanted 1o siay close enough
to Fortran that the code would be recognizable.

The second stage, a much bigger job, is 10 construct a processor thal allows
macros to have arguments, so we can say, for example,

251
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define{putc(c), putch(c, STDOUT))

to have all occurrences of putc(x) replaced by putch(x, STDOUT) for whatever
value the argument x might take.

The third stage is to add to the macro processor a handful of other built-in
operations that materially assist in writing complicated macro operations. The most
important of these is a facility for conditional testing. These last two stages are
really luxuries: they are convenient to have, and it is instructive to see how to build
them, but you can accomplish a great deal without them.

We should also emphasize that this is not the only way to specify macros. Our
notation is functional, ie., it resembles the way function references are written in
most programming languages, so macro calls mesh well with such languages. We
could have adopted the syntax '

define EOF -1

but that does not extend well to multi-line definitions or 10 macros with arguments
or to some of the other built-in operations we want to add. In Chapter 7 we sug-
gested the form

define name
body
endmarker-

which is suitable for a language where input is handled a line at a time. Angther
possibility is a remplare macro processor, in which the macros correspond to opera-
tors (like the + and — in arithmetic expressions), and the arguments are the
operands. Processors for template macros are sometimes easier 1o use, but are
measurably harder to write. The bibliographic notes at the end of the chapter sug-
gest additional reading.

8.1 Simple Text Replacement

Let us begin with the easiest case. What we want is (o copy input to output,
except that when certain input strings appear they are to be replaced by previously
defined replacement text. In a programming language like Fortran or PL/I, the
natural unit of replacement is probably the identifier, that is, a string of
alphanumeric characters surrounded by non-alphanumerics.. In the texi

while (getlin(buf, infile) ~= EOF)

EOF is surrounded by non-alphanumerics and is 1Eus a candidate for replacement.
Of course so are while, getlin, buf and Infile, but since they are presumably- not
defined (te the macro processor anyway), they should be copied unaltered.

The unit of replacement is called a oken. In other situations, a token might
be anything between “white space” (blanks, tabs, newlines) as it was in format, or
anything between a pair of specified left and right markers. In any case, one part of
the processor is a routine that reads input and divides it up into tokens according to
some rule.

How are definitions provided? The syntax suggested above is convenient:
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define{name, replacement text) |

defines name to be whatever text follows, up to a balancing right parenthesis; this
allows the replacement text to be longer than one line. We will need modules to
collect the name and replacement text, and to record new names and definitions as
they are encountered.

Some of the implementation details are critical, because the order in which
operations are done can make a big difference in the power and convenience of a
macro processor. One significant decision is what should happen when one name is
defined in terms of another one. For example, after the definitions

define(x, 1)
definely, x)

does the input y produce X or 1? If the definitions are in reverse order,

definely, x)
define(x, 1)

then what is y?

These are not academic questions. The archive program of Chapter 3, for
example, contains two definitions:

define(DEL, LETD)
define({LETD, 100)

where 100 happens 10 be the internal representation of the letier d in the ASCII
character set. It is better to define DEL in terms of LETD than to wire into the pro-
gram the representation of a d in a particular character set. As we said before, the
fewer explicit system dependencies there are in a program, the more readily it can
be moved from one system 10 another, and the better it can survive changes in the
current system. Nor do we want users of define to have 1o worry 100 much about
the order in which their definitions appear. Accordingly, define is buill so examples
like this one will work in the moré useful way — after a macro has been evaluated,
its replacement text is rescanned. If it contains any further macros they in turn go
through the same expansion process. (This introduces the chance of an infinite
loop, of course, so we must be prepared for that eventuality.)

There are also several possibilities for when macro calls are evaluated. If we
have already defined x with

define(x, 1)
then when
definely, x)

is encountered, we can either replace x by 1 immediately, or we can ignore tne fact
that x is a macro and replace it later when y is invoked. In the example above
these (wo methods produce the same result, but if x should subsequently be
redefined, there would be a difference. Different choices here lead to somewhat
different but equally useful processors. In our define processor, definitions are rnor
scanned for macro calls while they are being copied into the table of definitions; the
interpretation of macros is done as late as possible.
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Here is the outline of the no-argument macro processor.

while (gettok(token) ~= EOF) {
look up token
it (token == "define")
install new token and value
eise if (token was found in table)
switch input to definition of token
else

}

Since there are nested sources of input, in principle this is a recursive process. In
define we will deal with recursion in a different way from the stacks and linked lists
that we have used in other programs. We will get back to this shortly.

gettok is analogous to the getwrd routine in Chapter 3 and 7, but it must be
made somewhat more complicated to handle non-alphabetic characters properly.
For example, blanks are now significant and can't be ignored. The call

t = gettok(token, maxtok)

copies the next token from the standard input into token. A token is either a string
of letters and digits, or a single non-alphanumeric charactdr. The function value
returned by gettok is either ALPHA for an alphanumeric token, or the single letter
itself for a non-alphanumeric. (This implies that ALPHA must be distinct from any
non-alphanumeric character.) gettok uses type, which we wrote in Chapter 4, 10
decide whether a character is a letter, a digit, or something else. Recall that if the
type is not alphanumeric, type returns the character itself. ’

copy token to output
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# gettok — get alphanumeric string or single non-alpha for define
character function gettok(token, toksiz)
character ngetc, type
integer i, toksiz,
dharacter tt‘(en(toksiz)

for (i = 1;i‘< toksiz; i =i + 1) {
gettok = type(ngetc(tokenti)))
if (gettok ~= LETTER & gettok ~= DIGIT)

break
}
if (i >= toksiz)
call error("token too long.")
if (i > 1) { # some alpha was seen
call putbak(token(i))
i=i—1

- gettok = ALPHA
J
# else single character token
token(i+ 1) = EOS
return
end

Looking for tokens one character at a time, we don’t know that we have seen
the end of the token until we have gone one character too far. This is a classic
example of an undesirable side effect, one that can tremendously complicate a pro-
gram if we let it. Each {ime we need another character, we must check whether to
read a new character or use the one we already have. Tangling this up with the
logic of what to do with each character would make an unreadable mess.

Instead we hide the complication by introducing a pair of cooperating routines.
ngetc delivers the next input character to be considered both in its argument and
as its function value. putbak puts a character back on the input, so that the next
call to ngetc will return it again. Now, every time gettok reads one character (00
many, it promptly pushes it back, so the rest of the code does not have to know
about the problem.

Ideally putbak should be a primitive operation, and ngete can be simply getc.
We have separated them here to illustrate how the pushback can be done, since in
general you will have to provide your own. putbak puts the pushed-back characters
into a buffer. ngetc reads from the buffer if there is anything there; it calls getc if
the buffer is empty.
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# putbak — push character back onto input
subroutine putbaki(c)
character ¢
include cdefio

bp = bp + 1
if (bp > BUFSIZE)
call error("too many characters pushed back.")
buf(bp) = ¢
return
end

# ngetc — get a (possibly pushed back) character
character function ngetc{c)
character getc
character ¢
include cdefio

if (bp > 0)
¢ = buf(bp)
else |
bp = 1
I}:)uf{bp) = getclc)

if (¢ ~= EOF)
bp=>bp — 1

ngetc = ¢

retum

end

bp is the index of the next character to be returned from buf: if buf is zero a fresh
character is fetched by a call to getc. (bp must be initialized to zero.) The buffer
and pointer used by ngetc and putbak are kept in the common block cdefio:

common /cdefio/ bp, buf(BUFSIZE)
integer bp # next available character; init = 0
character buf # pushed-back characters !

Of course gettok never pushes back more than one character between calls to
ngetc, so but could have been an ordinary scalar variable instead of an array. But
pushback is a useful mechanism, well worth generalizing. We can even write pbstr,
which pushes back an entire siring by repeated calls 1o putbak.
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# pbstr — push string back onto input
subroutine pbstr(in)
character in(MAXLINE)
integer length
integer i

for (i = length(in); i > 0;i =i — 1)
call putbak(in(i))

return

end -

It is of course necessary to push a string back in reverse order.

Only ngetc and putbak know about the common block cdefio. pbstr could
be faster if it aléo knew about cdefio and could avoid the overhead of calling put-
bak for each character, but as much as possible we try to minimize data connec-
tions between routines. This is one of the most effective ways we know of to write
code that can be easily changed. Certainly if it later proves true that the overhead
in pbstr is a botileneck, then we can improve it. The important thing is to start
with a good design. It is much easier to relax the standards for something well writ-
len than it is to tighten them for something badly written.

Since we can push back something different from what was read, it has prob-
ably occurred to you that putbak provides an elegant way to implement the rescan-
ning of a macro replacement text. Suppose that afier a defined name is found, we
push its replacement rext back onto the input. When that is read, if it in turn con-
lains a defined name, the name will be looked up and translated just as if it had
been in the input originally. This pushback is how we handle the recursion implicit
in nested sources of input.

Now we can write the main program, define:
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# define — simple string replacement macro processor
character gettok
character defn(MAXDEF), t, token{MAXTOK)
integer lookup
string defnam "define"
integer deftyp(2)
data deftyp(1) /DEFTYPE/, deftyp(2) /EOQS/

call instal(defnam, deftyp)
for (t = gettok(token, MAXTOK); t ~= EOF; t = gettok(token, MAXTOK))
if (t ~= ALPHA) # output non-alpha tokens
call putiin(token, STDOUT)
else if (lookup(token, defn) == NO) # and undefined
call putlin(token, STDOUT)
else if (defn(1) == DEFTYPE) | # get definition
call getdef(token, MAXTOK, defn, MAXDEF)
call instal(token, defn)
}
else
call pbstr(defn) # push replacement onto input
stop
end

If the 1oken returned by gettok is not of type ALPHA, it cannot be a defined sym-
bol. We test for that right away, to avoid looking up every nofi-alphanumeric char-
acler. &

The token is looked up with lookup, which also returns the defining text if the
name was found. If the name wasn't found by lookup, it has no special
significance, and can be output immediately. If the name was define, the name and
replacement tex1 are isolated with getdef and installed in the table by instal. If the
name was found and was not a define, the replacement text is pushed back onto the
inpul.

instal is used o place the keyword define in the table in the first place, along
with the symbolic constant DEFTYPE as its translation. This is better than entering
it with a data statement, because the program doesn't need to know anything about
the format of 1able entries and it is mwuch easier 10 initialize the table 10 be empty.
lookup retuens the translation when it finds define, so we can quickly check whether
a name is a define. DEFTYPE must of course be distinguishable from all other char-
acters. lookup and instal are the only visible parts of the table-handling mechan-
ism; they are the subject of the next section

Here is getdetf:
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# getdef (for no arguments) — get name and de_finition
subroutine getdef(token, toksiz, defn, defsiz)
character gettok, ngetc
integer defsiz, i, nipar, toksiz
character c, defn(defsiz), token(toksiz)

if (ngetc(c) ~= LPAREN)
" call error("missing left paren.”)
else if (gettok(token, toksiz) ~= ALPHA)
call error("non—aiphanumeric name.")
else if (ngetc(c) ~= COMMA) _
call error("missing comma in define.")
# else got (hame,

nipar = 0
for(i= 1;nlpar>=0;i=i+ 1)
it (i > detsiz)

call error("definition too long.")
else if (ngetc(defn(i)) == EOF)
call error("missing right paren.")
else if (defn(i) == LPAREN) °
nipar = nipar + 1
else if (defn{i) == RPAREN) :
nipar = nlpar — 1
# else normal character in defn(i)
defnli— 1) = EQS
return
end

Most of the task here is coping with balanced parentheses and invalid input.

Notice that we did not need 10 write most of the else’s that we used, since
error never returns control to the caller. We put them in anyway (o emphasize that
at most one of each series of actions is (o be performed. A reader unfamiliar with
the code will grasp it much quicker if it is expressed in a standard form, and the
else if chain is one of the more important ones.

This particular use of the else if closely parallels the way we used andif in
Chapter 6. There, we wanied to perform a series of steps, checking status after
each step and stopping as soon as a test fails. Here, we also do:-a series of steps, but
Stop as soon as a test succeeds. For that reason we could call this usage an orif.

The important thing is to recognize that each test in sequence may well per-
form some operation as a side effect, that the steps must be done in a particular
order, and that we want to perform exactly one of a series of terminal actions
depending on how far along the chain of tests we progress. This form appears fre-
quently in our code.

Exercise 8-1: What happens if you say
define(d, define)

d(a, b)
a
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What happens with
define(define, x)

define(a, b)
]
Exercise 8-2: What happens if you say
define(x, x)
or
define(x, y)
definely, x)

and then ask for x? What would you Iike_ to have happen? O

Exercise 8-3: If a line contains nothing but a definition, any trailing blanks and
the newline are copied 1o the output, even though it might seem more natural to
eliminate them completely. Modify getdef or some other part of the program so
no output is produced from a line containing only definitions. Is this an
appropriate action if the output is fed to a compiler that uses line numbers for
diagnostics? O

Exercise 8-4: As an alternate and more general solution to the previous problem,
implement a built-in operation dnl (for “delete newline””) which deletes all char-
acters from its occurrence up to and including the next newline. Thus in the
input

define(x, 1)dnl

the dnl deletes all text afier the definition, and the line produces no output. O

8.2 Table Lookup

Let us now design lookup and instal, the routines for handling tables of
names and definitions. ‘We have already made one important design decision — a//
information about table format, search strategy, and the like is private, known only
by lookup and instal. All other routines must access the table through them.
Information hiding is critical to proper program design: routines which don’t need
1o know about the internal representation of a data structure should not know zbout
it. Not only does this ensure that data is not inadvertently changed, but more
important, it breaks the program into independent pieces, where each can be
changed without affecting the others. Each piece is a black box, presenting only a .
well-defined interface to the world. In our case, if we change some aspect of the
table — to sort the names, or hash them, for instance — we can do so with impun-
ity, because no other routine knows whal the tables look like. Of course the “need
to know™ has to be genuine. It’s all too easy to design routines whose users ‘“‘need”
to know abouyt the data; when with-more care the structure could be concealed.

Inside the lookup code, the lookup strategy determines the table structures
needed. For now the most important consideration is simplicity. We assume thal
in general the definitions will arrive at unpredictable times, rather than all at once.
This makes it less feasible 10 sort the entries and use a binary search. Hashing and
tree-storage schemes are significantly more complicated than we want to begin with.

&
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Therefore we simply add new entries to the end of a linear table as they arrive, and
search the table from one end to the other each time a token must be looked up.
In the early stages of a program, fancy search techniques are not worth the extra
complexity. Linear search is not always the best thing, but it is an excellent first
choice. It is easy to implement and likely to work right the first time. If it later
proves to be a bottleneck, it can be replaced with a faster algorithm without
affecting the rest of the program. '

The linear table is organized like this. One large table contains the names and
replacement texts, stored one after another as

name EOQOS definition EOS name EQOS definition EOS
[]
A second array holds pointers 10 the name entries in the first.

common /clook/ lastp, lastt, namptr(MAXPTR), table(MAXTBL)

integer lastp # last used in namptr; init = 0
integer lastt # last used in table; init = 0
integer namptr # name pointers

character table # actual text of names and defns

lastp and lastt locate the last used positions in namptr and table respectively; they
must be initialized to zero. We have put all these variables inlo a common block
clook, because lookup and instal both have to know about them.

lookup returns YES and extracts the definition if the token was found; other-
wise it returns NQ.

# lookup — locate name, extract definition from table
integer function lookup(name, defn)
character defn(MAXDEF), name(MAXTOK)
integer i, j, k
include clook

for(i = lastp; i > 0;i=1i— 1)

j = namptr(i)
for (k = 1; name(k) = = table(j) & name(k) ~= EOS; k = k + 1)
j= %+ q
if (namelk) == tablelj)) ( # got one
call scopy(table, j+ 1, defn, 1)
lookup = YES
return
}
}
fookup = NO
return

end

scopy is the string-copying subroutine we wrote in Chapter 3.

instal adds a new name and definition to the end of the table: it is calied
when a define is encountered. instal does not check whether the name is already in
the table. Names may be redefined just by giving a new definition: since lookup
scans its table backwards, the new definition supersedes 1he old.
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# instal — ac¢ name =nd definition to table
subrout:ne nstainame defn)
character - (N AXTOK), nam: ! MAXDEF)
integer lerigti
integer dlen. nten
include clook

nlen = lengtt ~an-t <+ 1

dien = length{a:

if (lastt + nlen » dien - MAXTBL | iasty ~ = *43.°TR) {
call putlin(name  ERROUT)
call remark("; too many gefinitions.’
1
i

lastp = lastp + 1

namptr{lastp) = lastt + 1

call scopy(name, 1, table, lastt + 1)

call scopy(defn, 1, table, fastt + nlen + 1)

lastt = lastt + nlen + dien

return i

end

Exercise 8-3: Verify thar getdef and instal work correctly if the definition is
empty: .

define(nothing.)

defines a4 string with no replacement text. Why would you want (o define such a
thing? What is the effect pf the macro call

nothing(this is a line of text)
O

Exercise 8-6: Redefining names without salvaging the old space is obviously
profligate if done often. Add an undefine command

undefine(name)
which removes the most recent definition of name. What should happen if you
undefine a name that wasn't defined? O

Exercise 8-7: Measure define to find out where it spends its time. Is it worth
improving the table-lookup code? Onpe possibility would be 1o sort the names in
table as each new definition arrives. (Actually, you would sort the pointers in
namptr, as we did in sort in Chapter 4.) Then change lookup 1o use a binary
search. How much faster is the program? How easy is it to do this exercise and
the previous one simultaneously? O

Exercise 8-8: Implement a version that does not use pushback in the sense that
we have, but instead maintains a stack of current input sources, and switches
those appropriately. Which version is easier? Which version is faster? [J
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Exercise §-9: How does define deal with the.comment conventions of common
programming languages? Should define know about quoted strings? That is,
should defined names appearing within guotes be replaced? O

Exercise 8-10: 1t is often useful 10 have at least a rudimentary conditional test.
Suppose we say that a line like
ifdef(name, text)

means “if name is defined, put text in the input, otherwise skip over it."” You
could parameterize a program for different machines by writing definitions like

ifdef(machine 1, define(wordsize, 32) define(charsize, 8))
ifdef(machine2, define(wordsize, 36) define(charsize, 6))

and so on. Then defining machine1 with the (empty) definition
define(machine1, ) '

sets parameters like wordsize correctly for machinel when the ifdef lines are
encountered. Changing this single definition and reprocessing resets the pro-
gram for machine2. Implement this conditional facility. O

&

8.3 Some Measurements

We timed define on some “‘typical” Ratfor programs (the code in this chapter)
lo see how it spends its time. Here are some data from one timing study.

#calls CPU time
(read) 472 40.3%
(write) 9199 14.4
lookup 1636 133
gettok 5263 9.0
getc 9902 6.3
ngetc 12149 4.7
putlin 5092 4.5
define 1 3.6
type 11868 2.7
putbak 2247 04
getdef 42 0.2
pbstr 86 0.2
scopy 214 0.2
instal 43 0.1
length 172 0.1

The routine (read) reads single lines with Fortran formatied 1/0. (write) is essen-
tially the putc of Chapter 1.

Before we consider the run time percentages, it’'s worth remarking that there
is a lot of information in a measurement as simple as the number of times éach
subroutine is called, especially if the program s carefully modularized so each rou-
tine does only one thing. For example, this data tells us that the input contains 472
lines and 9902 characters (one of which is an EOF), that there were 9199 output
characters, that there were 42 occurrences of defined tokens out of 1636 (which
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means that most of the time lookup scans through its entire table, then reports
failure), and so on. Some of this data provides consistency checking on the opera-
tion of the program. We expect one niore instal than getdef (installing the key-
word define in the first place); if that is not so, something is badly amiss. We can
also see that looking up non-alphanumeric tokens would almost guadruple the
number of calls to lookup and markedly affect the CPU time, so our decision 1o tesl
for this case separately was justified. '

Ideally you should be able to get this kind of information automatically if you
need it, but often you will have 10 arrange for it by yourself. Chapter 9 conitains
some suggestions on how to go about it.

The CPU time data tells us that as usual with Fortran, the I/0 time is the
- dominant effect, about 65 percent. Of the remaining run time, table lookup is the
most significant, but not overwhelming. Of course it grows with the number of
table entries, so if there were many more, looking up tokens would eventually
swamp the 1/0. The pushback mechanism is a modest cost on each charaoter, well
worth it for the clarity it brings to the program. Our decision to wrile pbstr in
terms of putbak is also vindicated.

It is important to justify decisions made in the name of efficiency for one very
good reason. Most of the time programmers have no real idea where time is being
consumed by a program. Consequently nearly all the effort expended (and the clar-
ity sacrificed) for “efficiency” is wasted. We have found that the best way (o avoid
1oo-carly optimization is to make a regular practice of intrumenting code. Only
from such first hand experience can one learn a proper sense of priorities.

8.4 Macros with Arguments

Macros with arguments add substantially 1o the power of the macro processor.
For example, we said that getc and putc are equivalent to getch(c, STDIN) and
putch(c, STDOUT) respectively. By defining getc and putc as macros that expand
into references to getch and putch, we guarantee equivalence, and we eliminate a
level of subroutine call, which may improve efficiency. The replacement is not pos-
sible without an argument capability.

As a larger instance, in Chapler 6 we wrole a subroutine skipbli(s, i), the entire
body of which was

while (8(i) == BLANK | s{i) == TAB)
i= i+ 1 _
This is such a short routine that it could readily be a macro instead of a subroutine,
éxpanding into in-line code rather than calling another routine. (This might be
worth doing if measurements establish that it consumes excessive space or time as a
subroutine.) We could define a macro .

skipbi(s, i)

which would expand into the lines above, with occurrences of the formal-parame-
ters 8 and | replaced by the actual arguments used when the macro is invoked. For
the user, the only difference would be the omission of the call siatement.
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The syntax for specifying macros with arguments is an extension of what we
used before:

dafine{namé, replacement text)

defines name. This time, however, any occurrence in the replacement ?ﬁt of $n,
where n is between 1 and 9, will be replaced by the nth argument whenAhe macro
is actually called. Thus

define(skipbl, while ($1($2) == BLANK | $1($2) == TAB) $2 = $2 + 1)

defines the skipbl macro.
Specifying arguments with $n is not as pleasant as being able to use dummy
names for the parameters, as in
define(skipbi(s, i), while (s(i) == BLANK | s(i) == TAB) i = i + 1)
but it is easier to build. Our rule is always: Write something clean and acceptable
that works, then polish it later if necessary.

The restriction to nine arguments is another example of the same philosophy.
It is silly to get sidetracked worrying about macros with lots of arguments until the
rest of the processor is working. You will find that in practice there is rarely any
call for more anyway. Hard cases can wait until the easy ones are well under con-
trol.

As another example, many of our programs that deal with files contain lines
like

fd = open(name, READ)
if (fd == ERR)
call cant(name)

By defining a macro copen we can combine these operations into a single line like
copen(name, READ, fd)
and thus clarify a common construction. The definition is

define(copen, ($3 = open($1, $2)
if (83 == ERR)
call cant($1) } )

When
copen(name, READ, td)

is encountered, $1 is replaced by name, $2 by READ, and $3 by fd. The braces are
included in the definition so we can say

if (getarg{1, name, size)} ~= EOF)
copen{name, READ, fd)

and still keep together the statements that copen expands into.
IU's harder to build a macro processor that allows arguments than to build one

that doesn’t. Furthermore, we intend to add a small set of “built-in” operations in
addition 10 define: a conditional statement, a limited arithmetic capability, and a
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substring function; and we want these to go in without much change. The main
thing is 1o ensure that any operation — macro call, definitiog, other built-in — can
occur in the middle of any other éne. If this is possible, then in principle the macro
processor is capable of doing any computation, although it may well be hard lo
express. '

As long as no macro calls are encountered (or built-ins, since they are treated
identically), the input is copied directly to the output. When a macro is called, how-
ever, its name, its definition, and its arguments (if any) are all collecied. Once the
argument collection is finished, the macro is evaluated as follows. If it is a built-in
like define, an appropriate routine is called which does whatever it has to with the
arguments. If the macro is not a built-in, the definition text is pushed back onto
the input. As it is being pushed back, any $'s in it are replaced by the correspond-
ing argument that was just collected.

The fun starts when one of the arguments includes a call of another macro or
built-in. Although there are various ways to deal with this situation, one of the
easiest for a non-recursive language is to interpret the arguments as they are being
collected, then push them back onto the input.

When a macro invocation is seen, the name and definition are placed in an
evaluation area organized as a stack. Any arguments that follow are copied into this
area as well, except that when an argument contains another macro invocation (a
fiested one) a new stack frame is created, and that inner macro is evaluated com-
pletely and its translation pushed back onto the input before the stack is popped and
we resume working on the outer macro. The outer macro never sees the inner one,
just its translation. (Of course the inner macro may in turn call upon other macros:
the process is recursive.)

The principle to keep firmly in mind at all times is that arguments are
evaluated completely as they are being collected. This is different behavior from
the string replacement process we showed earlier in the chapter, but for common
uses like replacing symbolic paramewggs in programs, the two methods produce the
same result. (We will also provide eferred evaluation so we can have the
benefiis of the earlier method when we need them.) Here are some examples,
before we siart on the actual code. &

Suppose we have
define(EOS, 0)

When the define is seen, DEFTYPE and define are put in the evaluation stack at
positions } and 2. (We'll explain the order later.) Now we collect the arguments.
EOS at this point is nothing special, nor is 0, so they are put on the stack at posi-
tions 3 and 4 respectively. At the end of the define we can evaluate, which in this
case involves calling a routine to insiall the name and definition, which are the
arguments at positions 3 and 4. Then. the top four items on the stack are popped.

If we subsequently see EOS in the input, it will be put on the stack with its
definition, and no arguments. The definition O is pushed back onto the input and
the stack popped.

More complicated, here is an exampie with arguments.
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define(bump, $1=%1+1)

defines bump to be a macro that generales code to increment its argum "t by 1.
The input

bump{x)

causes bump and $1=%1+1 10 be copied onto the evaluation stack. x is cot cled
as the argument: if it is not a defined name, we reach the end of the invocatic. of
bump without incident. The definition is pushed back onto the input, with ¢uch
occurrence of $1 replaced by x, 10 yield x=x-+1.

But imagine for a moment that x had earlier been defined 1o be something
else, say y. Then x is a macro call, so when it is enzounlered, a new stack frame ‘s
formed, and x and its definition are copied into that frame. Then the definttion y is
pushed back onto the input, and the frame popped. When argument collection
resumes for the previous level (bump), the input that used 1o be x has become vy,
and this becomes the actual argument 10 bump. As far as bump is concemed it was
called with y as its argument, and the result is y=y+1.

Exercise 8-11: Assuming that getc and putc have been defined in terms of
getch and putch, walk through the expansion process by hand for the input

putcigetc(c))
including the processing of values for STDIN and STDOUT. O

8.5 Implementation

The processing can now be spelled oul in more delail.

while (gettok(token, maxtok) == EOF)
if (type == ALPHA)
if (lookup(token) == NO)
copy token to current evaluation stack frame
-or directly to output
else
make new stack frame
copy name and definition to current stack frame
else if (stack empty) # not saving arguments
2 copy directly to output
else if (at end of an argument list)
if (built-in)
do appropriate function
else
push definition back onto input,
replacing $n's by arguments
pop stack frame
else # saving arguments
copy token to current stack frame

Of course this skips over a few details like precisely how we know when we're at

the end of an argument list, and what the stack looks like. We will get to them in
due course.
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First the evaluation stack. This is just a long array evalst. The first free posi-
tion in evalst is kept in ep, which is initially 1. Whenever we are processing a
macro, evalst contains the strings for the name, definition and arguments. The
array argstk contains the locations in evalst where these strings begin: argstk(i) is
the beginning of the ith string in evalst. ap is the first free location in argstk; it is
also initially 1.

Since macros may be nested, the strings in evalst that argstk points to are in
general associated with different levels of macros. The array calist keeps track of
each stack frame: callst(i) points to the position in argstk that in turn points to the
defining text of the ith macro. cp is the current call stack pointer. If ¢p is zero, we
are not in any macro. Inside a single level of macro invocation, cp is one, and so
on. Thus to find the first argument of the third level of macro invocation, we first
set i=callst(3). Then argstk(i) is the defining text of this macro, argstk(i+ 1) is the
name, and argstk(i+2) is the first argument. .

Argument collection requires keeping track of balanced parentheses indepen-
dently for each level of macro, so we add another array plev, parallel to callst, to
count parentheses for the corresponding stack frame.

Several routines need to know cp and the output buffer, so they are kept in
the common block cmacro:

common /cmacro/ cp, ep, evalst(EVALSIZE)

integer cp # current call stack pointer
integer ep # next free position in evalst
character evalst # evaluation stack

The other variables, callst, argstk, ap, and pley, are used only in the main routine,
so we have kept them out of common.

There is one last complication. Any macros encountered during argument col-
lection are expanded immediately. But there are times when we must defer the
evaluation until later. For example, consider this attempt to make a new macro d
synonymous with define:

define(d,define($1,$2))

On cursory inspection it should work, because the replacement text of d appears to
be define($1,$2). But macros and built-ins are evaluated as soon as they are encoun-
tered. The inner define is evaluated before the outer one. Because a define has no
replacement text, the net effect is to define d to be empty, which is hardly what was
wanted. To get around the problem of premature evaluation, there must be a quot-
ing convention, so ir.put can be treated as literal text when necessary. In our con-
vention, any input surrounded by [ and | is left absolutely alone, except that one
level of [ and ) is stripped off. With this facility we can write the macro d as

define(d,[define($1,$2)))

The replacement text for d, protected by the brackets, is literally define($1,$2).
Now when we say

d(a,bc)

cverything works and a is defined to be bc.



CHAPTER 8 MACRO PROCESSING 269

Brackets must also be used when it is desired to redefine an identifier:

define(x,y)
define(x,z)

would define y in the second line, instead of redefining x. (The first definition is
still active, however, so x ultimately becomes y.) If you do not want to redefine vy,
the operation must be expressed as

define(x,y)
define([x],2)

which will have the desired effect.

All of these examples look cramped because there are no spaces after commas.
Blanks are significant in this macro processor, and we have tried not to put in any
spurious ones.

Putting all of these considerations together creates a rather long main program,
but it is not really complicated. It follows the outline we gave earlier, except for the
addition of brackets. For all its apparent complexity, it is simply a seven-way case
statement, with the code for each case in-line instead of in a separate routine. We
have called it macro rather than define, because ‘that better reflects what it does.
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# macro — expand macros with arguments

- character gettok
character defn(MAXDEF), t, token(MAXTOK)
integer lookup, push
integer ap, argstk(ARGSIZE), callst{(CALLSIZE), nib, plev(CALLSIZE)
include cmacro
string balp "()"
string defnam "define”
integer deftyp(2)
data deftyp(1) /DEFTYPE/, deftyp(2) /EQS/

call instal(defnam, deftyp)

cp=20
ap = 1
ep = 1
for (t = gettok(token, MAXTOK); t ~= EOF; t = gettok(token, MAXTOK)) {
if (t == ALPHA) {
if (lookup(token, defn) == NO)
call puttok(token)
else { # defined:; put it in eval stack
cp=cp+ 1
if {cp > CALLSIZE)
call error("call stack overflow.")
callstcp) = ap
ap = push(ep, argstk, ap)
call puttok(defn)  # stack definition
call putchr(EOS)
ap = push(ep, argstk, ap)
call puttok{token) # stack name
call putchr(EOS)
ap = pushiep, argstk, ap)
= gettok(token, MAXTOK) # peek at next
call pbstr(token)
if (t ~= LPAREN) # add () if not present
call pbstr(balp)
plevicp) = 0
}
}
else if (t == LBRACK) { # strip one level of [ ]
nib = 1
repeat |

t = gettok(token, MAXTOK)
if t == LBRACK)

nb =nlb + 1
else if (t == RBRACK) {
nib =nlb — 1
if (ntb == 0)
1 break
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else if (t == EOF)
call error("EQOF in string.")
call puttok(token)
}
}
else if {cp == 0) # not in a macro at all
call puttok{token)
else if (t == LPAREN) {
if (plev(cp) > 0)
call puttok(token)
plevicp) = plevicp) + 1
J
else if (t == RPAREN) |
plevicp) = plevicp) — 1
it (plevicp) > 0)
call puttok(token)
else { # end of argument list
call putchr(EQS)
call eval(argstk, callst(cp), ap— 1)

ap = callst(cp) # pop eval stack
ep = argstk(ap)
cp=cp— 1
}
}
else if (t == COMMA & plevicp) == 1) { # new arg

call putchr{EQS)
ap = pushiep, argstk, ap)

else
call puttok(token) # just stack it
}

if (cp == 0)

call error{"unexpected EQOF.")
stop
end

We want to retain the property of define that a macro call without arguments (like
EOF or EOS) does not require parentheses. Thus if a token is a defined name, and
it is not foliowed by a left parenthesis, we push back an empty set of balanced
parentheses, so that macro calls without arguments are not a special case for the
rest of the program. This is another example of altering some data representation in
a minor way 1o avoid much grealer complexity in the code.

You may have noticed thal brackets are removed even outside macro
definitions. Although this may look like unnecessary meddling on the part of the
macro processor, there are good reasons for doing it that way. As the simplest
example, if you really want a literal ogcurrence of the word define in your text, you
have to protect it with a layer of brackets or it will be interpreted as a call to the
built-in define. We will see some more substantial instances of this shortly.
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puttok and putchr put strings and characters respectively either into evalst (if -
we are in the middle of a macro), or directly onto the output with putc (if we are
not). The test for what destination 10 use occurs in a single place in putchr, not
scattered throughout the code.

# puttok — put a token either on output or into evaluation stack
subroutine puttok(str)
character str(MAXTOK).
integer i

for (i = 1;str(i) ~=EOS;i=i+ 1)
call putchr{str(i))

returmn

end

# putchr — put single char on output or into evaluation stack
subroutine putchr(c)
character ¢
include cmacro

if(cp == 0)

call putc(c)
else { -
if (ep > EVALSIZE)

call error("evaluation stack overflow.")
evalst{ep) = ¢
ep =ep + 1

return
end

When a new argument is (o be put into evalst we have to record the current
value of the pointer ep and increment ap; this is done by push:

# push — push ep onto argstk, return new pointer ap
integer function push(ep, argstk, ap)
integer ap, argstk(ARGSIZE), ep

if (ap > ARGSIZE)
call error("arg stack overfiow.")
argstk{ap) = ep
push = ap + 1
return
end

Once a macro has been identified and all its arguments collected in evalst
(signalled by the parenthesis level becoming zero), eval is calied to process a built-
in or to push back a definition with the appropriate arguments.
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macro pushes the definition onto evalst before the name, so when eval is
called, args(i) points to the defining text for the macro and args(i+ 1) points to the
name. args(i+2) through args(j) are the arguments, of which there are j—i—1.
This organization means that $0 is the name of the macro itself. Although this will
probably be little used, the regularity is nice to have.

# eval — expand args i through j: evaluate builtin or push back defn
subroutine eval(argstk, i, j)
integer index, length
integer argno, argstk(ARGSIZE), i, j, k, m, n, t, td
include cmacro
string digits "0123456789"

t = argstk(i)
td = evalst(t)
it (td == DEFTYPE)
call dodeflargstk, i, j)
else |
for (k = t+length(evalst(th —1; k > t; k = k — 1)
if (evalst(k — 1) ~= ARGFLAG)
call putbak(evalst(k))
else {
argno = index(digits, evalst(k)) — 1
if (argno >= 0 & argno < j—i) {
n=i+ argno + 1
m = argstk(n)
call pbstr(evalst(m))
}
k=kK-— 1 #skipover$
}
if(k ==1) # do last character
call putbak(evaist(k))

return
end

Most of the subscripted references to evalst are actually subarray references, which
we discussed in Chapter 4. PL/I users should review that discussion, since several
routines in this chapter must use this Fortran facility.

If the type is define, dodet is called; otherwise the definition is pushed back
onto the input, with each $n replaced by the corresponding argument. The sym-
bolic constant ARGFLAG is a $, defined of course with

define(ARGFLAG, DOLLAR)

in the Ratfor source code for macro.

We haven't said what the macro processor should do when a macro definition
asks for an argument that wasn’t supplied. The most harmliess thing to do is to
ignore it — in effect to replace the $n by an empty string — and this is what eval
does. This is true even if no arguments are present; that way if x is defined by
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define(x, a$1b)
the inputs

x(+)
x(—,+)
x()

X

all produce something sensible: a+b, a—b, ab and ab respectively.
dodef is easy: most of the work has already been done for it.

# dodef — install definition in table
subrdutine dodef(argstk, i, j)
integer a2, a3, argstk(ARGSIZE), i, j
include cmacro

if(j—i>2){
a2 = argstk(i+2)
a3 = argstk(i+3)
call instal(evalst(a?2), evalst(a3)) # subarrays
) ;
return
end

One of the first things 1o try with the macro processor is extending the syntax
of our programming language. We have been doing this all along in the limited
sense of writing character when we attually mean integer. For a more sophisti-
cated example, consider

define{proc, [integer function $1 $2 define(procname, $1))
The line
proc(equal, (str1, str2))
produces the output
‘integer function equal(str1, str2)

(We enclosed the definition in brackets to prevent the too-early evaluation of the
define. Bracketing the defining text is‘almost always a good idea.) As a side effect
of invoking proc, the function name equal is “remembered” by defining procname
1o be equal, and this value can be used by other macros. For example, if we define
return as

define(return, [‘{ procname = $1; [return] } ])
then we can write lines like
return(YES)

to simulate in Fortran a return statement that returns a value, as in PL/I. (The
extra brackets around the inner return prevent it from being evaluated as another
call of the retum macro, which would create a rather long loop. You should walk
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through this example carefully to be sure you understand the significance of each
set of brackets.) Being able to return a value with a return statement often clarifies
a program, as you can see by comparing this version of equal to the one in Chapter
3

# equal — compare str1 to str2; return YES if equal, NO if not
proc(equal, (stri, str2))
character str1(ARB), str2(ARB)
integer i

for (i = 1;stri(i) == str2(i); i =i+ 1)
if (str1(i) == EOS)
return(YES)
return{NO)
end

Exercise 8-12: Re-write the function filarg of Chapter 3 with the return macro.
O

Exercise 8-13: 1f you use the skipbl macro described above, then change your
mind and decide to call a subroutine instead, do you have to rewrite all the
invocations Lo include a call? O

Exercise 8-14: Write the macros that translate getc and putc into references to
getch and putch, as shown earlier in this chapter. What problems arise with
getc? O
Exercise 8-15: The definition

define(sq, $1 * $1)

defines‘a macro to square an expression. Or does it? What is sq(x+1)? What
can you do about it? How much should a macro processor know about the
language(s) it is used with? O

Exercise 8-16: Invent a syntax that allows macros to have more than nine argu-
ments. Make it compatible with the $n syntax if n<10. How difficult is it to
implement? O

Exercise 8-17: Improve define to allow the parameters in a macro definition to
be specified by dummy names instead of by $n. That is, if m is defined by

define(m(x.y), replacement text containing tokens x and y)

then the invocation m(a, b) should replace all occurrences of x and y in the
replacement text by a and b respectively. How much existing machinery can
you use? O
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8.6 Conditionals and Other Built-ins

macro has been designed to make it easy 1o add new built-in functions as the
need arises. The next step in the evolution is the addition of a conditional test, with
a built-in function ifelse. The input

ifeisel(a,b,c,d)
compares a and b as character strings. [f they are the same, ¢ is pushed back onto
the input; if they differ, dis pushed back. As a rudimentary example,
define(compare, (ifelse($1,$2,yes,no)l)

defines compare as a two-argument macro returning yes if its arguments are the
same, and no if they're not. As usual, the brackets prevent the ifelse from being
evaluated too soon. -

More useful, we can now improve our return macro, by detecting whether it
has argumenis or not:
define(retum, [ifelse($1,, [Ireturn]], { procname=$1; [[return]] ))})
If return is called with an argument as in
return(a+b)
$1 is not empty, and the result is
{ procname=a-+b; return }

If there was no argument, $1 is empty, which matches the second argument of the
ifelse, and a bare return is produced. This time we need two levels of brackets
around the literal returmn statement, to protect it twice. The first level of protection
prevents it from being evaluated during the expansion of the ifelse. The second
level is necessary, as we mentioned earlier, so that it can appear as a literal return in
the final output.

While we are adding buiit-in functions, we will do two more.
incr(x)

converts the string x to a number, adds one 1o it, and returns that as its replacement
text (as a character string). x had better be numeric, or the results may be undesir-
able.

incr can be used for tasks like

define(MAXCARD, 80)
define(MAXLINE, [incr(MAXCARD)))

which makes two parameters with values 80 and 81. This is useful when you have
to make one number a little bit larger than another, as in getc and putc in Chapter
1. Rather than write two definitions and remember to update both if one must
change, it is better to define one in terms of the other. incr also provides a primi-
live arithmetic capability for writing more elaborate macros.

The final built-in is a function to take substrings of strings.

AN
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substr(s, m, n)

produces the substring of s which starts at position m (with origin one), of length n.
If » is omitted or too big, the rest of the string is used, while if m is out of range the
result is a null string.

substr(abc, 2, 1)
is b,

substr(abc, 2)
is bc, and

substr(abc, 4)
is empty.

The changes needed to add ifelse, incr and substr are minor. We modify

macro to install the new keywords and their values (IFTYPE, INCTYPE and SUB-
TYPE respectively); each must have a distinguishable value), and change eval to

look for them as well as for DEFTYPE. In eval we only have to add the extra tests
and subroutine calls.

t = argstk(i)
td = evalist(t)
if (td == DEFTYPE)
call dodef(argstk, i, j)
else if (td == INCTYPE)
call doincr{argstk, i, j)
else if (td == SUBTYPE)
call dosub(argstk, i, j)
else if (td == IFTYPE)
call doif(argstk, i, j)
else |
process normal macro as before

}

doif compares the first two arguments, and pushes back the appropriate one
onto the input.



278  SOFTWARE TOOLS CHAPTER 8

# doif — select one of two arguments
subroutine doif(argstk, i, j)
integer equal
integer a2, a3, a4, a5, argstk(ARGSIZE), i, j
include cmacro

if(j —i <5)
return

a2 = argstk(i+2)

a3 = argstk(i+3)

a4 = argstk(i+4)

a5 = argstk(i+5)

if (equal(evalst(a2), evalst(a3)) == YES) # subarrays
call pbstrievalst(ad))

else
call pbstr(evaist(a5))

return

end

doinc converts the number, does the arithmetic, and pushes the result back as
a character string with pbnum. Since characters are produced from right to left, no
reversal is needed.

# doincr — increment argument by 1
subroutine doincr(argstk, i, j)
integer ctoi
integer argstk(ARGSIZE), i, j, k
include cmacro

k = argstk(i+2)

call pbnum(ctoi(evalst, k)+ 1)
return

end

# pbnum — convert number to string, push back on input
subroutine pbnum{n)
integer mod
integer m, n, num
string digits "0123456789"

num = n
repeat |
m = mod(rium, 10)
call putbak({digitsim+ 1))
num = num / 10
} untit {(num == Q)
return
end
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Finally, dosub does the substr function; it is entirely concerned with getting
indices right, particularly in boundary cases where the substring requested is in
some way outside the string.

# dosub — select substring
subroutine dosubl(argstk, i, j)
integer ctoi, length, max, min
integer ap, argstk(ARGSIZE), fc, i, |, k, nc
include cmacro

if(j —i<3
return
if(j —i< 4
nc = MAXTOK
else |{
k = argstk(i+4)
nc = ctoi(evalst, k) # number of characters
}
k = argstk(i+3) # origin
ap = argstk(i+2) # target string

fc = ap + ctoi(evalst, k) — 1 # first char of substring
if (fc >= ap & fc < ap + lengthlevalst(ap))) { # subarrays
k = fc + min(nc, length(evalst(fc))) — 1
for(;k >=fc;k =k — 1)
call putbak(evalst(k))
}

return
end

Exercise 8-18: Modify doincr to do arbitrary precision arithmetic. O
Exercise 8-19: Add a built-in function for doing arithmetic:

arithloperand1, op, operand?2)

does the operation specified by op on the two (numeric) operands. Provide +
and — operators at the very least. Multiplication, division, relational testing, and
so on are also useful and easy. What do you have to change to handle negative
numbers correctly? Modify arith for arbitrary precision arithmetic. O

Exercise 8-20: Define an assert macro that will cause conditional compilation of
assertions in a program: if assertions are turned on,
assert(i < j)
should expand into something like
it(-~G <j)
call error(*false assertion in ... i < j.")

W

w' are is the name of the procedure, saved by the proc macro. You will

provably also want to define macros that turn assertion checking off and on at
desired places. O
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8.7 Applications
Let us write macros to handle a variant of the string declaration that we have
been using in our programs. Suppose that

string(name,"text")
is 8 shorthand for

integer name(5)

data name(1) /LETt/
data name(2) /LETe/
data name(3) /LETx/
data name(4) /LETt/
data name(5) /EOS/

The 1ask is to convert the string declaration into this expanded form.

We need the length of the text part, so we begin with a macro len which finds
the length of a character string. That is, the value of the macro call len(abg) is 3,
the length of the argument.

In general, what is the length of a string 87 If s is empty, its length is zero.
Otherwise it is one more than the length of the substring of s obtained by chopping
off one character. This is a recursive definition, which is a natural form of expres-
sion if you happen to have a recursive language at hand — and we do. Let’s say it
with macros:

define(len,lifelse($1,,0,lincrilen(substr($1,2)))])

This is certainly a mouthful, but not hard 10 understand in the light of the recursive
definition above. It is permissible, and indeed usually necessary, to define macros
in terms of themselves. It works because conditional testing can be used to prevent
an infinite loop. In this case the test is whether all the characters of the string have
been chopped away. -

The outer fayer of brackets prevents all evaluation as the definition is being
copied into the table. The inner layer prevents the incr construction from being
done as the arguments of the itelse are collected.

Now we can do string itself. This comes in three parts. First we compute the
correct length and generate

integer namelength)

Then we loop over the characters between quotes, producing lines of the form
data name(i} /LET ¢/

where ¢ is the /ith character of the string. Finally we end with
data rame(length) /JEQS/

string itself is
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define(string [integer $1(len(substr($2,2)))
str($1,substr($2,2).0)

data $1(len(substr($2,2))}/EQS/

)]

The calls len(substr($2,2)) compute the effective siring length (excluding the quotes
but including the EQS). str creales the inlervening data statements:

define(str [ifelse($2,", data $1{incr($3))/{LETsubstr($2,1,1)/
[str($1,substr($2,2).incr($3))))))

It isolates one character, increments the index, generates the line, and calls itself
recursively until it sees the terminaling quote. (Why is LET enclosed in brackets?)

As you can see this is not the most transparent programming language in the
world. It takes some getiing used 10 before you can think of looping in terms of
recursion, although with practice you get the hang of it. Butl beware of becoming
oo clever with macros. In principle, macro is capable of performing any computing
lask, but it is all 100 easy to wrile unreadable macros that cause more trouble than
they save work.

It is also the case that complicated recursive macro operations like string can
be painfully slow. For example, here are some statistics for processing two short
string’s, of three and nine characters in length:

#calls CPU time
gettok 2793 21.7%
macro 1 11.6
puttok 1999 11.6
(ali 170) 9.1
putchr 7700 75
ngetc 5977 6.4
type : 5977 6.1
eval 211 54
lookup 648 5.0
putbak 5677 48
pbstr 431 34

This is a lot of subroutine calls for such a small input; if you did nothing but pro-
cess string macros, it would be intolerable. Fortunately the real use of macro as a
front end for a language processor tends 10 involve primarily substituting one string
far another, as in define. This is much less demanding, so processing an occasional
s_t‘ting macro is quile practical. The added complexity of macro costs very litle
extra for this kind of application; macro takes less than 5 percent longer than
define on the same input.

The measurements above do indicate where atiention can be most profitably
directed if il is necessary to speed macro up. One possibility is 10 observe that
some of the calls 10 gettok could be replaced by calls to ngetc, since only a single
character is involved (for example, while processing bracketed text). More gen-
erally, there are a number of rather small routines which we wrote 10 modularize
the program properly. Part of the cost of macro is the overhead of the subroutine
calling mechanism, which can be very inefficient on some machines. We can avoid
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much of this by replacing subroutine calls by in-line code in these places (although
we would do it by defining macros to replace the subroutine bodies, not by writing
out the code!). Specifically, since virtually all of the calls to putchr originale in put-
tok, putchr can be moved into puttok with only minor rearrangements. If charac-
ters are small posilive integers, type can be replaced by an in-line reference (o an
array which contains the type of the corresponding character; this will essentialiy
eliminate the cost of finding character types. And if the common block cd_aﬂd is
made more generally known, ngetc and putbak can also be made in-line operations.

Although care is necessary 10 keep the program relatively clean, the payoff can
be substantial. The original version of macro, written in the language C, was
speeded up by a factor of aboyt four by such transformations. Similar results could
be expected in Fortran on many machines. The procedure should be as we have
described several times here, however: write a clean program that implements an
appropriate algorithm; measure it to identify the hot spots; refine those as cleanly as
possible. Starting from the other end is a sure way 10 an unworkable mess.

One thing that can be done 10 make macros fasier and more comprehensible
1S 10 increase the set of built-ins, so computations like len don't have 1o be spelled
out in excruciating detail. Here are some suggestions.

Exercise 8-21: Add len as a built-in. O

Exercise 8-22: Add a built-in index analogous to the index function defined in
Chapier 2: index(s, c) is the position of ¢ in the string s, or zero if ¢ is not in s.
Can you do index with the existing facilities? Should you? O
Exercise 8-23: The implementation of string above is suitable only for strings of
letters and digits. Generalize it 10 cope with strings that contain non-
alphanumeric characters. [J

Exercise 8-24: Write a macro err that converts calls of the form
err("message”)

into the pure Fortran
call error(7, 7hmessage)

Add the capability to prefix the name of the calling routine 10 the message. (J

Exercise 8-25: Add a macro count which counts occurrences of the subroutine
by wriling the name onlo some predeﬁned output file every time the routine is
entered. What other tools that we have buill would you use 10 summarize the
results for a run? O

Exercise 8-26: What changes would you make to macro to adapt it to providing a
macro capability for the format program of Chapter 7?7 O

.

Bibliographic Notes

There is a lot more (0 macro processing than we have room for here. An fntro-
duction 1o Macros by M. Campbell-Kelly (American-Elsevier, 1973) provides a brief
discussion of several different forms of macro processors. Macro Processors. and
Techniques for Portable Sofiware by P. J. Brown (Wiley, 1974) goes into more detail
on the subtle aspects of macro processing.
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The PL/l macro preprocessor is an attempt 1o make a macro language that is
essentially the same as a compiler language. This is discussed in various PL/I texts
and in reference manuals for particular implementations. For example, see /BM
Svstem/360 PL/ Language Specification, Form Y33-6003, or Student Text: An Iniroduc-
tion to the Compile-Time Facilities of PL/. Form C20-1689.

Macros have been valuable in making “‘poriable” sofiware — programs Lhat
move from one machine 1o another with much less effort than complete re-writing.
The program is wrilten in terms of a modest number of macros; nothing but the
macros must be written for a particular environment. Snobol is probably the best
known example of a major language so implemented. See R. E. Griswold, J. F.
Poage and 1. P. Polonsky, The Snobol4 Programming Language, Prentice-Hall, 1969, or
R. E. Griswold, The Macro Implementation of Snebold4, Freeman, 1972. The book by
Brown discusses other work in this area.

Any number of books on data structures deal with the problems of maintain-
ing lables of information. As usual, one standard reference is D. E. Knuth's The Ars
of Computer Programming (Addison-Wesley). Volume 1| (1968) is concerned with
data structures: Volume 3 (1973) discusses searching techniques in great detail.

The macro processor described in this chapter was originally designed and *
implemented in the language C by D. M. Ritchie: we are grateful 10 him for letting
us steal it






CHAPTER S

A RATFOR-FORTRAN TRANSLATOR

All of the programs in this book are presented in Ratfor. We are now going 1o
show you how 1o write a program 1o translale Ratfor into Fortran. One reason for
doing this is to describe in detail a tool which we use extensively, and which we
think is of real value to anyone who uses Fortran. As we said in the Introduction,
Fortran is certainly not a dead language: 11s use i1s widespread and it has many
assets to balance its manifold deficiencies. If vou use Fortran, you mighl as well
use it as effectively as possible.

The other purpose of this chapter is 10 demonstrate a preprocessor of
significant size. The advantage of a preprocessor is that you don't have 10 write a
compiler to get a better language: instead you build on the work of others.
Although you may not need Ratfor per se, it is important o appreciate that it is
often possible to provide a comfortable interface 10 some piece of software, or 1o
add missing features, by building a relatively modest intermediate program. The
design and construction of Ratfor should suggest useful ideas for analogous 100ls.

The primary purpose of Ratfor is 10 make Fortran a betier programming
language, for both writing and explaining, by permitting and encouraging readable
and well-structured programs. This is done by providing the control structures that
are unavailable in bare Fortran, and by improving the “cosmetics” of the language.

The control flow structures we will discuss are if-else, while, do. break, next,
and statement grouping with braces. for and repeat-until are left as straightforward
exercises. These structures are entirely adequate and comfortable for programming
without goto’s. Aithough we hold no religious convictions about the matter. vou
may have noticed that there are no goto’s in any of our Ratfor programs. We have
not felt constrained by this discipline — with a decent language and some care in
coding, goto’s are rarely needed.

The cosmetic aspects of Ratfor have been designed 10 make it concise and
reasonably pleasing to the eve. liis free-form: slatements may appear anywhere on
an input line. The end of a line generally marks the end of a statement, but lines
that are obviously not yel finished, like extended conditions within if and while
statements and lines ending with a comma, automatically continue onto the next
line. Multiple statements may appear on one line if separaled by semicolons,
although we don’t encourage the practice. The comment convention — a sharp #
anywhere in a line signaling the beginning of a comment — helps 10 encourage

285
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unobtrusive marginal remarks. Quoted strings are converted into nh’s for old-
tushioned Fortran compilers, so that programmers don’t have to count characters.
Notations like > convey the meaning of code more rapidly than equivalent forms
like .gt..

Certainly Fortran is deficient in many ways besides control statements and
appearance. As you can see from some of our code, the data structures available
(g not available) can seriously complicate programming. Our preprocessor does
not iry to do anything about these weaknesses, although a more complicated ver-
sion could. Ratfor is not intended to provide a complete new programming
language, bul just to help overcome the worst inadequacies of Fortran and converl
il into a reasonable language for explication and coding.

. There are a number of other widely available Fortran preprocessors. While
they differ in superficial ways, most provide facililies analogous to those of Ratfor.
If you have access 10 one, by all means use it — the payoff from any preprocessing
IS enormous.

9.1 Organization

One convenient way to describe a programming language is the Backus-Naur
Form (BNF), which is a formal specification of the grammar of a language, that is,
the set of rules by which a legal program in the language is written or recognized.
There are several advantages to describing a language with a grammar rather than
with=an informal description in words. The language specification can be made
fairly precise this way, avoiding the vagueness and ambiguities which an English
description would probably suffer from. Furthermore, given a grammar, a program
called a compiler-compiler can use it to create a program that will analyze or parse
programs written in that language. For large complicated languages, such automa-
lion is invaluable in generating reliable and easy-to-change parsers. Since the parser
is at the heart of a compiler, this in turn leads to a higher-quality transtator.

Fortunately the Ratfor grammar is sufficiently small and straightforward that a
compiler-compiler is not actually needed, although Ratfor was originally imple-
mefited with one. In any case, we will use the following grammar to specify the
Ratfor language.

program I Slatement
| program statement
staiement it ( condition ) statemeni

it ( condition ) starement else siatement
while ( condition ) statement

for ( initialize ; condition ; reinitialize ) statement
repeat srarement

repeat srarement until ( condition )

do limits starement

digirs siatement

break

next

| program )

other

— — ——— — — — — —

—

The first two lines say that a program is a staiement, or a program followed by a
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statement. In other words, a program consists of one or more statements. A siare-
meni in turn is one of a handful of constructs; the vertical bar | indicates a choice of*
alternatives. Most slatements are straightforward enough, standing for an
occurrence of the particular keyword. For instance, a statement can consist of the
keyword if followed by a parenthesized condition and a statemeni. (The definition 15
recursive, as is Lhe definition of program.) A group of statements in braces can be
used anywhere a single statement can be, because of the rule

statement - | program )

We prefer braces because they are less obtrusive than the more common begin-end
or do-end. Indeniation conveys structure more clearly than large keywords. If you
have a very restricied character set, however, you might prefer another choice:
some possibilities are suggested in the exercises.

digits stands for a string of digits, that is, a standard Fortran statement number
or label. Although these are relatively rare in Ratfor programs, the grammar must
allow for them.

next is a stalement that none of our programs has used, although it is helpful
in other applications. Analogous lo break, instead of exiting from a loop, next
causes the next ileration of the loop 1o begin. In a while, repeat or do, it goes
immediately to the condition part; in a for, it goes (o the reinirialize siep.

The last grammatical type is-an other, which is anything that wasn’t recog-
nized as any of the preceding types. This category actually encompasses most of
Fortran. For example, the statement

i=1
is not an if or an else or anything else recognizable by Ratfor, and is thus an other.

Type other is an important simplification, for it frees Ratfor from having (c
know very much about Fortran. If a statement is encountered which does not
begin with one of the keywords (or digits or a left brace), it .nust be an other, and
no real processing is needed on it> The price of this simplification is that the error-
detecting abilities of Ratfor are not as good as they might be with a more
comprehensive grammar. This is not a serious drawback, however, since we are
translating into Fortran, and Fortran compilers are perfectly capable of delecting
any syntax €rrors that escape the preprocessor.

In principle, associated with each rule of the grammar is a semantic action
which states what is to be done when that particular construction is recognized in
the program being translated. In Ratfor, the semantic actions are usually very sim-
ple, involving reformatting the incoming text and occasionally interspersing if's,
goto’s and continue’s (0 translate the control flow statements.

The preprocessor is organized as follows. The top level is a controlling routine
called the parser. so called because it controls by analyzing (parsing) the grammalti-
cal'structure of the input it sees. For'instance, when an if is seen the parser calls a
routine that handles if statements. That routine in turn isolates the condition part
and generales the 1est, a semantic action. The parser must also remember that an if
has been seen so thal when the end of the siarenmen part 1s reached, the correct ter-
minating code for an if can be produced. This may include dealing with an else if
it is present. Furthermore, all of this is inherently recursive, as the BNF indicates,
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because constructions can be nested, as in

fori=ti<=ni=i+1)
for(j=1j<=nj=j+ 1)
if (m(i, j) < 0)
mii, j) = —1

At the beginning of each statement, the parser calls a “lexical analysis™ rou-
tine to classify it inw one of the types specified in the grammar. The lexical routine
calls a lower routine to get the first token of the statement, which will determine
the statement type. When Lhe statement has been classified, the parser calls the
appropriale code generation routine. Some code generation routines also use the
token routine to read further parts of the statement being processed.

We will begin by describing the lexical and 10ken code, since these are essen-
tally independent of everything else. Then we can present parsing and code gen-
eration more easily.

9.2 Lexical Analysis

Tokens in Ratfor are analogous to those in define and macro in Chapler 8,
with the addiuion of quoted strings. gettok breaks the input into alphanumeric
sirings, quoted strings, and single non-alpkanumerics. It also strips out the blanks,
tabs and comments that separate tokens. (Blanks can be discarded because they are
not significant in Fortran programs. This is one of several places where the wide
latitude permitted in a Fortran program works o our advantage, and makes Ratfor’s
task easier.) gettok returns ALPHA if it has found an alphanumeric string; other-
wise il returns a single non-alphanumeric character.
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# gettok — get token for Ratfor
character function gettok(lexstr, toksiz)
character ngetc, type
integer i, toksiz
character c, lexstr(toksiz)
include cline

while (ngetc(c) ~= EOF)
if (¢ ~= BLANK & ¢ == TAB)
break
call putbak(c)
for (i = 1;i < toksiz—1;i =i+ 1) {
gettok = type(ngetc(lexstr(i)))
if (gettok ~= LETTER & gettok ~= DIGIT)
break

it (i >= toksiz—1)
call synerr("token too long.")
if (i > 1) { # some alpha seen
call putbak(lexstr(i)) # went one too far
lexstr(i) = EOS
gettok = ALPHA
}
else if (lexstr(1) == SQUOTE | lexstr(1) == DQUOTE) {
for (i = 2; ngetc(lexstr(i)) ~= lexstr(1); i = i + 1)
if (lexstr(i} == NEWLINE | i > = toksiz—1) |
call synerr("missing quote.")
lexstr(i) = lexstr(1)
call putbak(NEWLINE)
break
}
}
else if (lexstr(1) == SHARP) { # strip comments
while (ngetc(lexstr(1)) ~= NEWLINE)

gettok = NEWLINE
J

lexstr(i+ 1) = EQOS

if (lexstr(1) == NEWLINE)
linect = linect + 1

return

end

gettok uses the same 1/0 pushback routines that we wrote for define and macro in
Chapter 8: putbak puts one character back on the input; ngetc reads one character
from the input, including the pushed back characters. type is from Chapter 4; it
returns LETTER or DIGIT if its argument is a letter or digit, or the character itself
for a non-alphanumeric argument.
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As a safely measure, quoted strings may not extend across a line boundary.
An end of line encountered inside a quoled siring almost always indicales a missing
quote, and if il's not detected, a single unbalanced quole can Lurn an entire program
inside out. If NEWLINE’s were permitted inside quotes, gettok could be less com-
plicated, but a valuable error check would disappear and other parts of the program
would have 10 be much more careful aboul checking rheir data. It is best 10 head
off potential trouble as early as possible.

Since gettok uses blanks to separate tokens, blanks are significant in Ratfor
when they are not in Foriran. Keywords like if must not contain blanks, or they
won’t be recognized. Although Foriran ignores blanks essentially everywhere, this
freedom is more often abused than used. We can certainly live without the added
complexity of allowing imbedded blanks in Ratfor keywords.

synerr is called from several places o print syntax error messages, like the two
in gettok. gettok and synerr share one data item in common, the source line count
linect, so offending lines can be tagged with their position in the input. linect is
passed via the common block cline. Even though gettok and synerr are the only
iwo routines that use this data area, it must be a common block, or nearly every
routine would have 1o carry the line number around so it would be available when
needed. This is a case where a hidden data connection is actually used to advantage
in reducing the overall coupling in a program.

' common /cline/ linect _
integer linect # line count on input file; init = 1

The code for synerr is

# synerr — report Ratfor syntax error
subroutine synerr{imsg)
character Ic(MAXLINE), msg(MAXLINE)
integer itoc
integer junk
include cline

call remark("error at line .")

junk = itoc(linect, ic, MAXLINE)
call putlin(ic, ERROUT)

call putch(COLON, ERROUT)
call remark(msg)

return

end

itoc, from Chapter 2, converis the line number 'to a characler string suitable for
printing,

Although lexical analysis for Fortran is difficult, it is easy in Ratfor. The only
types 10 be identified are literal characters like semicolons and braces, keywords like
if and else, labels (all digits), or unrecognized tokens. This identification is done by
lex:
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# lex — return lexical type of token
integer function lex(lexstr)
character gettok
character lexstr(MAXTOK)
integer alldig, lookup
integer Itype(2)

while (gettok(lexstr, MAXTOK) = = NEWLINE)

lex = lexstr(1)

if (lex==EOF | lex==SEMICOL | lex==LBRACE | lex==RBRACE)
return

if (alldig(lexstr) == YES)
lex = LEXDIGITS

else if (lookup(lexstr, Itype) == YES)

lex = itype(1)
else

lex = LEXOTHER
return
end

First we discard empty lines. If the first token is a semicolon or brace or EOF, it is
returned as the lexical value. If the token contains only digits it must be a Fortran
label, because il is the first loken encountered in a statement. In typical Ratfor pro-
grams labels appear only on format statements, although they are accepted on any
statement. The lexical value returned for a label is LEXDIGITS.

[f the token isn't a label, it is looked up in a table containing the keywords if,
else and so on. If it is found, lex returns the corresponding keyword type: other-
wise it returns the value LEXOTHER. The table searching routine lookup is the
one we used in Chapler 8. The parser initializes the symbol table with the keyword
names and (ype values which will be returned by lex. The types are single-
character strings with values LEXIF, LEXDO, and so on, returned in Itype (which
musl be a two-element array to hold the type and an EOS). The types need 1o be
distinct from EOF, semicolon and braces since these are also returned by lex, but
there are no other constraints.

alldig tests a string 10 see if it contains only digits.
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# alldig — return YES if str is all digits
integer function alldig(str)
charactar type
character str(ARB)

integer i
alldig = NO
if (str(1) == EQS)

return
for (i = 1; str(i) ~= EOS;i =i+ 1)

if (type(str(i)} ~= DIGIT)

return -

alldig = YES
return
end

9.3 Code Generation Rules

In Chapter 1 we gave a brief indication of how the Ratfor control flow slate-
ments could be mechanically translated into Fortran. In this section we will make
that informal description more precise.

it Statement:
The translation of
it { condition ) statement
is essentially |
if { condition is not true ) go around siatement
Thus when an if is encountered, we must

isolate the condiiion part
generate and save some unique label L
output " if ( .not. ( copdition ) ) goto L "

(In Fortran, the construction ~
.not. ( condition )

inverts the truth valuz of the condition) When we get 10 the end of the statement

that follows the if, there are two possibilities. If there is no else following, we need
oulpul only

L continue
If an else follows, however, we must generate another label L1 and output

goto L1
L continue

to branch around the elke part, and then, after whatever statement follows the
else,
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L1 continue

o terminate the if-else construction. In summary, the code generation for

if { condition ) statemeni

it ( .not. ( condition) ) goto L
statement

L continue

and for

it ( condition ) statement! else - statement?

if ( .not. ( condition) ) goto L
statemeni |
goto L1
L continue
statemeni?
L1 continue

293

Since labels are “free,” in the sense that we will never run out of legal state-
ment numbers in any program, Lhe easiest thing to do is a/ways (o generate two
consecutive labels when an if is seen: L1 is just L+ 1. If one of them turns out to
be unnecessary because there is no else, it doesn’l cost anything. And because we
know that the labels are always L and L+1, only one of them need be remem-

bered. 1he other is deduced by adding 1.

do Sratement:
The Raifor do is a Fortrarwdo without a label. When do is seen, we
isolate the limiis

generate a label L
outpul " do L limiis"

Then at the end of the statement associated with the do, we output
L continue ’
Thus the Raifor
do /limits starement
is translated into

do L limis
statemeni
L continue
L+1 continue

The second continue is produced in case the loop contains a break Statement; the

break generales

L3



294  SOFTWARE TOOLS CHAPTER 9

goto L+1
while a next generates
goto L

In this case we generate the second continue regardless of whether or not there is a
break; it is simply 0o much effort to check. To make our code generation lask
easier, we take advantage of the fact that Fortran compilers are usually quite clever
about dealing with unreferenced continue’s.

while Sratement:

The while statement combines aspects of if and do in an obvious manner.
The code for

while ( condition ) statement

continue
L’ if ( .not. ( condition ) ) goto L+1
Staremen!
goto L
L+1 continue

L+ 1 also serves as the break iabel; next’s merely go to L. The continue before the
it is there for the unlikely citcumstance that the while has been labeled, as in

10 while(i > 0)..

In this case, Ratfor will put the 10 in the statement number field of the first line of
code generated for the while, which is the continue. You should rarely have to
write a statement number in Ratfor, but it is a basic principle of good design that
you should be atlowed 1o say anythirig that makes sense.

{.abefs and Others:

When a label is seen (lexical type LEXDIGITS), the label is output, beginning
at column 1, and followed by enough blanks that the next character will come out
in column 7, the standard place for a Fortran statement to begin. Input of type
LEXOTHER need only be copied from input to output with appropriate formatting
to adhere 1o Fortran requirements, usually that it lie between columns 7 and 72 of
the line.

As you can see, Ratfor generates straightforward code for all of its constructs:
there is no attempt to optimize special cases. The if statement is a case in point.
The code generated for

if ( condition ) statemen:

(without an eise) is al/ways
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if ( .not. ( condirion ) ) goto L
statement
L continue

This is true even if srarement is a single Fortran construction which need not be
translated, as in

if ( condition ) return

This is a viable approach becalise in most circumstances the ‘“‘optimization™
will have negligible effect. For the several compilers we use, the only additional
cost is typically one unnecessary goto, with an imperceptible effect on running
time. It is rare that tinkering with the code will make any significant difference.
(Measure it before you make it more complicated!) Algorithm and data structure
changes are by far the most effective way to improve performance.

One drawback to this simplistic code generation, which should not go unmen-
tioned, is that a few constructions can cause diagnoslics from a Fortran compiler.
The code generated for

if ( condirion )

return
else
a=>b
is
if (.not. ( condition ) ) goto L
return
goto L +1
L continue
a=>b

L+1 continue

Some compilers trouble 1o check whether all statements are reachable, decide that
goto L+1 is not, and produce a warning. The same message will be -produced if
return is replaced by break, next, goto or stop.

The fix is easy: omit the else. It is unneeded, in the strictest sense, and it is
responsible for generating the unreachable code. Still, this is regrettable, because it
denies us the use of an important standard form and hence can interfere with rea-
dability. Whenever we see an else, we know that only one of two statements will
be executed. But an if followed by a second statement implies that the second
stalement wifl be obeyed. The context may assure us otherwise bul the form is
misleading.

Throughout the book we have used else’s and else if's whenever possible o
emphasize that only one of a set of stalements is 10 be performed. But we have
also avoided the else in any situation that might generate unreachable code, 1o
make the programs as portable as possible.

Exercise 9-1: Wiy is it not correct 1o follow a label by a continue in all cases?
(Hint: What Fortran siatement always has a label, yet is not executable?) O
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9.4 Parsing

We come now 1o parsing, which ensures that the code generation operations
are done at the right ime with (he right values. The basic organization is this.
When the beginning of a statement (if, eise, while, do, left brace, digits) is encoun-
tered, the corresponding type is pushed onto a stack and the code generation rou-
tine for that type is called if there is one (for instance, ifcode is called when if is
seen). The routines for keywords if, do and while generate and return a unique
labei, which is placed on a parallel stack of label values.

When the end of a stalement is encountered (types other, break, next, right
brace, and semicolon), an appropriate code generation routine is called if there is
one. Because it has found the end of a statement, the parser may also be able to
pop one or more Lhings off the stack. For instance, in

if(a) .
if(b)
i=i+1
i+
when i =i + 1‘is seen (lype other), it can pop both stacked if's; because there is
no following else, both if stalements are finished.

The parsing routine is by far the most complicated part of the program but its
general outline is straightforward enough.

while (token ~= EOF)
if (token == if, else, while, do, left brace, digits) |
do corresponding code generation routine
stack type of token and label returned by code gen

)

do code generation for corresponding type
(must be other, break, next, semicolon, right brace)
while (stack not empty) {
if (stack = = left brace)

else |

break
if (stack = = IF & next token == ELSE)
break
do code generation for end of stacked type
pop stack

)

Leaving aside some defenses against invalid inpui, the main complication is the
necessity of looking ahead one token to see whether there is an else associated with
an if. Consider the construction
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if(a)
if(b)
c
else
d

To which if does the else belong? This is an ambiguity in Ratfor (as in many other
languages) ; logically it could go with either. We have chosen the widely used and
more useful interpretation, that the else goes with the nearest previous “un-elsed”
if. Thus, if the current top of the stack is an if and the next input is an else, the
parser musl not pop the stack any further; instead it must stack the else and later
pop the if and else 1ogether.

As an example of the parsing process, let us translale the input

if(a)(

if(b)
c
while (d )
e
}
else
f
g

First,
if (.not.(a)) goto L 1

is generated, and an if is stacked at stack position 1, along with the generated label
L1. The left brace is stacked at 2. Another if is stacked at 3 and

it (not.(b)) goto L2
is generated. c¢ is encountered; when the code for ¢ is produced,
c

the top of the stack is an if, and the next token is a while, so the if can be popped
and the code

L2 continue

generated. Now the stack pointer is 2 and the lop is a lefl brace. The while is
stacked at 3 and code for the start of the while is output:

continue
L3  if (not.(d)) goto L3+ 1

When e is encountered, il is outpult:
e
Then the while can be unstacked and its termination code

goto L3
L3+ 1 continue
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generated. This leaves a left brace on the stack at 2 and a right brace as the next
input. The left brace is popped; this leaves an if at stack position 1, and an else on
the inpul, so the else is stacked at position 2 and

goto L1+ 1
L1 continue

are produced. After f is output,
f
we have an else stacked, so /wo items are unstacked — the else and the if — and
L1+ 1 continue
is output. Finally -
g

is produced.

It is important to carry out several such hand simulations, to be sure that in
principle the mechanism does what it is supposed to, and to be sure that you under-
stand what sheuld happen.

We are now in a position to present the code for the parser. This is a sizable
routine at first sight, but it follows closely the outline we gave above.
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# parse — parse Ratfor source program
subfoutine parse
character lexstr(MAXTOK)
integer lex
integer lab, labval(MAXSTACK), lextyp(MAXSTACK), sp, token

call initkw  # install keywords in table
sp = 1 '
lextyp(1) = EOF
for (token = lex(lexstr); token -= EOF; token = lex{lexstr)) |
if (token == LEXIF)
call ifcode(lab)
else if (token == LEXDQ)
call docodel(lab)
else if (token == LEXWHILE)
call whilec(lab)
else if (token == LEXDIGITS)
call labelc{lexstr)
else if (token == LEXELSE) {
if (lextyp(sp) == LEXIF)
call elseif(labval(sp))
else
call synerr("illegal else.")

if (token==LEXIF | token==LEXELSE | token==LEXWHILE
| token==LEXDO | token==LEXDIGITS | token==LBRACE) |
=sp + 1 # beginning of statement
if (sp > MAXSTACK)
call error("stack overflow in parser.”)
lextyp(sp) = token # stack type and value
;abval(spl = |ab
else | # end of statement — prepare to unstack
if (token == RBRACE) {
if (lextyp(sp) == LBRACE)
sp=8p — 1
else
call synerr("illegal riéht brace.")

else if (token == LEXOTHER)
call otherc(lexstr)

else if (token == LEXBREAK | token == LEXNEXT)
call brknxt(sp, lextyp, labval, token)

token = lex(lexstr) # peek at next token

call pbstr(iexstr) '

icall unstak(sp, lextyp, labval, token)

|
if (sp ~= 1)

call synerr{"unexpected EOF.")
return
end
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initkw places the keywords in the table for later lookup, using instal as in define.

As we said, if the token returned by lex is one of those that mark the begin-
ning of a statement, the corresponding code generation routine is called. The type
and any generated label are stacked. We will return 10 the code generation routines
momenlarily.

If the inputl token marks the end of a statement, appropriate code generation
is done, and then as much as possible is unstacked. This 1ask is pérformed by
unstak.

# unstak — unstack at end of statement
subroutine unstak(sp, lextyp, labval, token)
integer labval(MAXSTACK), lextyp(MAXSTACK), sp. token

for(;sp > 1;sp =sp — 1) |

if (lextyp(sp) == LBRACE)
break

if (lextyp(sp) == LEXIF & token == LEXELSE)
break

if (lextyp{sp) == LEXIF)
cal! outcon(labval(sp))
else if (lextyp(sp) == LEXELSE) {
if (sp > 2)
sp =sp — 1
fall outcon{labval(sp)+ 1)
else if (lextyp(sp) == LEXDO)
call dostat{labval(sp))
else if (lextyp(sp) == LEXWHILE)
} call whiles(labval(sp))

return
end

After calling the right code generation routine, unstak pops the stack. If the top is
an else, rwo things musi be removed — the else and iis if.

The main program for Ratfor calis parse. Depending on your environment, it
might then call the local Fortran compiler to complete the translation. Ours simply
exits.

# ratfor — main program for Ratfor
~ call parse
stop
end

One of the major problems in designing a language translator is deciding what
lo do for each of the myriad syntaclic errors that can occur in the input. It is sel-
dom acceptable merely to report the first error and quit; even if there is no possibil-
ity that the output will be usable, it is still desirable (o detect as many errors as pos-
sible on a given run. This requires that the translator recover from every error
quickly, reporting as few spurious errors as possible in the process of
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resynchronizing.

This is not an easy task. Although parse and unstak contain some defense
against syntactically illegal inputs like missing if's and braces, they are not perfect.
In particular, one error may leave the parser in a stale where successive inputs
appear invalid even though they aren’t, and a cascade of messages appears. This is
common o many parsers, but undesirable nonetheless. One of the exercises is con-
cerned with improving the error recovery process.

You should realize that our parser is in no sense the state of the art.
Although parsers can be written by hand for quite substantial languages, the lask is
not an easy one, and the resulting parsers are often hard to change, and may well
contain significant errors and anomalies. We are fortunate that the Ratfor grammar
is so small. ;

If a Yanguage is formally specifigd by a grammar (as most should be), it is an
essentially mechanical task to construct a parser for it. As we mentioned, this is the
function of a compiler-compiler, a tool 100 big and technical to talk about here.
{See the bibliographic notes at the end of the chapter.) The original version of our
parser was developed with a compiler-compiler; the parser presented here was
derived from it, once we were satisfied with the language design.

Exercise 9-2: Modify parse to respond better to fatal syntax errors. You might
consider skipping over input until you find a safe place 10 resume. (Where
would that be?) Or you could try to inserr tokens you think were left out. What
are the dangers of this approach? O

Exercise 9-3: An interesting view is to think of error recovery as an editing pro-
cess that converts unacceptable input to valid by making a series of insertions,
replacements and deletions. One school of thought is that the best recovery is
that which can be made with a minimum number of editing steps. Discuss the
implications of this criterion. Specify minimum editing sequences for the errors
detected in parse. O

9.5 Code Generation

parse and unstak call upon a fair number of code generation routines; these
are described in this section.

if Statement:

When an if is encountered, we must collect the condition part (a string in bal-
anced parentheses), generate a pair of consecutive unigue labels L and L+ 1, output

if { .not. { condition ) ) goto L

and return L. This is accomplished by ifcode:
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# ifcode — generate initial code for if
subroutine ifcode(lab) .
integer labgen
integer lab

lab = labgen(2)
call ifgof{lab)
return

end

labgen creates the labels: we will return 1o it shortly.
ifgo generates the consiruction
if { .not. ( condition ) ) goto lab

It exercises most of our output routines; for now their names and the brief com-
ments should be sufficient explanation until we are able (o return to them.

# ifgo — generate "if(.not.(...))goto lab"
subroutine ifgo(lab)
integer lab
string ifnot "if(.not."

call outtab # get to column 7

call outstr(ifnot) # " ifCnot. ™

call balpar # collect and output condition
call outch(RPAREN) #")"

call outgo(iab) # " goto lab "

retum

end

balpar collects and outputs the condition part of an if, which is a string
enclosed in balanced parentheses. If this is spread over several lines balpar handles
the continuations by ignoring newlines.
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# balpar — copy balanced paren string
subroutine balpar
character gettok
character t, token(MAXTOK)
integer nipar

if (gettok(token, MAXTOK) ~= LPAREN) {
call synerr("missing left paren.”)
retumn
J
call outstr(token)
nipar = 1
repeat {
t = gettok(token, MAXTOK)
if (t==SEMICOL | t==LBRACE | t==RBRACE | t==EOF) {
call pbstr{token)
break
}
it ({ == NEWLINE) # delete newlines
token(1) = EOS
else if (t == LPAREN)
‘nipar = nipar + 1
else if (t == RPAREN)
nipar = nipar — 1
# else nothing special
call outstr{token)
} until (nipar <= 0)
if (nipar ~= Q)
call synerr("missing parenthesis in condition.”)
return
end

As we said before, Ratfor doesn’t really know much Fortran. balpar does nothing
but collect a string; it performs no syntax checks except some elementary but
effective precautions against one of the most common errors, unbalanced
parentheses.

The actions for the beginning of an else and for the end of an if or an else
are only a few lines each. If an else is seen and the top element on the stack is an
if, the parser calls elseif 1o produce the output

goto L+ 1
L continue

where L is the value on the stack. Here is elseif:
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# elseif — generate code for end of if before eise
subroutine elseif(lab)
integer lab

call outgol(lab+ 1)
call outcon(iab)
return

end

outcon generales a labeled continue statement; outgo generates a goto to a label.

At the end of an else, or an if that doesn’t have an else, the output is pro-
duced by the lines in unstak that read

if (lextyp(sp) == LEXIF)
call outcon(labval(sp))
else if (lextyp(sp) == LEXELSE) {
if (sp > 2.
sp =sp — 1
call outcon(labval(sp)+ 1)

|

These both produce a labeled continue: the appropriate label is picked out of the
stack. The test on sp is parl of error recovery. it prevents popping the stack too far
il there is an else without an if.

labgen generales a group of distinct, consecutively numbered labels, and
returns the first as its function value. The generated labels begin arbitrarily at
23000, a sufficiently unlikely value that collision with a label used by a Ratfor pro-
grammer is improbable.

# labgen — generate n consecutive labels, return first one
integer function labgen(n)
integer label, n-
data label /23000/

labgen = label
label = label + n
return

end

Labels:

When a label is seen (lexical type LEXDIGITS), the label is output along with
enough spaces to gel 1o column 7.
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# labelc — output statement number
subroutine labelc(lexstr)
character lexstr(ARB)
integer length

if (length(lexstr) == 5) # warn about 23xxx labels
if (lexstr(1) == DIG2 & lexstr(2) == DIG3)
call synerr("warning: possible label conflict.")
call outstr(lexstr)
call outtab
return
end

Since labels are nol needed in Ratfor programs except for format statements, a label
beginning with 23000 will probably never occur. Just in case, however, labelc
warns about input labels in the 23000 range. We can’t silently ignore this patholog-
ical case, but carefully checking every inpul label 1o see whether it maiches some
generaled label will make the preprocessor much more complicated but not much
better. The warning is a reasonable compromise. Notice that only labgen and
labelc know the range of label values to be generated, since there is no good reason
why any other part of the preprocessor should care.

do Statement:
Code generation for a do is straightforward. We collect the do limits, generate
a pair of consecutive labels L and L+ 1. output
do L fimirs

and return L.

Since Ratfor knows no Fortran 1o speak of, the /imirs pari can be anything
which is legal for the local brand of Fortran, typically a construction like i = 1, n.
[T this part should be illegal for any reason, the error will be detected by the Fortran
compiler.

Al the end of the statement associaled with the do, we oulput

L continue
L+1 continue

The continue statement labeled L+ 1 is a target for any break’s that might occur
within the do. (L serves as the target for next's).

docode is called when do is encountered:
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# docode — generate code for beginning of do
subroutine docode(lab)
integer labgen
integer lab
string dostr "do"

call outtab

call outstr(dostr)
lab = labgen(2)
call outnum(lab)
call eatup

call outdon
retumn

end -

eatup collects the rest of the input statement — the part that follows the
token isolated by lex. eatup also handles the continuation convention for ordinary
statements — a line ending with a comma is continued. Like baipar, it looks for
unbalanced parentheses, but it does not look across multiple lines for the balancing
parenthesis — in an ordinary statement, a missing parenthesis is more likely to be
an error than an intentional continuation.
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# eatup — process rest of statement; interpret continuations
subroutine eatup
character gettok
character ptoken(MAXTOK), t, token(MAXTOK)
integer nipar

nipar = 0
repeat {
t = gettok(token, MAXTOK)
if (t == SEMICOL | t == NEWLINE)
break
if (t == RBRACE) |
call pbstr(token)
break
}
if (t == LBRACE | t == EOF) {
call synerr{"unexpected brace or EOF.")
call pbstr(token)
break
)
if (t == COMMA) {
© i (gettok(ptoken, MAXTOK) ~= NEWLINE)
call pbstr(ptoken)
J

else if (t == LPAREN)
nipar = nipar + 1
else if (t == RPAREN)
nlpar = nipar — 1
call outstr(token)
} until (nlpar < 0)
it (nipar ~= 0)
call synerr("unbalanced parentheses.”)
return
end

dostat is called at the end of a do to output two appropriately labeled
continue’s.

# dostat — generate code for end of do statement
subroutine dostat(lab)
integer lab

call outcon(lab)
call outcon(lab+ 1)
return

end
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while Sratement:
When a while is seen, the condition is isolated with itgo and Iabels for next’s
and break’s are generated. The output code, if you recall, is

continue §
L if ( .not. ( condition) golo L+1
statemerit
goto L
L+1 continue

This is produced by whilec and whiles.

# whilec — generate code for begmnmg of while
subroutine whilec(lab)
integer labgen
integer lab

call outcon(0) # unlabeled continue, in case there was a label
lab = labgen(2)

call outnum(iab)

call ifgo{lab+ 1)

retumn

end

whiles is executed afier the end of the stalement part of a while:

# whiles — generate code for end of while
subroutine whiles(lab)
integer lab

call outgo(lab)

call outcon(lab+ 1)
return

end

break and next Statements:

Code generation for break and next relies on the fact that do and while have
carefully stacked the correct labels — the stacked value is always the next label, the
break label one number higher. brknxt searches down the stack until it finds the
enclosing do or while, then outputs a

goto L

with the correct label.
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# brknxt — generate code for break and next
subroutine brknxt(sp, lextyp, labval, token)
integer i, labval(MAXSTACK), lextyp(MAXSTACK), sp, token
for(i=sp;i>0i=i~1) ' '
if (lextyp(i) == LEXWHILE | lextyp(i) == LEXDO) {
~ if (token == LEXBREAK)
call outgo(labval(i)+ 1) .
else
call outgo(labval(i))
¥etum
if (token == LEXBREAK)
call synerr("illegal break.")
eise .
- call synerr("illegal next.")
return
end

Type other:

otherc outputs code for a statement which isn't any of the others, using eatup
to copy it through.

# otherc — output ordinary Fortran statement
subroutine otherc(lexstr)
character lexstr(ARB)

call outtab

call outstr('exstr)
call eatup

call outdon
retumn

end

Exercise 9-4: eatup ensures that a line ending with a comma is continued. Add
the convention that a line ending in an underscore is also continued, bul with
the underscore deleted. This provides a way to continue any line at an arbitrary
point. Would it also be desirable to continue lines automatically afier operators
like +, — and so on? What about after / ? O

Exercise 9-5: If there is no break in a do loop, the second continue statement
generaled by dostat is unnecessary. How would you eliminate the unneeded
ones? Is it worth it? What does your Fortran compiler do with excess
continue's? What does it do with unlabeled ones? 03
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9.6 Output Routines

Output lines are collecled a characier at a time in an array outbuf; a pointer
outp is the index of the iast character put into outbuf. These data arc kept in a
common block called coutin.

common /coutin/ outp, outbuf{MAXLINE)
integer outp # last position filled in outbuf; init = O
character outbuf # output lines collected here

outdon flushes outbuf and resets outp to zero. It is called at the end of various
statements, and is also called by outch to flush a line prior 1o starting a continua-
tion. outdon is the only Ratfor routine that actually produces output.

# outdon — finish off an output line
subroutine outdon
include coutin

outbuf{outp+ 1) = NEWLINE
outbufloutp+2) = EQOS

call putlin{foutbuf, STDOUT)
outp =0

return

end

outch enters characters into outbuf; it is responsible for handling continuation
lines according to local conventions. Lines are 72 characters long, as is usual with
standayd Fortran. A non-blank, non-zero character in column 6 of a line signals
that it is a continuation of the previous line; we use a star.

# outch — put one character into output buffer
subroutine outch(c)
character c
integer i
include coutin

if (outp >=72){ # continuation card
call outdon
for(i=1i<6i=i+1)

outbuf(i) = BLANK

outbuf(6) = STAR
outp = 6
}

outp = outp + 1

outbuf(outp) = ¢

return

end

outtab is used by several routines 1o force outp past column 6.
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# outtab — get past column 6
subroutine outtab
include coutin

white (outp < 6)

call outch(BLANK)
return
end

There are a handful of other output routines for generating common con-
structs, but they all call on outtab 10 start a new statement, outch to build it, and
outdon to finish it off. Only these three routines need to know the particular format
of Fortran statements, so all the magic numbers like 6 and 72 can be confined here.
Even outtab calls on outch, despite the fact that it could store blanks in outbuf
directly.

Here are the remaining output routines. outstr outputs a siring by repeated
calls to outch. It also converts quoted strings into the standard Fortran nh con-
struction, although you may not need this with your Fortran compiler. outstr is
also the place 1o do any other character (ranslations that might be desired, such as
converting > to .gt., etc; these are left as exercises.

# outstr — output string
subroutine outstr(str)
character c, str(ARB)
integer i, j

for (i = 1, str(i) ~= EOS;i =i+ 1)
c = str(i)
it (c ~= SQUOTE & ¢ ~= DQUOTE)
call outchic)
else |
i=i+1
for(j = i;str(j) ~=c;j =j+ 1) # find end

call outnum(j—i)
call outch{LETH)
for(;i<ji=i+1)
} call oqtch(str(i))

)

return
end

outnum converts numbers from internal representation into characters with
itoc and oulputs them wilh outch.
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# outnum — output decimal number
subroutine outnum(n)
character chars(MAXCHARS)
integer itoc
integer i, len, n

len = itoc(n, chars, MAXCHARS)

for(i=1i<=len;i=1i+ 1)
call outch(chars{i))

return

end

Finally, outcon and outgo outpul L continue and goto L respectively, then
call outdon to flush out the line in outbut.

# outcon — output "n continue"
subroutine outcon(n)
integer n
string contin "continue"

if (n > 0)

call outnum(n)
call outtab
call outstr(contin)
call outdon
retum
end

# outgo — output "goto n"
subroutine outgo(n)
integer n
string goto "goto"

call outtab

call outstr(goto)
call outnum(n)
call outdon
return

end

The subroutine tree for ratfor is not especially complicated. Here are the
essential parts, with all of the output routines removed, since they contribute no
complexity.
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ratfor
parse
initkw
instal
lex
gettok
ngetc
getc
putbak
alidig
lookup
ifcode
labgen
ifgo
balpar
gettok
elseif
docode
labgen
eatup
gettok
whilec
labgen, ifgo’
labelc
otherc
eatup
brknxt
unstak
dostat, whiles

9.7 Extensions

These are obviously many things that can be done (o the basic tool once it is
available. Not all of these are worth the effort involved, but here is a list of possi-
bilities, phrased as exercises. Most are easy enough, and require only straightfor-
ward additions to the basic program.

Exercise 9-6: Add a translator for these operators:

> .ge.
>= _ge.
< At
<= e
== eq.
= ne.
= .not.
& .and.
| .or.
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Exercise 9-7: If your character set is so restrictive that you cannot use braces or
brackets for statement grouping, modify Ratfor to use some other notation.
begin-end, do-end and do-od are forms that have been used in other
languages. You might also consider shorter character strings like << and > >
or$ and $). O

Exercise 9-8: Integrate the include and define or macro processors into this pro-
gram. What are some good reasons for doing so? Are there good reasons for
not doing so? O

Exercise 9-9: Add the for and repeat-until statements. A repeat without an
until should be an infinite loop. Don’t forget that since until is optional,
repeat-until has the same ambiguity as if-else. Resolve it the same way. O

Exercise 9-10: In a few of our programs it would be convenient to exit from
several loops all al once (see expand in Chapter 2, for instance). Invent a syn-
tax for multi-level bréak and next and implement it” What are the good and
bad points of your statements for writing readable, modifiable code? O

Exercise 9-11: We mentioned the logical operator andif in Chapter 6, and a
corresponding orif in Chapter 8. These force a left to right evaluation of logical
expressions, and guarantee termination as soon as the truth value is known.
Implement andif and orif. (&& and | | are convenient abbreviations.) O

Exercise 9-12: Add the étring declaration. ANSI Fortran requires data state-
ments 1o follow all declarations. How does this complicate matters? O

Exercise 9-13: The gravest deficiency in Ratfor, as in Fortran, is the restricted
set of data types supported. How would you add character variables, strings,
structures, pointers? [J

Lxercise 9-14: Many of our identifiers are strained because we adhered to the
Fortran limit of six character identifier names. Modify Ratfor to truncate all
longer names to six characters. Does Ratfor now have to know about Fortran
keywords? More involved, but safer, modify Ratfor to generale unique internal
names for truncated identifiers which happen to be identical in the first six char-
acters. O

Exercise 9-15: Measure some programs (o find out how often transfer of control
statements like return, goto, break, next and stop occur after an if. Measure
running programs to see how frequently these statements are executed. If your
measurements indicate that it is worthwhile, rewrite the parser to optimize these
special cases. Do you think it is worth doing anyway, to avoid the possibility of
generating unreachable code? What aspects of your Fortran compiler would
you investigate before rewriling anything? Why are constructions like

if ( condition )
i=i0

harder? Did you think they were? Are they worth doing? O

Exercise 9-16: Improve Ratfor’s error recovery by making Lhe parser recover
better from invalid inputs like else’s without if's, missing or excessive braces,
and the like. Improve error detecrion capabilities by careful checking of Ratfor
source programs for obvious blunders like unbalanced parentheses, adjacent
operators, etc. Improve error reporiing by tagging each output line with some
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sequencing information d&termined by the input line that created it, so that
messages which come from the Fortran compiler can be more readily associated
with their Ratfor-source. (Remember that this is inhecently system-dependent,
although columns 73-80 of Fortran source lines are often available in a card
environment.) If you integrate the include processor into your version, how do
you report line numbers for errors within included files? [J

Exercise 9-17: Improve the readability of the generated code by indenting
appropriately, retaining blanks, eliminating unnecessary continue’s, and convert-
ing Ratfor comments into Fortran comments. Is it worth it? O

Exercise 9-18: Write a “‘beaulifier,” i.e., a program that converts an unformatted
Ratfor program into one that is neatly indented and spaced. Is it better 1o use a
beautifier or 1o maintain programs neatly yourself? Should Ratfor itself produce
a neat source listing? How does your computing environment affect the
answers? (1

Exercise 9-19: A much harder job than a preprocessor is a siructurer — a pro-
gram to lake an existing Fortran program and convert it into a structured
language like Ratfor. Carry out the design of such a program, for several
degrees of perfection. How complete a job should a structurer do? OJ

Exercise 9-20: Other programming languages can benefit from preprocessing. (If
no examples spring (o mind, you might consider various flavors of Algol, APL.
assembly language, Basic, Cobol, PL/I, Snobol, and your local job control
language.) Is a preprocessor for your language possible at all in your operating
system environment? Define and implement a preprocessor for a reasonable sel
of improvements, bearing in mind that it is much more useful to do part of the
job well than the whole thing badly (or not in time). O

Exercise 9-21: If your system permits, write a preprocessor (o read (he job con-
trol language that we have been using — file redirection with < and >, and
pipelines — and generate a file of job control language to be run as a subsequent
step. Implement pipes with temporary files. How much help do you need from
your operating system? How much would you have to change the preprocessor
o make it into the command interpreter for an interactive environment? 3

9.8 Sorrie Measurements

If you use a preprocessor like Ratfor, it costs you more 1o compile programs.
How much? Thaxgdepends on your system, but as a rough estimate it will double
the cost of each compilation merely because the program is read twice, once in Rat-
for and once in Fortran, instead of just once in Fortran.

We feel‘suongly that this cost is absolutely immaterial in comparison to the
benefits of the preprocessor. Even though a single compilation may cost twice as
much, our experience has been that many fewer compilations are needed, because
the code works sooner. If you can find a bug in a few minutes instead of a few
hours it pays for a lot of compiling. The other saving is in the much reduced cost
of modifying a program after it's been in service for a while. Every program in this
book has been extensively revised several times. We honestly believe that this
amount of revision wouldn’t have been possible in standard Fortran.
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Still, it’'s worth finding out where the preprocessor spends its time, to see if it
can be speeded up. We measured the Ratfor presented in this chapter while it was
compiling 900 lines of code. 65 percent of its time was spent doing input and qul-
put at the lowest level — below getc and putlin. On the system we were using,
getc and putlin both use Fortran formatted 1/0, which is notoriously slow.

The remaining 35 percent of Ratfor’s run time is distributed like this:

gettok 11.1%
ngetc 52
outstr 32
getc 2.5
type 24
outch 2.0
eatup 1.5
putbak 14
lookup i.1

and everything else under one percent. The moral? Once again, you might as well
write the program as cleanly as you can, for until you've got truly fast 1/0, nothing
else matters. After that, the token routine is the place to look.

We also measured a production version of Ratfor, containing define and
include and character translations. This one spent 60 percent of its time in input-
output, and 15 percent looking up tokens in its table of definitions (there were 60
symbolic constants). This reinforces our conclusions about the dominance of /O
time, and also supports our contention that a linear table search is often adequate.

The general observation is that many programs don’t do much processing
compared to the amount of work needed merely to get the characters in and out.
Even with efficient 1/0 routines, most of 1he tools presented in this book spend
most of their time doing [/0. (Some uses of find and macro are exceptions.)

Timing measurements are often hard come by, at least not without a lot of
special pleading with your operating system. A valuable measurement tool which
doesn’t require nearly as much system facility is a profiler — a program which
counts the number of times each statement in the program is executed, by adding
counting slatements o source statements before compilation, then neatly listing the
accumulated information alongside the original source program after the modified
program has run. Just knowing the number of times each statement has been exe-
cuted tells you what parts of the program are most often executed and are thus
most likely to dominate the execution time. You can see what parts of the program
have never been executed, which may indicate useless code, inadequate testing, or
just plain errors. And you can detect performance bugs — regions which are exe-

cuted more than they should be, such as (;.ompumlions inside loops when they don’t
have to be.

Exercise 9-22: Having built a preprocessor for a language, you now have most of
the tools needed for a profiler. Build as simple a profiler as you can. Is a
profiler easier for Ratfor than for Fortran? O
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99 Some Usage Statistics

We also made some measurements to find out how Ratfor is actually used.
We counted the occurrences of the various statement types in 5400 lines of Ratfor
(the programs in this book), to see how often they occur, and whether they are
worth the effort of putting into the preprocessor. Here are Lhe results.

total followed by | }

if 556 161

else 229 81 (132 else if's)
for - 154 55

while 45 15

repeat 22 21

until 14

do 0

break 55

next 0

Naturally we used our tools to get these numbers — find to pick out interesting
lines, and various combinations of translit, charcount, linecount and edit to distill
_and count them.

Taken together, the control flow siatements add up to only twenty percent of
the lines: the rest is plain old Fortran. But you must agree by now that Ratfor is a
lot easier to read than Fortran; those twenty percent make a difference. The
number of loops and compound statements gives a crude measure of how many
goto’s and statement numbers have been avoided.

Most of our loops test at the top — for and while outnumber repeat by nine
1o one. (Make sure you “do nothing” gracefully!) break seems 10 be necessary, but
next is much less important: although we had originally used a handful, they disap-
peared quite naturally as the code was refined.

As you can see, do is hardly vital, at least to us. In fact, since there weren’t
any, we looked at for, while and repeat statements to see if any could have been be
replaced by do’s. About one quarter of the for’s could be, if'we occasionally added
extra statements to set up the limits, and if we nearly always added a test to ensure
that the loop could be done zero times. Another quarter of the for’s could probably
be contorted into do’s, but only by sacrificing clarity. The rest of the for’s and
essentially all of the while’s and repeat’s simply aren’t do's at all. They loop, but
they don’t progress arithmetically.

The lesson is clear. Few of the loops in this collection of code are best
expressed with the do statement (which is the only looping construct in Fortran).
If you persist in using do's, most of the time you must twist your logic to meet the
restrictions of the do. And twisted logic is not the most pleasant kind 10 work with.
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Bibliographic Notes

Fortran preprocessors have become very popular recently, probably because
they give so much benefit for so little effort. Most provide improved control flow
structures; fewer address cosmetic issues. (We think that the appearance of a
language is also important, but that puts us in a minority.) Three widely available
preprocessors, capable of running on almost any Fortran system, are Flecs, by T.
Beyer (University of Oregon); Mortran, by J. Cook and C. Zahn (Stanford Linear
Accelerator); and Iftran, by E. Miller (General Research). Mortran is based on a
macro processor, and is thus more easily changed and extended than implementa-
tions based on a compiler. Ratfor itself is also available; the version distributed
with the machine-readable code of this book includes for, repeat-until, include and
define. ;

If you are serious about compiling techniques, inciuding compiler-compilers,
there is an extensive literature: You might look at A. V. Aho and S. C. Johnson,
“LR parsing,” Computing Surveys, June, 1974, or A. V. Aho and J. D. Ullman, The
Theory of Parsing, Translation, and Compiling (Prentice-Hall, 1972).

Preprocessors are not restricted to enhancing conventional programming
languages, of course. We have built several for the typesetting language used to set
this book; one of the most successful implements a language for typesetling
mathematics (B. W. Kernighan and L.L. Cherry, “A system for typesetting
mathematics,” CACM, March, 1975).

For a fascinating study of that can be learned with a profiler, and for some
iniriguing statistics on how Fortran is used in real life, read “An empirical study of
Fortran programs,” by D. E. Knuth, Software— Practice and Experience, April, 1971.+
(The term “profile” to describe a statement frequency count for a program was
coined by Knuth in this article.) ‘

C. A. R. Hoare once said, “One thing [the language designer] should not do is
to include untried ideas of his own.” We have followed that precept closely. The
control flow statements of Ratfor are shamelessly stolen from the language C,
developed for the UNIX operating system by D. M. Ritchie. Our measurements of
Ratfor (and of other programs in 'this book) were obtained on a Honeywell 6070
with a timing package developed by A. D. Hall.
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We have come a long way. Nine chapiers stuffed with code is a lot to ncgo-
tiate. If you didn’t assimilate all of it the first time through, don't worry -- you
weren’t really expected 10. Even the best of code takes time 10 absorb, and you sel-
dom grasp all the implications until you try 10 use and modify a program. Much of
what you learn about programming comes only from working with code: reading,
revising and rereading.

Reading and revising are the key words. No program comes out a perfect work
of art on its first draft, regardless of the techniques you use 1o write it. We rewrole
every routine in this book several times, yet we still would not claim that any one is
flawless. Exiensive revision may sound like a costly and time-consuming luxury,
but when the programs are clean and the modules small, it is not. Moreover you
will find that with practice in reading and revising, your first versions get better and
betler, since you soon learn what 1o use and what 10 avoid, what is good style and
what is not. Even so, rewriting will always remain an important part of the pro-
gramming process.

The purpose of most rewriting is to simplify a program, 10 make it easier 10
understand, 10 keep its complexity within manageable bounds. Controlling complex-
ity is the essence of computer programming. We will always be limited by the sheer
number of delails that we can keep straight in our heads. Much of what we have
tried 10 teach in this book is how 10 cope with complexity.

Al the lowest level, we were careful in our choice of control structures and in
how we used the ones we chose. We found no need for the goto statement, for
instance, nor for the do. if's are seldom nested more than two levels deep, save in
_the restricted form of else if's for multi-way decisioris. Loops generally are lested
at the top, before it’s 100 late. Subroutines and functions rarely spread over more
than one page; most are much shorter. As a result the code is readable. It is easy
1o convince yourself that a module is probably correct, because it is broken up into
pieces that you can grasp one at a lime and read in sequence. '

Each module is also cohesive: it has good reasons for being a separate entity. It
is not a langle of muliiple functions lumped arbitrarily, nor is it a displaced frag-
ment of some other module. This means that we can describe the function of each
routine in a line or two. Further, the routine is written to meer this specification, a
discipline far superior to writing a subroutine that might be useful, then describing
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how 1l does what 1t does.

Several programs in this book comprise five hundred to a thousand lines of
source code, yel none is conceplually ““big.” Each can be undersiood a module at a
time, a seclion al a time. This is because the hierarchy of subroutines was designed
so that no one module has 1o know aboul much of the 1otal problem, nor deal with
more than a handful of immediate neighbors. There is little fear that a change in
one parl of the hierarchy will cause unexpected repercussions in another part,
because the modules are kept as uncoupled as possible, and the coupling that exists
is kept visible.

We tried to make the programs easy to modify, by hiding design decisions and
data structures so that routines that don’t need to know about them don’t. We built
checks and firewalls into the code so that errors and inconsistencies are detecied
quickly. We expressed details of character set, parameters and flags in terms of
symbolic constants so that only one change is needed (0 alter a value throughout a
program. We were also careful to isolate as much as possible of the operating sys-
tem interface in a small set of primitives, so the bulk of the code is independent of
the local enyvironment.

Finally, at the highest level, we wrote programs so they could work together,
so complex tasks could be implemented by combining existing programs instead of
by writing new ones. Each program so used is just a module, with a particularly
simple interface to others.

This i1s “structured programming” in the best sense of the term. It is clear
that the method works, and works well, for real programs. The rewards are sub-
stantial: we can write comprehensible, reliable, robust code and remain relatively
unaflected by major changes in implementation strategies and even by changes
from one computer 10 another. Proper structure, at all levels, is not just nice, it is
vilal to the successful control of a complex job.

Besides these considerations of structure, we tried to convey some helpful
guidelines for attacking a programming task. Like all questions of judgment, they
are subject 10 debalte, but we have found that they work well.

Principle 1 is the most important: keep it simple. Al all levels, be as clean as
possible, and »Trile: the simplest, clearest thing that will do the job. You can’t be
utterly naive, of course; common sense is still needed. When you choose an algo-
rithm, there has to be some hope that it will be economical. But if implementation
details and strategies are concealed, an inadequate algorithm can be changed
without affecting much else. Since you are building 1ools, you also have to
remember the people who will use your program, and make rheir task lighter, even
at the expense of complicating yolir own. Fortunately, a uniform and regular design
is often reflected in a clean interface ﬁir users.

Principle 2 is related: build it in siages. Underiake a complex task only in
manageable steps. Concentrate on the central, most imporiant aspects first; don’t
get sidetracked on frills. If your basic plan is good, later additions will fit in
smoothly. In the meantime, people can,use whal you already have produced, and
their advice and experience should help you decide what comes next. You may
even find that the part already built is adequate by itself. Ninety percent of the
right job done well and available’ today“i§ a lot ‘more valuable than ninety-nine
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percent promised for.sometime next month.

Principle 3 is intuitively appealing: ler someone else do the hard pari. Build on
what you or others have already done, instead of starting from scratch each time. If
you'write a routine for something, make it general enough that it can be used again
for a related job. In a larger context, you can often get a great deal of leverage by
interfacing a small program to a large one — the Ratfor preprocessor is a good
example. And of course, whengver you can, let the machine do the work, for that
is the ultimate purpose of building tools.

One complication you probably have no control over is your local compuling
environment. But even if it’s horrible, as many are, you don't have o suffer sioi-
cally. Even a modest improvement of frequently used parts, like your programming
and job control languages, is well worth while, and there’s no excuse for not trying
to conceal the wors! aspects.

Keep these thoughts in mind as you look back over the code. Although our
ssuggestions were made during the development of specific programs,. the lessons
they conlain are applicable in general. The design principtes and guidelines sum-
marized here are an effective way to produce tools that work properly, and that
work well with people and with other programs. That should be your goal for every
program you wrile.






APPENDIX

PRIMITIVES AND SYMBOLIC CONSTANTS

The primitives are routines needed to interface the programs in this book.to
the operating system upon which they run. Most programs need only getlin and
putlin or getc and putc, and of course one of these pairs can be implemented in
terms of the other. getch and putch fall into the same category. Similarly, error
and cant can be written using remark. remark is called a primitive only because
there is no implementation-independent way in Fortran to detect the end of a
quoted string passed to a subroutine.

Many of the programs need getarg; an adequate temporary version can be
made by reading arguments from a file, since all of the programs read the argu-
ments in order and only once. :

File system interactions are handled by open, close, create and remove.
These are needed by the file programs of Chapter 3, sort in Chapter 4 and edit in
Chapter 6. edit also requires seek and readf for the scratch file version.

The following routines, which were not presented in the texl, are needed to
complete certain programs. Some are available in Fortran, usually under an alias.
These are abs (iabs), max (max0}, min (minQ), and mod. The logical functions
and, or and not are used only by xor in crypt. The routines init (for format) and
initkw (for ratfor) initialize parameters as specified in the text,

The following is a list of consistent values for the symbolic constants used
throughout the book. n stands for an unspecified numeric value, typically the size
of an array used for a stack or a string of characters. The list omits names begin-
ning with MAX, which are also numeric values. Also omitted are constants of the
form LETx and DIGn, which indicate the internal representation used for the
corresponding letter x or digit », respectively. It is assumed that characters are
encoded internally as small positive integers.

Printable charactlers are used as much as possible for parameter values to
improved the readability of code and of diagnostic printouts inserted while debug-
ging. Non-printing characters are indicated in italic and actual numeric values are
in Roman.
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INDEX OF FIRST LINES

This index contains an alphabetical list of the comment lines that introduce
each routine, with the page number where the final version of the routine occurs.

acopy — copy size characters from fdi to fdo /00
addfil — add file "name” to archive 92

addset — put c in set(j) if it fits, increment | 57 ’
alldig — return YES if str is ail digits 292

amatch (non-recursive) — ook for match starting at lin(from) /44
amove — move namei to name2 97

append — append lines after "line" /83

archive — file maintainer 88

balpar — copy balanced paren string 703

brk — end current filled line 2379

brknxt — generate code for break and next 309

bubble — bubble sort v(1) ... v(n) increasing 705

catsub — add replacement text to end of new /58

center — center a line by setting tival 243

change — change "from" into "to" /56

charcount — count characters in standard input /2

ckglob — if global prefix, mark lines to be affected 20/+
ckp — check for "p" after command /90

cirbuf (in memory) — initialize for new file /85

cirbuf (scratch file) — dispose of scratch file 272

comand — perform formatting command 225 °

compar — compare linbuf(lp 1) with linbuf(ip2) 7/!

compare (simple version} — compare file 1 to file-2 70
compare — compare two files for equality 73

compress — compress standard input 44

comtyp — decode command type 226

concat — concatenate named files onto standard output 78
copy — copy input characters to output §

crypt — encrypt and decrypt 49

ctoi — convert string at in(i) to integer, increment i 63
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defalt — set defaulted line numbers /&1

define — simple string replacement macro processor ¥
delete — delete files from archive /i

delete — delete lines tfrom through to /90

detab — convert tabs to equivalent number of blanks 2/
difmsg — print line numbers and differing lines 70

docmd — handle all commands except globals (incomplete) /82
docmd — handle all commands except globals 203

docode — generate code for beginning of do 306

dodash — expand array(i— 1)—array(i+ 1) into set(j)... from valld 60
dodef — install definition in table 274

doglob — do command at lin(i) on all marked lines 202

doif — select one of two arguments 27

doincr — increment argument by 1 27

doprnt — print lines from through to  /8/

doread — read "file" after "line" [v9

dostat — generate code for end of do statement 317

dosub — select substring 279

dowrit — write "from" through "to" into file /99

eatup — process rest of statement; interpret continuations 307
edit — main routine 206

eiseif — generate code for end of if before else 34

entab — replace blanks by tabs and blanks 37

equal — compare str1 to str2; return YES if equal, NO if not 69
esc — map array(i) into escaped character if appropriate 39
eval — expand args i through j: evaluate builtin or push back defn 273
exchan — exchange linbuf(ip 1) with linbuf(ip2) /10

expand — uncompress standard input 48

extrac — extract files from archive 9y

fcopy — copy file in to file out 78

filarg — check if name matches argument list 97

filset — expand set at array(i) into set(j), stop at delim 3§
find — find patterns in text /319

format — text formatter main program 224

format — text formatter main program (final version) 234

fprint — print file "name" from fin &0

fsize — size of file in characters 94

fskip — skip n characters on file fd Y6

getc (simpl~ version) — get characters from standard input 3/
getccl — expand char class at argli) into pat(j) 15/

getdef {for no arguments) — get name and definition 25¢

getin — get file name from lin(i)... /98

getfns — get file names into fname, check for duplicates &9
gethdr — get header info from fd 96

getind — locate line index in buffer /86

getist — collect line numbers (if any) at lin(i), increment i /73
getnum — convert one term to line number /75

getone — evaluate one line number expression /74

getpat — convert argument into pattern /48
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getrhs — get substitution string for "s" command /94

getsub — get substitution pattern into sub /57

gettl — copy title from buf to ttl 232

gettok — get alphanumeric string or single non-alpha for define 253
gettok — get token for Ratfor 2589

gettxt (in memory) — locate text for line and make available /86
gettxt (scratch file) — locate text for line, copy to txt 2//
getval — evaluate optional numeric argument 227

getwrd — get non-blank word from in(i) into out, increment i 76
gname — make unique name for fileid n //8

gopen — open group of files low ... lim [/8

gremov — remove group of files low ... lim //9

gtext — get text lines into linbuf /0§

head — print top of page header &/

help — diagnostic printout §8

ifcode — generate initial code for if 302

ifgo — generate "if(.not.(...))goto lab” 02

include — replace include file by contents of file 76

index — find character ¢ in string str 52

inject (in memory) — put text from lin after curin /88

inject (scratch file) — insert lin after curin, write scratch 209
instal — add name and definition to table 262

itoc — convert integer int to char string in str 62

kwic — make keyword in context index /28

labelc - output statement number 303

labgen — generate n consecutive labels, return first one 304
leadbl — delete leading blanks, set tival 236

length — compute length of string 33

lex — return lexical type of token 29/

linecount — count lines in standard input /3

locate — look for c in char class at pat(offset) /47

lookup — locate name, extract definition from table 26/
macro — expand macros with arguments 270

makecopy — copy one file to another 83

makfil — make new file for number n //8

makhdr — make header line for archive member 93

maklin (scratch file) — make new line entry, copy text to scratch 210
makpat — make pattern from arg(from), terminate at delim /50
makset — make set from array(k) in set 57

maksub — make substitution string in sub /58

match — find match anywhere on line 740

merge — merge infil(1) ... infil(nfiles) onto outfit /20

move — move line1 through line2 after line3 /92

nextin — get line after "line" /7§

ngetc — get a (possibly pushed back) character 236

notfnd — print "not found" message 97

omatch — try to match a single pattern at pat(j) /46

optpat — make pattern if specified at lin(i} /76

otherc — output ordinary Fortran statement 309
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1

outch — put one character into output buffer 3/0

outcon — output "'n continue" 3/2

outdon — finish off an output line 3/0

outgo — output "goto n" 3/2

outnum — output decimal number 7/2

outstr — output string 3//

outtab — get past column 6 3//

overstrike — convert backspaces into multiple lines 40
parse — parse Ratfor source program 299

patsiz — retums size of pattem entry at pat(n) /45

pbnum — convert number to string, push back on input 278
pbstr — push string back onto input 257

pfoot — put out page footer 23/

phead — put out page header 2Jj/

previn — get line before "line" /78

print — print files with headings 79

print (default input STDIN) — print files with headings 82
ptext — output text lines from linbuf 109

ptscan — scan for next occurrence of pattern /77

push — push ep onto argstk, return new pointer ap 272

put — put out line with proper spacing and indenting 230
putbak — push character back onto input 256

putbuf — output buf(1) ... bufinsave), clear nsave 44

putc (simple version) — put characters on standard output 32
putchr — put single char on output or into evaluation stack' 272
putdec — put decimal integer n in field width >=w 6/
putrot — create lines with keyword at front /79

puttl — put out title line with optional page number 23/
puttok — put a token either on output or into evaluation stack 272
putwrd — put a word in outbuf 238

putwrd — put a word in outbuf; includes margin justification 240
quick — quicksort for character lines //5

ratfor — main program for Ratfor 300

reheap — propagate linbuf(linptr(1)) to proper place in heap /2/
relink — rewrite two half links /86

replac — replace or delete files 70/

rotate — output rotated line /29

scopy — copy string at from(i) to to(j) 93

set — set parameter anq check range 228

setbut (in memory) — initialize line storage buffer /87

setbuf (scratch file) — create scratch file, set up line 212
settab — set initial tab stops 2/

shell — Shell sort v(1)...v(n) increasing /06

shell — Shell sort for character lines /09

skip — output n blank lines &80

skipbl — skip blanks and tabs at lin(i)... /75

sort — sort text fines in memory /08

sort — external sort of text lines [/7

space — space n lines or to bottom of page 233
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spread — spread words to justify right margin 24/
stclos — insert closure entry at pat(j) /52

subst — substitute "sub" for occurrences of pattern /95
synerr — report Ratfor syntax erroer 290

table — print table of archive contents 95

tabpos — return YES if col is a tab stop 20

text — process text lines (interim version 1) 229

text — process text lines (interim version 2) 237

text — process text lines (final version) 244

tprint — print table entry for one member 95

translit — map characters 36

type — determine type of character /30

under] — underline a line 243

unique — strip adjacent duplicate lines /25

unrot — unrotate lines rotated by kwic 3/ s~
unstak — unstack at end of statement 300

update — update existing files, add new ones at end 9/
whilec — generate code for beginning of while 308
whiles — generate code for end of while 308

width — compute width of character string 239
wordcount — count words in standard input /5

xindex — invert condition returned by indax 54

xor — exclusive-or of a and b 50
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This index was prepared in large part with the tools described in the book,
including sort, find, translit, edit, and only two small, special-purpose programs.
The first, a variant of kwic, accepts lines of the form

self reference:331
and generates the permutations

self reference:331
reference, self:331

These lines were sorted, by dictionary order before the colon and numerically after,
then delivered 1o a variant of unique that changes occurrences such as

self reference:331
self reference:337

into -
self reference:331, 337

find was used extensively to locate references to indexed terms.

in this index, page numbers in ialics refer o definitions of routines and com-
mon blocks.

abs 62 and. logical 40
acopy /(0 ANSI Fortran 30, 31, 314
addfil 92 append /83
addset 37 append mode 168, 183
Aho, A. V. 161, 318 ARB 32
Algol 4, 16, 315 ' archive &5, 183
algorithm selecuion 25, 106, 119, 122, 1534, 161, archive, file 85

246, 261, 282 295 arguments, macro 249 251, 264, 275
alldig v2 arith built-in macro 279
ALPHA 254, 288 ASCII 12, 253
amatch /44 assertions 113, 279
ambiguity, if-else 28, 297, 314 assert macro 279
amove Y2 attribute, PL/I recursive 143
and 50 attribute, PL/I stream 14
andif statement 180, 314 automalic capitalization 248
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Backus-Naur Form 286

balanced merge 123

balpar 307

Barron, 2. W. 161

beautifier 315

begin-end 16, 287, 314

Beyer, T. 318

binary search 262

blanks, significant 30, 32, 260, 269, 288, 290
boundaries 13, 14, 17, 121, 177, 234
braces 16, 27, 28, 265, 285, 287, 314
break slatement 29, 36, 48, 295, 308, 314
brk 239

brknxt 3¢

Brooks, F. P. 6

Brown, P. J. 282

bubble /3

bubble sort 105

building 1ext patterns 148

built-in macro, arith 279

built-in macro, dni 260

built-in macro, ifdef 263

built-in macro, ifeise 276
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